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Immunotherapy of malignant gliomas with autologous dendritic cells (DCs) in addition to
surgery and radiochemotherapy has been a focus of intense research during the past
decade. Since both children and adults are affected by this highly aggressive brain tumor,
10–15% of the several hundred vaccinated patients represent children, making pediatric
glioma patients the largest uniform pediatric vaccination cohort so far. In general, DC
vaccination in malignant gliomas has been shown to be safe and several studies with
a non-vaccinated control group could clearly demonstrate a survival benefit for the vac-
cinated patients. Interestingly, children and adolescents below 21 years of age seem to
benefit even more than adult patients.This review summarizes the findings of the 25 clini-
cal trials published so far and gives a perspective how DC vaccination could be implemented
as part of multimodal therapeutic strategies in the near future.
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INTRODUCTION
Since the earliest descriptions of dendritic cells (DCs) in skin (1)
and later also in lymph nodes (2), their pivotal role in the regula-
tion of immune responses has been recognized. It was primarily
in histopathological analyses of easy accessible skin tumors that
indicated a close interaction of skin DCs and T helper cells (3).
These data led to groundbreaking murine studies showing that
DCs pulsed with tumor-extracts can significantly delay cancer
growth (4), result in humoral and cellular immune responses (5),
and confer in vivo resistance to tumor challenge (6). Quite rapidly,
these findings have been translated into clinical studies, one of
the first clinical trials in patients with follicular B-cell lymphoma
reported no humoral responses but increased cellular prolifera-
tion in 4/4 treated patients and clinical responses of various degree
in 3/4 (7). Thousands of articles have been published since then
(a recent PubMed search with the keywords “DCs and vaccina-
tion and tumor” provides 2348 articles), however, results from
up-to-date clinical trials still yield no superior results than in the
earliest studies. Although this seems daunting at a first glance,
many important lessons have been learnt from these trials.

Dendritic cell vaccination has been performed targeting many
different tumor entities, the majority of which belonging to types
of cancer typically occurring in adults (melanoma, renal cell car-
cinoma, breast, colon, and prostate cancer). Malignant glioma has
also gained considerable attention in the field, and this tumor is a
tumor entity relevant also in pediatric oncology. Even with most
recent multimodal treatment strategies, the majority of children
will relapse within 5 years and die of progressive disease (8). Thus,
this review focuses on insights, advances, and translational aspects
in the field of DC vaccination studies for malignant gliomas.

CURRENT STATE OF THE ART
Several murine models using vaccination with DCs in malignant
glioma models have shown that this approach holds considerable

promise in treating this highly aggressive brain tumor (9, 10).
Moreover, there is any evidence that vaccination with DC, even
when using whole brain lysate as antigen source, may break tol-
erance to CNS epitopes (11, 12). This may be explained by the
lifespan of mature DC in peripheral lymphoid organs, which is
probably only 1–2 to a maximum of 9 days (13), thereby limiting
contact time and potential interactions with naïve T cells. Mature
DCs are not capable of dividing or self-sustaining anymore, and
their intrinsically activated apoptotic pathways have been shown to
be pivotal for the prevention of autoimmunity (14, 15). However,
despite the short shelf life of migratory DCs, antigens from injected
DCs can be transferred to endogenous DCs from host tissue possi-
bly prolonging and enhancing presentation of tumor antigens. In
contrast to migratory DCs, these endogenous, tissue-resident DCs
have a significantly extended lifespan (13). This process of anti-
gen transfer has been shown to be important for full activation of
CD8+ T-cell responses and requires an additional, simultaneous
TLR activation stimulus (16, 17). Another interesting observa-
tion pointed toward the role of oligodendrocytes in preventing
CNS-autoimmunity: these intraparenchymal, CNS-resident cells
are highly effective in purging the peripheral repertoire of autore-
active T cells (18). Whether this mechanism also applies to tumor
associated CNS-antigens remains to be determined.

