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In recent decades, new research into the developmental defects and pathophysiological
basis of congenital diaphragmatic hernia (CDH) has revealed opportunities for the devel-
opment of innovative therapies. Importantly, the use of animal models to represent this
anomaly in the laboratory has resulted in the discovery of many important genetic, epige-
netic, and other molecular contributors to this condition. In this review, the most commonly
used and newly devised animal models of CDH are presented to familiarize the reader with
the latest innovations in the basic sciences.
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INTRODUCTION
Pediatric surgeons continue to face the challenge of treating a vari-
ety of congenital anomalies and neonatal disorders for which the
etiology and pathophysiology are poorly understood and under-
studied. In addition to the fact that many of these defects are rare
in overall incidence and lack a known genetic cause, there has
been a general dearth of biological or animal models to specifi-
cally study the conditions that result from developmental failures.
However, for congenital diaphragmatic hernia (CDH), there has
been much research effort and productivity. Over the past four
decades, an increasing number of animal models – small and large
animal, teratogenic, and experimental, have been employed to give
scientists and clinicians the basis toward a better scientific under-
standing of this condition, we treat surgically. In this paper, I will
provide a brief and updated summary of the currently available
animal models for CDH, the history of their use, discoveries made
using these models and highlight new insights for future studies.

CONGENITAL DIAPHRAGMATIC HERNIA
Congenital diaphragmatic hernia is a rare birth defect affecting
1 in 2500 live births (1). Surgeons have been intimately involved
in the treatment of this defect for over 60 years since Gross first
reported his repair of a CDH neonate (2). While CDH over-
all mortality has decreased to 20% or less in the last decade
(3, 4) compared to over 50% mortality of the previous decades
owing largely to improvements in postnatal resuscitation and
lung-preservation management (5, 6), mortality remains a sig-
nificant outcome and long-term morbidity for survivors is com-
mon (3, 7, 8). Unequivocally, the greatest challenge for the past
six decades in the management of CDH patients has been the
inability to post-natally reverse the severity of lung hypoplasia

affecting both lungs and not just on the side ipsilateral to the her-
nia (9). The cardiorespiratory morbidity for CDH survivors can
persist well beyond the neonatal period. Fortunately, in the past
three decades this anomaly has garnered great prominence and
attention from both basic science and clinical research commu-
nities resulting in new knowledge about this condition and the
promise of clinical interventions aimed at correcting the lethal
lung defects.

To perform this research, scientists have utilized rodent models
(teratogenic and genetic) and the experimental large animal (fetal
lamb) model. These two models have been functionally although
not exclusively complementary in their research applications. The
teratogenic rodent model has a long history and is widely used
to determine the fundamental developmental and physiological
defects of CDH,specifically in dissecting the molecular and cellular
features of CDH in order to understand their effects on diaphragm,
lung, and vascular development (10). In parallel, the experimen-
tal fetal lamb model pioneered by de Lorimier et al. (11) in San
Francisco and Haller et al. (12) in Baltimore has been adopted for
studies of the CDH-affected lung and the surgical interventions
to reverse these defects. Most importantly, its use has been instru-
mental for the advances in the field of fetal surgery including fetal
tracheal occlusion for the prenatal intervention of high-risk CDH
currently under clinical trial (13). Undoubtedly, this congenital
anomaly has become the “poster child” for the bench-to-bedside
crosstalk between basic and clinical researchers so that new dis-
coveries can be translated into clinical interventions to improve
CDH patient outcomes. With the pace of this research accelerat-
ing, the clinical benefits stemming from the research performed
using these CDH animal models will continue to be realized in the
near future.
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TERATOGENIC MODEL FOR CDH
The most commonly used teratogenic model for CDH is the
nitrofen model. Nitrofen (also known as NIP in Japan and
niclofen in Canada), is 2,4-dichloro-1-(4-nitrophenoxy)benzene,
a Protox-inhibiting herbicide of the diphenyl ether class. Its use
has been banned in Europe, Canada, and the United States since
the mid-1990s for its documented carcinogenic effects on rodents
(liver and pancreatic adenocarcinomas) and is considered a Group
2B class carcinogen (possibly carcinogenic to humans) (14, 15). It
was identified as a teratogen in studies with rodent dams where
pups were born cyanotic, exhibited respiratory distress, and died
shortly after birth (16). The teratogenic effect of nitrofen is exerted
mainly during the critical period of organogenesis (17). As a result,
timed matings are required for the model and the herbicide is
orally fed at a dose of 50 mg/kg/day or higher between E8–9 for
mice and E8–12 for rats (correlating with human gestational age
of 4–6 weeks), producing hypoplastic lungs and a spectrum of
diaphragmatic defects in the pups similar to the human disorder
(18, 19). Interestingly, the timing of teratogen exposure also affects
CDH laterality, as earlier exposure increases the frequency of left-
sided defects whereas administration later in gestation (E10–12)
increases right-sided incidence (10). Not all of the pups are affected
with CDH and, unlike the human disease, the litter will also
have pups affected by other developmental abnormalities of the
kidneys, heart, and skeleton (19, 20).

