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First stage palliation of hypoplastic left heart syndrome, i.e., the Norwood operation, results
in a complex physiological arrangement, involving different shunting options (modified
Blalock-Taussig, RV-PA conduit, central shunt from the ascending aorta) and enlarge-
ment of the hypoplastic ascending aorta. Engineering techniques, both computational
and experimental, can aid in the understanding of the Norwood physiology and their cor-
rect implementation can potentially lead to refinement of the decision-making process, by
means of patient-specific simulations.This paper presents some of the available tools that
can corroborate clinical evidence by providing detailed insight into the fluid dynamics of the
Norwood circulation as well as alternative surgical scenarios (i.e., virtual surgery). Patient-
specific anatomies can be manufactured by means of rapid prototyping and such models
can be inserted in experimental set-ups (mock circulatory loops) that can provide a valuable
source of validation data as well as hydrodynamic information. Such models can be tuned to
respond to differing the patient physiologies. Experimental set-ups can also be compatible
with visualization techniques, like particle image velocimetry and cardiovascular magnetic
resonance, further adding to the knowledge of the local fluid dynamics. Multi-scale compu-
tational models include detailed three-dimensional (3D) anatomical information coupled to
a lumped parameter network representing the remainder of the circulation. These models
output both overall hemodynamic parameters while also enabling to investigate the local
fluid dynamics of the aortic arch or the shunt. As an alternative, pure lumped parameter
models can also be employed to model Stage 1 palliation, taking advantage of a much
lower computational cost, albeit missing the 3D anatomical component. Finally, analyti-
cal techniques, such as wave intensity analysis, can be employed to study the Norwood
physiology, providing a mechanistic perspective on the ventriculo-arterial coupling for this
specific surgical scenario.
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INTRODUCTION
Hypoplastic left heart syndrome (HLHS) is a form of single ven-
tricle physiology characterized by a rudimentary, non-functional,
or absent left ventricle, and by a consequent in-parallel arrange-
ment of the systemic and pulmonary circulations (1). This con-
dition requires a complex, staged surgical palliation in order to
allow appropriate blood oxygenation and patient’s survival (2).

Diagnosed in utero (2), HLHS is tackled at birth, with the first
stage of palliation, namely the Norwood procedure (3), being per-
formed in the first days of life. The Norwood operation entails
in fact providing a source of pulmonary blood flow following
the natural closure of the ductus arteriosus after birth, while also
enlarging the otherwise hypoplastic ascending aorta. Delivery of
blood flow to the pulmonary circulation is achieved by means of
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shunting, with substantially different options currently available,
including:

• Modified Blalock-Taussig (mBT) shunt (4) from the innominate
artery to the right pulmonary artery.

• Sano shunt from the right ventricle to the main pulmonary
artery (RV-PA conduit), employed in the so-called Sano modi-
fication of the Norwood procedure (5).

• Central shunt from the ascending aorta to the pulmonary
arteries (6).

Examples of different shunts are shown in Figure 1.
With regard to aortic arch reconstruction, the surgery involves

enlarging the ascending aorta using a patch, typically either
homograft or bovine pericardium (7, 8).

The physiology resulting from the Norwood operation is clearly
very complex and, albeit just a transition to second stage of pal-
liation occurring around the sixth month of life (2), it can lead
to complications. Complications after the Norwood operation
are still common, with a high mortality risk (9). While some
of the complications have been linked with pre-operative char-
acteristics, such as patient’s weight or pre-operative mechanical
ventilator/circulatory support (9), other variables are linked to
the actual surgery. The choice of shunt type, for instance, can
depend on the surgeon’s own expertise and judgment, as well
as on a center’s preference, but there are established hemody-
namic differences between shunts which have been discussed
in the clinical literature (10–12). Clinical investigations, how-
ever, have not been conclusive with regard to variables such as
shunt size, shunt placement, or extent of surgical arch recon-
struction. In other words, there is still potential for refin-
ing and optimizing the hemodynamics following the Norwood
procedure.

While clinical investigations provide the necessary data on the
outcomes to ultimately evaluate, for example, differences between
shunt type, further insight into the physiology and opportunity
for in-depth tests on specific variables can be gained by means of

engineering modeling tools. In the context of studying congenital
heart disease, modeling tools can provide:

• access to data that is difficult to acquire in the clinical environ-
ment (e.g., coronary perfusion data)

• detailed local fluid dynamics information
• a test bed for parametric studies
• a controllable and reproducible environment for hemodynamic

investigations
• a source of alternative/virtual scenarios for treatment options
• a setting for evaluation of devices, where needed
• a tool for education and development
• a tool for dissemination.