After intradermal injection, DCs migrate to the next drain-
ing lymph nodes (dLN), where the first cells already appear after
30 min with a maximum of DC influx after 48 h (19, 20). There-
after, numbers of antigen-loaded DCs sharply decline due to apop-
tosis and become undetectable with conventional imaging within
6 days. With more sensitive genetic marking techniques traces of
migratory DCs (<1%) have been detected up to 14 days post-
injection (21). Skin-derived DC subsets which repopulate the dLN
more continuously (19, 20) as well as LN-resident DCs (22) prob-
ably enforce and prolong this antigen-presentation beyond the
lifespan of injected, migratory DCs. Several studies have analyzed
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the body distribution of DCs after intradermal, subcutaneous, or
intravenous injection. In humans, significantly more DCs reach
the dLN after intradermal than after subcutaneous injection (23–
26), so that intradermal application has become the standard
delivery route in most trials. However, current estimations from
nuclear imaging studies suggest that only 2–4% of injected DCs
succeed to migrate to the dLN (27).

Cytotoxic T lymphocytes (CTLs) which have been successfully
activated by a tumor antigen presenting DC have to be imprinted
with a specific signature of adhesion molecules in order to be able
to traffic to the tumor site in the CNS. For CNS-specific hom-
ing, the expression of the integrin VLA-4 (a heterodimer of α4,
CD49d and β1, CD29) seems to be particularly important (28),
although other molecules such as CXCR3 play a role as well (29).
The capacity of a DC to induce VLA-4 expression was dependent
on the site where the DC picked up the antigen (30) and VLA-4
expression could be inhibited by IL-4 (31). Quite unexpectedly, a
recent paper demonstrated that the effectiveness of a DC vaccine
was inversely correlated to the proximity of the injection site to the
tumor (32). Whether these findings have a clinical relevance and
what the specific requirements for an in vitro-matured DC are to
induce VLA-4+ CTLs in vivo remains to be determined in future
investigations.

To the best of our knowledge, based on an extended literature
search, so far there are 25 published articles on DC vaccination
in human glioma patients (total of 414 patients, among those
approximately 50 children) have been published so far (Table
S1 in Supplementary Material). Of these, two were case reports
(33, 34), the others single-center phase I/II studies, four publica-
tions included a control group without DC vaccination (35–38).
Most studies focused on feasibility and safety, and indeed there
is now convincing evidence that DC vaccination is safe even
in brain tumor patients, since no major (>NCI-CTC grade 2)
or dose-limiting toxicity has been reported so far. Initial con-
cerns that the use of brain-derived antigens for vaccination could
induce autoimmunity like in melanoma (39, 40) could not be con-
firmed. Several studies analyzed the impact of injected cell dose
on outcome (41–45). There seems to be no correlation between
the number of injected DCs and the clinical or immunological
responses, in one study patients receiving lower dosages of DCs
(1× 106 DCs/vaccine) even had a better overall survival (OS)
than cohorts getting higher numbers of injected cells (44). Cell
numbers of >5× 107 DCs/vaccine simply seem to be unfeasible,
because such high numbers of mature DCs can only be generated
in a limited number of patients (42). A shorter interval especially
between the first four vaccines seemed to be beneficial (46), in
contrast, the optimal duration of vaccine therapy is completely
unclear. Some authors favor a continued vaccination regimen in
order to maintain an induced immune response (47), however, no
valid data in this respect is available so far. One important con-
sideration associated with prolonged exposure to antigen is the
induction of tolerance. Although never observed in high-grade
gliomas or DC vaccination trials, at least one clinical phase III
study using a genetically modified whole-cell cancer vaccine had
to be stopped prematurely due to inferior results in the vaccina-
tion group (48). Finally, of particular importance is the notion
that in an interim analysis of the Leuven cohort children below

20 years of age (n= 14) obviously benefited more from DC vacci-
nation than adults (n= 57) (49). However, it is too early to estimate
whether this reflects a better immune response of vaccinated chil-
dren or whether fundamental differences in tumor cell biology
between children and adults contribute to this phenomenon. Most
encouraging is the fact that DC vaccination compared favorably to
standard therapy without DCs in all trials with a defined control
group (35–38, 50). In four of these trials the mean OS in the vac-
cinated groups was 23.9 months [15.2 (50), 31 (35), 31.0 (37), and
17.3 months (36)] compared to 10.8 months [8.6 (50), 7 (35), 15
(37), and 12.7 months (36)] in the conventional treatment group
without vaccination. The fourth study, the only randomized study
so far, shows a 2-year OS of 7.7% in the vaccinated group ver-
sus 0% in the non-vaccinated patients (p < 0.05) (38). These data
also compare favorably with survival rates from standard ther-
apy regimens with an OS of 14.6 months for primary (51) and
8.4 months for relapsed GBMs (52). However, these data must be
interpreted with caution, since inclusion criteria were not identical
and most studies used a historical control group only. Neverthe-
less, there is an unequivocal trend toward a favorable effect of DC
vaccination on patient survival in all studies paired with a posi-
tive risk-benefit-assessment which justifies further pursuit of this
approach.