Initial studies using the nitrofen model were particularly fruit-
ful in debunking embryological myths surrounding CDH patho-
genesis, with the most detailed studies coming from John Greer’s
group. While it had been speculated that CDH development
resulted from the failure of the pleuroperitoneal canal to close
in mid-gestation thereby causing the diaphragmatic sequelae, the
nitrofen model revealed that CDH occurs early (17) from develop-
mental abnormalities of the pleuropulmonary fold (PPF), specif-
ically it is a muscular mesenchymal component (21, 22). Whether
this finding applied to the human disease or specifically to this
model of CDH pathogenesis was not proven. However, given that
genetic models of CDH, such as the mouse models disrupting the
expression of the Wilm’s Tumor 1 (WT1−/−) or the chicken oval-
bumin upstream promoter-transcription factor II (COUP-TFII)
gene (see the section below) showed similar changes in PPF mor-
phology, there appears to be good evidence that similar changes
underlie the human defect.

With access to the earliest stages of CDH pathogenesis in this
teratogenic model, multiple developmental pathways have been
implicated as the mechanism(s) driving nitrofen-induced CDH.
Initial observations suggested that nitrofen was thyromimetic and
exerted its teratogenic effects by disrupting the maternal–fetal
thyroid hormone pathway through suppression of maternal TSH
levels (23). However, subsequent studies showed direct delivery of
the nitrofen compound rather than maternally produced active
metabolites into the fetus through the maternal–fetal circula-
tion, indicating the potential for direct effects of nitrofen on fetal
diaphragm and lung development (24). More recent studies have
also implicated the retinoic acid pathway as significantly altered
by fetal nitrofen exposure (see the section below). Additionally,
nitrofen may also exert epigenetic effects in lung development
as miR-200b expression is decreased in nitrofen-induced lung

hypoplasia (25). The extent of the molecular and developmental
pathways implicated as mechanisms in nitrofen-induced CDH is
beyond the scope of this review but is well summarized in a recent
publication (26). Finally, the teratogenic effects of nitrofen do not
appear to be limited to airway and diaphragm morphogenesis,
as changes in pulmonary lymphatics (27), innervation (28–30),
and the mesenchyme itself (31) were also observed in the nitro-
fen model. By interrogating the underlying molecular and genetic
pathways occurring at the earliest stages of nitrofen-induced CDH
pathogenesis, investigators are now devising therapies to mini-
mize the severity of pulmonary hypoplasia and validating those
therapies using this pre-clinical model (32–34).