Different models can be constructed, depending on the purpose
of the study, but in general these can be categorized into three main
groups: experimental (in vitro set-ups), computational (in silico
simulations), and analytical (purely mathematical models). This
Review will briefly describe, for each of these categories, some of
the models that have been proposed in order to address issues
related to the Norwood procedure and their relevant findings,
aiming to highlight those variables most likely to impact the hemo-
dynamics of Stage 1 circulation and appreciating the importance
of factors such as the concomitant presence of other complica-
tions (e.g., aortic coarctation), including some methodological
considerations.

It should be noted that a less surgically invasive approach to
Stage 1 palliation has been introduced in recent years, indicated
as the “hybrid” Norwood (13), characterized by stenting of the
ductus arteriosus and banding of branch pulmonary arteries. This
will not be discussed in this Review, as it is described in greater
detail in another article of this Special Issue.

EXPERIMENTAL MODELS
Cardiovascular experimental models, in general, can be particu-
larly informative for device testing (e.g., fatigue evaluation, device
migration) (14, 15) and, importantly, can represent a source of
reproducible “real world data” for validation of computational

FIGURE 1 | Different shunting options for first stage palliation of
HLHS, shown from idealized drawings: (A) modified Blalock-Taussig
shunt from the innominate artery to the right pulmonary artery;

(B) Sano shunt from the right ventricle (Rv) to the pulmonary artery
(Pa); (C) central shunt from the ascending aorta (Ao) to the
pulmonary artery.
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models (16). These models usually take the form of mock circu-
latory loops, whose level of complexity may vary depending on
the purpose of the experiment (17), from rather simple rigs with
lumped resistive and compliant elements (18) or systems incorpo-
rating some anatomical realistic elements (19) to circuits including
the effect of respiration (20) and full circulatory mock loops with
all main vascular components (21).

In the context of investigating the Norwood physiology or
some of the variables affecting it, one experimental study (22)
employed a pulsatile flow model including a pulsatile flow gen-
erator, and parallel systemic and pulmonary vasculatures con-
nected by aorto-pulmonary shunts. The system was used to test
a range of BT shunt lengths and diameters, and ultimately to
verify the relation between Doppler-predicted pressure gradient
and the pressure gradient measured in actual Gore-Tex® shunts
placed in the circuit. Results showed that Doppler estimates of
pressure gradients approach true measurements only in cases of
large shunts, whereas for BT shunts with diameter <5 mm the
simplified Bernoulli equation used for Doppler underestimates
such gradient. A later study employing similar methodology (23)
expanded these observations, whereby three-dimensional (3D)
models of mBT shunts with and without stenosis were also tested
experimentally. This study showed that the Doppler-measured
gradients underestimated catheter-measured gradients in mBT
shunts with diffuse stenosis, while in other scenarios (no steno-
sis, outlet stenosis, inlet stenosis), the Doppler pressure gradients
showed underestimation of catheter measures at low gradients and
improved estimation at higher gradients. Studies of this nature
can have the benefit of informing on the nature and the relia-
bility of clinical measurements, demonstrating potential pitfalls
of accepted approximations (e.g., Bernoulli equation for pressure
drop estimate).

Another in vitro study (24) focused on pressure-flow relation-
ships in mBT shunts taking into account anastomotic distensibility
and restrictions due to the presence of sutures, whereby two
actual Gore-Tex® shunts (3 and 4 mm diameter) were tested in
a hydraulic circuit under a range of steady flow rates and pul-
monary pressures. It was shown that pressure-flow relationship
was affected by changes in pulmonary artery pressure, especially at
the distal site; however the total pressure drop did not change sub-
stantially. This study suggested that the effect of afterload pressure
on mBT shunt pressure-flow relationship is not determinant, while
area reduction at the anastomoses sites due to suturing should
be taken into account. Vascular resistance-flow relationship in an
mBT shunt scenario was further investigated in vitro using a set-
up constructed from sheep blood vessels (25), generating pulsatile
flow by means of a ventricular assist device and testing a range of
pulmonary vascular resistances.