DESIGN OF NEXT-GENERATION DC TRIALS
As outlined above, for several aspects of DC vaccination there is a
growing consensus (admittedly at a low level of evidence since
randomized trials are still scarce). For other key issues, phase
I/II clinical trials are urgently needed before phase III studies
or even commercialization of a stringently produced DC vaccine
can be imagined. Among these key issues the central question
of the optimal maturation cocktail is not answered yet. Basically,
the superiority of a cytokine-based maturation cocktail±PGE2

(53) over a α-type-1 polarizing cocktail (IFNγ+TLR agonists)
(43–45) or vice versa has to be shown. Since cytokine-matured
DCs frequently produce no or only low-levels of IL-12, this ques-
tion could be of major relevance, especially since one recent study
has demonstrated a correlation between IL-12 production of DCs
and time to progression (43). Furthermore, the optimal antigen
source (whole tumor protein or mRNA versus peptides) should
be determined. As single peptide vaccines have been shown to
result in peptide-deficient escape variants (54, 55), multipep-
tide vaccines have recently been used with considerable success
(45, 56).

Maybe the most important hindrance of immunotherapeu-
tic approaches is the ability of high-grade glioma cells to secrete
inhibitory cytokines such as TGFβ (57) and to promote accu-
mulation and proliferation of suppressive cell populations like
regulatory T cells (Treg). Infiltration with Treg is more common
and pronounced in higher-grade tumors and in astrocytic than in
oligodendroglial tumors (58, 59). Although prognostically not of
prime importance, infiltration with Treg is associated with glioma
progression (58) and has been shown to hinder successful immune
responses (60, 61). Thus, there seem to be effective mechanisms in
the tumor microenvironment which prevent the immune response
from translating its potency into clinical efficacy. As a conse-
quence, many attempts have been made to specifically counteract
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these mechanisms. Substances interfering with the TGFβ signal-
ing pathways are currently tested in early clinical trials, e.g., as
inactivating antibodies [fresolimumab (62)] or antisense oligonu-
cleotides [trabedersen (63)]. Likewise, Treg-depleting strategies
have been developed either as depleting antibodies (61, 64) or as
metronomic, immunomodulatory chemotherapy (65, 66). Since
many experimental models have shown that Treg-depletion mod-
ulates the tumor microenvironment (67) and permits the genera-
tion of effective antitumor responses (60, 61) these substances are
attractive candidates for combination with DC vaccination.

Relapsed or refractory high-grade gliomas are extremely
aggressive tumors, so that altering patient selection criteria may
significantly improve DC vaccination treatment results. In fact,DC
vaccination is already being included into primary glioblastoma
treatment (68, 69) and one group even proceeded to vaccinate low
grade glioma patients in an attempt to prevent anaplastic trans-
formation (NCT01635283). Interestingly, patients relapsing after
DC vaccination showed an increased chemosensitivity (70), argu-
ing for an inclusion of DC vaccination into existing chemotherapy
regimens.

CONCLUDING REMARKS
Available data on DC vaccination in patients with malignant
glioma allow the conclusion that this therapy is safe and fea-
sible. Efficacy data are still of limited conclusiveness but point
toward a prolonged survival in some high-risk patients and a
favorable risk-benefit-assessment. Although DC vaccination in
its current form is not curative in the vast majority of patients,
the combination with other immunomodulatory agents, alternat-
ing chemoimmunotherapy regimens, and inclusion in treatment

schedules for better-risk patients will certainly increase the num-
ber of patients who will benefit as long-term survivors from DC
vaccination. Since pediatric glioma patients seem to be particu-
larly prone to respond to DC immunotherapy, DC vaccination
trials in this patient subgroup must be expedited. Despite the fact
that regulatory hurdles have recently hindered the dissemination
of this approach considerably, the establishment of dedicated vac-
cination consortiums like the HGG-Immuno network will allow
a broader accessibility to this therapy and facilitate the conduct of
randomized multicenter trials.
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