For completeness, it should be noted that other chem-
icals have also been identified as teratogens causing CDH.
One is 4-biphenyl carboxylic acid (BPCA), a metabolite of
AH23848, a thromboxane-A2 receptor antagonist originally
developed to inhibit platelet aggregation (35). Bisdiamine, or
N,N ′-octamethylenebis (dichloroacetamide), is a spermatogenesis
inhibitor whose teratogenic effects in addition to CDH include car-
diovascular anomalies (36). SB-210661, a benzofuranyl urea deriv-
ative developed by GlaxoSmithKline, is a potent 5-lipoxygenase
inhibitor developed as an anti-inflammatory agent for coronary
artery disease. All three compounds were found to cause CDH
in rats similar to nitrofen (37). Importantly, these agents, includ-
ing nitrofen (38), inhibit retinal dehydrogenase-2 (RALDH-2), a
key enzyme for the production of retinoic acid, suggesting that
disruption of the retinoid signaling pathway (including vitamin
A deficiency) contributes to CDH pathogenesis. Conversely, aug-
mentation of vitamin A levels may also reverse this defect (39),
leading to the tantalizing possibility that the earliest interventions
to prevent CDH-related defects may be as simple as vitamin sup-
plementation. To further dissect the role of the retinoid acid path-
way in CDH pathogenesis, genetic models were the next logical
tools for these investigations.

GENETIC MODELS OF CDH
Whether by intention or serendipity, genetic models of CDH
became available as molecular techniques for gene silencing or
over-expression grew into wider application. While the major-
ity of human CDH cases are not associated with known genetic
defects [I will refer the reader to reference (40) for an excellent
review of the genetic factors in human CDH], multiple genetic
models have been associated with CDH as part of their pheno-
type. Although the specific effect of retinoid pathway inhibition
on CDH development was not revealed until recently, the disrup-
tion of both retinoic acid receptor α and β genes, thus disrupting
the entire retinoic acid signaling pathway, resulted in CDH (41)
and confirmed previous reports implicating the role of vitamin
A deficiency in CDH development (42, 43). Not surprisingly,
disruption of other genes involved in the retinoic acid pathway
has also resulted in CDH amongst other defects in organogenesis
(44, 45).

Genes encoding hormone receptors overlapping with the
retinoid pathway have also yielded the CDH phenotype when
their expression has been disrupted. The COUP-TFII gene, also
known as NR2F2, is a transcriptional protein belonging to the
steroid/thyroid hormone receptor superfamily whose expression
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is regulated by retinoids and, in turn, include among its functions
the regulation of gene transcription by modulation of retinoic
acid receptor heterodimerization (46, 47). Of note, the COUP-
TFII gene is on chromosome 15q26 – a region recurrently deleted
in CDH patients (48, 49), thus making it the candidate gene.
Mice with tissue-specific ablation of this gene also exhibit CDH
defects (50).

The role of genes less obviously associated with human CDH
has also been revealed through genetic models. Mutations of
the Wilm’s Tumor 1 gene, WT1, in two cases of human CDH-
associated with Denys–Drash syndrome have been reported (40).
Abrogated expression of WT1 in mice was found to be associated
with fetal CDH development (51) with its effects appearing to
be exerted through the common retinoid pathway (52). In some
cases, diaphragmatic defects resulting from genetic defects bear
less resemblance to the classic human condition. Genes that encode
the SLIT family of proteins involved in a diverse array of neu-
ronal cells also appear to affect diaphragm development although
slightly different from the classic Bochdalek hernias when their
expression is disrupted. Mice harboring the disrupted slit3 gene
develop a central CDH similar to Morgagne hernias rather than
Bochdalek hernias (53). Friend of GATA 2 (FOG2) encodes a zinc
finger protein (54) that primarily interacts with GATA4, a mem-
ber of a family of DNA-binding proteins so named because they
recognize the GATA motif in the promoter regions of many genes
(55). FOG2–GATA4 interaction modulates gene expression during
many developmental processes including heart morphogenesis.
Mice harboring a fog2 mutation were found to have diaphrag-
matic defects in the posterior and peripheral aspects (56) while
mice carrying a single copy of the mutated gata4 developed heart,
lung, and diaphragm defects (57). Interestingly, the chromosomal
regions where the human FOG2 and GATA4 genes are located have
been found to be deleted in some CDH patients (40).