Other studies adopted a patient-specific approach to the experi-
mental investigation of this physiology. A mock circulatory system
involving 3D patient-specific anatomical models was shown to
behave in a physiological range for both mBT and Sano shunts
settings (26, 27). The patient-specific models were reconstructed
from cardiovascular magnetic resonance (CMR) data (28) and
printed with transparent rigid resins using rapid prototyping tech-
nology. These studies adopt a multi-scale approach (29), in the
sense that they combine a 3D anatomical section with a lumped

parameter network (LPN) representing the remainder of the cir-
culation. In both cases pulsatile flow was generated with a pediatric
Berlin Heart EXCOR ventricular assist device. The mBT shunt was
simulated by a conduit positioned from the innominate artery
of the 3D model and the pulmonary section of the circuit. The
Sano shunt was simulated by a connection from the de-airing
valve of the Berlin Heart (simulating the ventricular anastomo-
sis) to the pulmonary section of the circuit. These arrangements
are shown schematically in Figure 2. The usefulness of including
patient-specific models is that it allows to measure parameters, e.g.,
pressure drop across a coarctation, using real geometries. These
experimental set-ups allow both for parametric studies as well as
tuning to patient-specific hemodynamic values derived from clin-
ical data, depending on the purpose of the study, and they can
be compatible with visualization techniques, as discussed in the
following section.

IMAGING TECHNIQUES
Experimental set-ups of Norwood physiology can be adapted so
to be compatible with visualization techniques, in order to gather
further insight into the local fluid dynamics. One technique that
has been extensively used in vitro for hemodynamic studies is par-
ticle image velocimetry (PIV), especially for valve testing (30–32).
PIV is an optical technique providing accurate quantitative mea-
surement of instantaneous velocity flow fields across a plane, by
means of illuminating a surface with a laser sheet and seeding the
fluid with particles (“tracers”) whose movement is recorded by a
high-speed camera (33). A study employing a model of Norwood
physiology with 3D anatomical components (26) has shown the
applicability of PIV acquisition within this context (34). This pre-
liminary study, which involves tuning the circuit to patient-specific
values derived from clinical data, presents the velocity vector infor-
mation (Figure 3) that can be derived by using the PIV technique
even with small aortic models of Norwood patients.

Another visualization technique that can be potentially adapted
for experimental studies is 4D CMR (35). This method, which
has been greatly improved in recent years and whose capabilities
have been and are being explored in a wide range of clinical stud-
ies, provides exquisite imaging data. The advantages of using this
method in the clinical assessment of HLHS patients have been
discussed, especially at the stage of complete Fontan circulation
(36). However, experimental applications directly focused on the
Norwood procedure have not been tested yet. Experimental stud-
ies involving 4D CMR are few and have focused on the assessment
of a ventricular assist device (37) and on the fluid dynamics in
the ascending aorta following repair of transposition of the great
arteries (38). The latter study showed how 4D CMR acquisitions
can be performed with a CMR-compatible mock loop including
3D patient-specific models, suggesting the potential for using this
technique in models of Stage 1 physiology, although the small
dimensions of the vessels at the time of the Norwood proce-
dure could pose a concern in terms of spatial resolution. This
application warrants further study.

COMPUTATIONAL MODELS
Computational models of the Norwood physiology have been
explored and improved in the past 15 years.
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FIGURE 2 | Experimental set-ups for simulating the circulation
following the Norwood operation, with modified Blalock-Taussig
shunt (A) and Sano shunt (B). The mock loops include a 3D
patient-specific anatomical model. The Berlin Heart EXCOR simulates the
single ventricle. CUB = lumped compliance for upper body district,

RUB = lumped resistance for upper body district, CLB = lumped compliance
for lower body district, RLB = lumped resistance for lower body district,
CS = lumped compliance for pulmonary district, RS = lumped resistance for
pulmonary district, Cprox = proximal compliance compensating for rigid 3D
model.

FIGURE 3 | Example of particle image velocimetry (PIV) data, obtained in a patient-specific anatomical model of Stage 1 physiology, showing velocity
vectors at early (A), peak (B) and end (C) systole.

Earlier studies employed LPN models of the Norwood circula-
tion (39, 40). These studies focused on global fluid dynamics and
oxygen transport characteristics, but failed to describe local fluid
dynamics and the influence of variables related to the shunts, e.g.,
shunt positioning.

A later study showed how a LPN model of the circulation
can be coupled with a detailed 3D model of the shunt, using a
multi-scale approach to prescribe appropriate boundary condi-
tions for the 3D models of the Norwood circulation (41). This
study aimed to compare coronary and pulmonary blood flows in
a central shunt vs. mBT shunt configuration, considering three
shunt sizes (3, 3.5, and 4 mm diameter). Results showed that the
average shunt flow rate is higher for the central shunt option.

As expected, pulmonary flow increased with shunt size for both
options. It was also indicated that the central shunt tends to favor
perfusion to the right lung, while the mBT shunt tends to favor
the left lung. Finally, a smaller percentage of aortic flow is dis-
tributed to the coronary circulation in the presence of a central
shunt, suggesting a potential effect on ventricular function. These
observations were expanded in another study (42) which included
3D models of mBT and central shunts (3, 3.5, and 4 mm diam-
eter) vs. Sano shunts (4, 5, and 6 mm diameter). The hydraulic
lumped resistances, compliances, inertances, and elastances rep-
resenting the systemic, coronary, and pulmonary circulations and
the heart were identical in the two models, essentially isolating
the effect of different shunt type. Again, a multi-scale approach
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was used to couple the 3D models with the LPN. Higher aortic
diastolic pressure, decreased pulmonary arterial pressure, reduced
pulmonary-to-systemic flow ratio, and higher coronary perfusion
pressure were measured in the Sano configuration. Also, a min-
imal regurgitant flow was noted in the Sano conduit. Computer
simulation results were in good agreement with post-operative
catheterization data, supporting the use of mathematical model-
ing in the study of Norwood physiology. This study pointed out
that, from a computational perspective, the use of a multi-scale
approach is “mandatory.”

Computational fluid dynamics (CFD) have been used to ana-
lyze blood flow in a Norwood anatomy derived from computed
tomography (CT) datasets (43). This study presented a case-study
of a complex case of congenital heart disease (HLHS palliated
with Sano modification of the Norwood procedure, aortic stenosis,
hypoplastic aortic arch, coarctation of the aorta, and ventricu-
lar septal defect). Information such as pressure and wall shear
stress distribution on the vessel wall as well as velocity vectors
and streamlines can be obtained from these simulations. The
authors concluded that such a computational hemodynamic sys-
tem can quantitatively estimate the quality of congenital heart
disease surgery. Albeit this point may be arguable, especially based
on a single case-study and on the lack of biological phenomena
in this type of modeling, it is undeniable that a large amount of
valuable information can be extrapolated from CFD models for
the purpose of informing, if not estimating, this type of complex
surgery.

Patient-specific computational simulations were performed in
nine patients in order to evaluate different types of Norwood arch
reconstructions and to assess the cardiac workload on the sin-
gle ventricle (44). This paper included cases of aortic atresia and
aortic stenosis. Results, including quantities of energy loss and
wall shear stress, suggested that the quality of arch reconstruction
(e.g., smooth arch angle) is important for reducing the cardiac
workload. Energetic efficiency is difficult to measure clinically and
computational simulations can provide insight into such valuable
measures.

An example of hemodynamic information (pressure and veloc-
ity data) extracted from a multi-scale model of HLHS following
Stage 1 palliation including aortic coarctation is shown in Figure 4.

Computational techniques can also include optimization algo-
rithms and a recent study has employed a closed loop multi-scale
model (including an idealized mBT shunt 3D component) inte-
grated with a fully automated derivative-free optimization algo-
rithm to assess optimal shunt configuration in terms of (a) shunt
diameter, (b) location of anastomosis, and (c) shunt angle (45).
Results showed that shunt diameter affects changes in oxygen
delivery the most, but shunt positioning does also influence such
changes, and these data showed that coronary artery flow is directly
related to shunt position. Small shunt diameter with proximal
shunt-brachiocephalic anastomosis was optimal for systemic oxy-
gen delivery, while large shunt diameter with a distal anastomosis
was optimal for coronary oxygen delivery.

All the abovementioned studies assumed rigid blood vessel
walls. In other cases, it is crucial to include so-called fluid struc-
ture interaction (FSI) phenomena in the simulations. One good
example in the context of Norwood physiology is a study in which
numeric simulations were performed to investigate the interaction
between blood flow and myocardial motion during diastole (46).
More specifically, the effect of ventricular cavity shape and tricus-
pid inflow topology were evaluated in four patients’ anatomies,
with regard to filling dynamics and assessment of diastolic func-
tion in patients post Stage 1 surgery. It was observed that both
these parameters (i.e., inflow topology and cavity shape) affect
vortex ring formation, thus influencing intra-ventricular pressure
gradients and flow dynamics inside the single ventricle. Differ-
ences between patients in terms of myocardial displacements can
be well appreciated from the FSI modeling results (Figure 5).

Computational methodologies have recently also been used to
study the hybrid Norwood procedure (47, 48).