EXPERIMENTAL MODEL FOR CDH
While the CDH rodent models are scaled and optimized to uncover
early developmental and genetic derangements contributing to
CDH, large animal models for CDH are scaled for life-sized inter-
ventions of the affected lung or diaphragm for direct translation
to the clinical domain. As large animal models of CDH require
diaphragmatic defects to be created during early stages of fetal
development, this model cannot be used to study the earliest ori-
gins of the CDH diaphragmatic defect that is better served by the
rodent models. The fetal lamb is the most commonly used exper-
imental model but some researchers have also used rabbits for
similar studies (58).

One of the pivotal reasons for choosing the fetal lamb model for
CDH was that there was already a large body of literature on fetal
lamb pulmonary physiology prior to its adoption as a CDH model.
With this background, the fetal lamb model for CDH has aided the
study of ventilator-related lung damage observed in CDH and the
development of fetal interventions aimed at arresting or reversing
CDH-associated pulmonary hypoplasia. As the fetal lamb model
was more expensive and time-consuming for CDH research com-
pared to rodent models, most investigations focused exclusively on
defining the pulmonary effects of CDH or fetal ventilation strate-
gies (59–61). To create this model (and technical details varied

between laboratories), the fetal lamb is delivered out of the ewe
between 80 and up to 110 days’gestation with the gravid ewe under
full general anesthesia. The technique requires positioning the hys-
terotomy directly over the fetal thorax by palpation of the uterus in
order to minimize the size of the uterine incision. The chest of the
fetal lamb is delivered out of the wound for the incision to be made
in the 11th intercostal space, thus exposing the fetal diaphragm.
The diaphragm is incised and abdominal viscera are introduced
into the thorax. The thorax is closed and the hysterotomy repaired.
Planned delivery of the treated fetal lambs is required as ventilatory
support immediately post-delivery is necessary. In initial stud-
ies where fetal interventions required repeat open fetal surgery,
the overall survival of the fetal lambs was disappointingly low as
the primary procedure to create the CDH was performed earlier
in gestation and repeat hysterotomy created challenges including
pre-term labor and stillbirths (62, 63). However, the hard lessons
learned from these studies brought about more ingenious ways to
circumvent these obstacles, including the application of tocolytic
protocols and the eventual use of minimal access approaches for
fetal repair.

Twenty-five years after he first started his laboratory studies in
the fetal lamb model for CDH, the first randomized controlled
trial of fetal tracheal occlusion for the treatment of high-risk
CDH was reported by Harrison et al. in 2003 (64). While the
outcome of fetal tracheal occlusion for high-risk CDH infants did
not appear significantly different from the conventionally treated
cohort, the trial represented the culmination of the many years of
laboratory-based research, scientific interactions, and optimiza-
tion of techniques using the experimental fetal lamb model in
pre-clinical studies (60, 65–67). Consequently, clinicians treating
other congenital anomalies with open fetal surgery now have the
innovative techniques and clinical tools to support their proce-
dures (68). The fetal lamb model is now widely used as a pipeline
for the refinement of fetoscopic and open fetal surgical techniques
for trainees (69).

CONCLUSION
Animal models for CDH have generated vast troves of data in
diverse areas of science and medicine. Rodent and fetal lamb
models for CDH have encouraged crosstalk between geneticists,
developmental biologists, and clinicians to discover new knowl-
edge and create new treatment targets for fetal interventions,
particularly in arresting or reversing the devastating pulmonary
sequelae of CDH. The field of fetal surgery owes a debt of thanks
to CDH disease and the research teams who first imagined fetal
surgery as a treatment option. The past use of these animal models
has yielded exciting results, spawning clinical trials and novel ther-
apies for CDH. There is hope and excitement for other congenital
anomalies that similar use of animal models will also bring such
fruitful results for our patients.
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