ANALYTICAL TOOLS: WAVE INTENSITY ANALYSIS
Further insight into the Norwood physiology can be gained by
means of analytical methods, such as wave intensity analysis. Wave
intensity is a hemodynamic index evaluating the working condi-
tion of the heart in relation to the rest of the vasculature and, as
such, it provides information on ventriculo-arterial (VA) coupling
(49). Literature on wave intensity analysis has shown its potential
in investigating VA coupling in different scenarios, such as the fetal
circulation (50) or healthy adults (51). Traditionally necessitating

FIGURE 4 | Example of pressure and velocity maps in the 3D domain of a multi-scale simulation of HLHS post Stage 1 including a significant aortic
coarctation, highlighting features such as pressure drop across the aortic narrowing as well as the velocity jet across the coarctation itself.
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FIGURE 5 | Example of results from fluid structure interaction (FSI)
simulations, providing information on displacement of the
myocardium, as well as showing vortex formation and blood
streamlines in a patient after Stage 1 palliation.

invasive pressure and velocity acquisitions, wave intensity analysis
can nowadays be performed non-invasively, based on CMR (52).
This technique allows semi-automatic and retrospective analysis
on routinely acquired phase-contrast CMR datasets, and it has
been applied to a group of HLHS patients to evaluate the effect of
surgical arch reconstruction on VA coupling (53). Based on clin-
ical observations that report stiffening of the surgically enlarged
aortic arch (54, 55), thus likely increasing the impedance to ven-
tricular ejection, this study compared single ventricle patients with
and without arch reconstruction. Based on wave intensity para-
meters previously identified as possible surrogates for ventricular
function (56), results highlighted that VA coupling is likely to
be compromised in patients with surgical reconstruction. This
appeared to be linked to two main variables, i.e., the size of the
patch and the stiffness of the patch. While this study was carried
out in a small population (21 subjects in total) and larger studies
are needed to infer the clinical relevance of these observations,
it showed the potential of CMR-based wave intensity analysis in
providing additional knowledge about the Norwood physiology.

ADVANTAGES AND DISADVANTAGES OF DIFFERENT
TECHNIQUES
Compared to in vivo data, both experimental (in vitro) and com-
putational (in silico) techniques present the advantage of creating
reproducible and controllable environments suitable for perform-
ing parametric studies and for acquiring data systematically.

One advantage of experimental models is represented by their
natural 3D nature and tactile component, which can have edu-
cational and communication benefits as well as allowing for
physically implanting devices that need testing (57). Furthermore,
experimental models naturally take into account FSI phenomena,
whereby a suitably designed compliant phantom could represent
a good approximation of a blood vessel (58). However, setting up
an in vitro experiment – or repeating measurements on different
phantoms – can be time consuming.

Imaging techniques can be extremely informative. Applications
of PIV are confined to the research arena. The feasibility of PIV
measurements with a Norwood anatomy has been shown (34),
however several considerations inherent to the PIV set-up (e.g.,

matching the refractive index of the material used for manufac-
turing the patient-specific phantom) are necessary. 4D CMR is
used clinically and can generate superb imaging data, however
the duration of these acquisitions still poses a major limitation
for routine clinical applications. In general, the small dimensions
of the anatomical structures at the time of Stage 1 palliation of
HLHS can represent an additional degree of difficulty for imaging
acquisitions, even when employing patient-specific phantoms.

Computational models can provide full fields of local fluid
dynamics quantities [e.g., wall shear stress (59)] with the bound-
ary conditions and model parameters straightforwardly set and
reproducible (60). Implementation of compliant vessel bound-
aries using FSI remains in the development stages. To partly
accommodate for this, multi-scale models that couple LPN mod-
els to 3D anatomical structures are an improvement over localized
flow models by allowing for realistic interactions with the complete
circulation. It remains crucial to demonstrate the reliability of any
computational model by means of a suitable validation study.

THE PROCESS OF DECISION-MAKING
The predictive element of engineering models could ultimately be
helpful in the clinic during the decision-making process, bearing
in mind the variables that can affect the success of a Norwood
operation. Patient-specific virtual surgery can allow the clinician
to compare different surgical options for the same child, highlight-
ing potential differences in the local fluid dynamics and variables
such as power loss and oxygen saturations. A recent study has
discussed a virtual surgery application to second stage palliation
of HLHS (61). With regard to the Norwood procedure, specific
points that should be tackled include:

• Optimal shaping and sizing of the reconstructed aortic arch.
• Differences between shunting options (i.e., mBT, Sano, central)

at a patient-specific level.
• How the previous two points affect the balance between systemic

and pulmonary blood flow, as well as coronary perfusion.

Several limitations are still impeding full translation of these
techniques from the bench to the bedside, in particular:

• Practical constraints: a simulation or optimization study may
suggest the best solution for a specific patient, but this solution
may not be feasible given the anatomical/practical constraints
faced by the surgeon, e.g., optimal mBT shunt diameter may be
indicated, however mBT shunt sizes are standardized and not
tailored to each patient.

• Time: mounting an in vitro study or running a computational
simulation including a patient-specific anatomical model are
still time consuming for the clinical timeframe, but solutions are
constantly being investigated for reducing computational costs.

• Expertise: most of the techniques discussed are still not suffi-
ciently user-friendly for a clinical application and require the
interaction between an engineer and the surgeon; while this
is stimulating and enriching in a research context, it may not
always be practical or feasible in a clinical context (e.g., how
many centers to date have a team of biomedical engineers on
site?).

Frontiers in Pediatrics | Pediatric Cardiology October 2013 | Volume 1 | Article 31 | 6

http://www.frontiersin.org/Pediatric_Cardiology
http://www.frontiersin.org/Pediatric_Cardiology/archive


Biglino et al. Engineering tools to study HLHS

• Availability of clinical data: in order to generate a patient-specific
model, large multi-modality datasets are necessary (i.e., imaging
data for reconstructing the anatomy together with as com-
plete as possible hemodynamic information) and these are not
always available, and may also vary depending on institutional
protocols.

Nevertheless, not only these challenges are being and will be
addressed, but the most immediate benefit of employing engi-
neering tools in this context is presently represented by the fact
that they generate scenarios that add to the clinician’s own intu-
ition. Even in the context of single ventricle physiology and its
surgical palliation, let us remember that a technique such as the Y
graft for the Fontan baffle (62) originated in the engineering arena
and is currently being assessed clinically (63).

FUTURE DEVELOPMENTS
Further research involving an FSI approach, including the pres-
ence of the valves and changes in aortic arch stiffness, could
be areas of interest for refining our knowledge of the Norwood
physiology. The computational cost of FSI simulations can still
represent a burden, although faster solutions are currently being
explored (64).

Resolving potential issues related to spatial resolution and
acquisition time could lead to employing 4D CMR data not only to
gather additional insight into the fluid dynamics of Stage 1 circula-
tion, but also to have a powerful tool for validation of CFD models.
It is in fact important to remember that it is crucial to ensure the
reliability of computational models by means of comparisons with
either in vivo or in vitro data (65), and such validation process can
then lead to more extensive and confident use of simulation results.

The inclusion of patient-specific tissue properties would be an
additional refinement of computational models, especially for FSI
simulations (66). One exciting development could be represented
by taking into account the viscoelastic properties of the surround-
ing/supporting tissues of the arterial tree, in order to simulate more
accurately the behavior of physiological tissues in FSI models (67).
When simulating virtual surgery scenarios, it is also important to
account for the growth of the patient and the effect of a different
patient’s size on the parameters set in the model (68).

Analytical techniques such as wave intensity analysis could also
be implemented in computational models as additional output
parameters of interest, especially with regard to VA coupling.

CONCLUSION
A range of experimental and computational models has been
employed over the past two decades to improve our knowledge
of palliated HLHS and to investigate the complex fluid dynamics
of the Norwood physiology. These models can be further refined,
at present, requiring a great effort on the engineering side to make
them computationally more efficient and user-friendly for the
clinicians in terms of interpreting their outputs. Thorough val-
idation of the computational models remains mandatory, as their
reliability must be strongly demonstrated prior to introducing
them into the clinic. Models could be informative for devising
patient-specific treatments, providing a range of virtual scenarios
and evaluating the optimal hemodynamic solution, when pos-
sible. However, the engineer aiming to refine the model should
always be aware of the physical constraints related to the complex-
ities of the surgery, especially for first stage palliation of HLHS,
i.e., the small dimensions of the anatomy or other concomitant
complications. In other words, optimizing shunt size by a fraction
of millimeter is not a feasible solution when the available con-
duits vary in steps of 0.5 mm, unless customized conduits were
available. Therefore, this field requires a strong multidisciplinary
collaboration for modeling techniques to be truly meaningful for
the clinical user on the one hand, and for the clinician to provide
the necessary data to set the models as accurately as possible on
the other hand.
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