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Aberrant epigenetic modifications are well-recognized drivers for oncogenesis. Pediatric
acute lymphoblastic leukemia (ALL) is no exception and serves as a model toward the sig-
nificant impact these heritable alterations can have in leukemogenesis. In this brief review,
we will focus on the main aspects of epigenetics, which control leukemogenesis in pedi-
atric ALL, mainly DNA methylation, histone modification, and microRNA alterations. As
we continue to gain better understanding of the driving mechanisms for pediatric ALL at
both diagnosis and relapse, therapeutic interventions directed toward these pathways and
mechanisms can be harnessed and introduced into clinical trials for pediatric ALL.
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INTRODUCTION
Epigenetics is the study of biochemical modifications of chromatin
(1) and have been implicated in the pathogenesis of cancer (2).
Epigenetic modifications to DNA are not secondary to changes to
the nucleotide sequence itself but rather heritable changes affect-
ing the activity of genes and their cellular expression. Examples
include DNA methylation, histone modification, and alterations
in non-coding microRNAs (miRNAs). Each of these mechanisms
can alter how genes are expressed or silenced without modifying
the DNA sequence. If these epigenetic modifications lead to silenc-
ing of tumor suppressor genes or activation of oncogenes then it
is easy to conceptualize how leukemogenesis can occur.

Unlike chromosomal translocations or gene mutations, which
are permanent, hypermethylation of gene promoters is a reversible
event that could be targeted with therapeutic agents designed to
alter aberrant epigenetic events. Incorporating epigenetic mod-
ifying agents into the treatment of pediatric ALL is an exciting
approach that theoretically could have a significant impact in
the treatment of this disease. This would be particularly true for
relapse ALL, which is highly hypermethylated (3–5), and accounts
for more deaths than any other pediatric disease and remains the
fifth most common pediatric cancer overall (6).

In this brief review, we will focus on the three main areas of
epigenetics, which have been implicated in the leukemogenesis
of pediatric ALL; DNA hypermethylation, histone modification,
and microRNA alterations. As we continue to gain better under-
standing of the driving mechanisms for pediatric ALL at both
diagnosis and relapse, therapeutic interventions directed toward
these pathways and mechanisms can be harnessed and introduced
into clinical trials.

DNA HYPERMETHYLATION
Gains of DNA methylation tend to occur in the gene promoter
region and are one of the most studied epigenetic abnormalities

in oncogenesis (7, 8). The methylation occurs at cytosine (C)
bases located 5′ to guanosine (G) in a CpG dinucleotide and
often in regions rich in repetitive CpGs known as CpG islands.
The methyl groups are transferred to the CpG dinucleotide via
DNA methyltransferases (Dnmt1, Dnmt3a, and Dnmt3b) and
serve to transcriptionally silence genes downstream of the methy-
lated promoter. When aberrant methylation occurs in a cancer
cell, it typically results in hypermethylation of tumor suppres-
sor genes. This can lead to disruption of key molecular pathways
such as apoptosis, DNA repair pathways, cell cycle checkpoints,
and cell differentiation as well as result in activation of metas-
tasis/invasion pathways, drug resistance, and proliferation signal
transduction (9).

Various groups have used DNA methylation studies to investi-
gate the underlying epigenetic mechanisms in childhood leukemia.
In a large cohort of 137 B-lineage and 30 T-lineage pediatric
ALL cases, distinct DNA methylation signatures with significant
concordant correlation of gene expression were found to be char-
acteristic of various cytogenetic sub-types (10). In fact, a core
set of epigenetically deregulated genes, common to all cases, was
identified; suggesting their central role in leukemia initiation and
maintenance. Likewise, DNA methylation interrogation of 69
pediatric B-ALL and 42 non-leukemic control samples revealed
325 genes hypermethylated and down regulated, and 45 genes
hypomethylated and up-regulated across all the samples, irre-
spective of subtype (11). Furthermore, gene ontology analysis
of these epigenetically deregulated genes highlighted the role of
genes involved in cell signaling, cellular development, cell sur-
vival, and apoptosis. Another study investigating 764 cases of
newly diagnosed ALL and 27 cases of relapse, identified 9406
predominantly hypermethylated CpG sites, independent of cyto-
genetic background, with each cytogenetic subtype displaying a
unique set of hyper- and hypomethylated sites (12). These dif-
ferentially hypermethylated CpG sites were enriched for genes in
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the transcriptional regulatory network such as NANOG, OCT4,
SOX2, and REST. These genes are known to be regulated by a
polycomb group of proteins and have been identified as targets
for hypermethylation in solid tumors (13), leukemia (14), and
lymphoma (15).

MLL-rearranged infant leukemia is one specific ALL subtype
that has been shown to exhibit distinct promoter hypermethyla-
tion (16–19). Stumpel and colleagues identified a distinct DNA
methylation pattern dependent on the presence and type of
MLL-fusion partner in a cohort of 57 newly diagnosed infant
ALL patients (19). In addition, the degree of hypermethylation
appeared to correlate with a higher risk of relapse among infants
carrying t (4;11) or t (11;19) translocations. In another study of 5
MLL-rearranged infant ALL samples, genes known to be involved
in oncogenesis and tumor progression (DAPK1, CCR6, HRK, LIFR,
and FHIT ) were differentially methylated suggesting a role in the
leukemogenesis of MLL-rearranged ALL (17). As well, four of five
genes that were hypermethylated and silenced were able to be
re-expressed in vitro when exposed to DNMTi and regain their
functional roles, thus pointing to the clinical potential epigenetic
therapy may have in the treatment of infant leukemia.

Relapsed ALL is a highly aggressive disease marked predomi-
nantly by drug resistance (20). Efforts are currently being under-
taken to identify the role of epigenetic mechanisms in driving
relapse and chemoresistance (3). Genome-wide DNA methyla-
tion profiling performed on 33 matched relapse-diagnosis pairs
demonstrated that the relapsed genome was distinctly more hyper-
methylated compared to matched samples at diagnosis (3). In this
study, 1147 CpG sites corresponding to 905 genes were differen-
tially hypermethylated at relapse. About a third of these genes
exhibited concordant down-regulation of mRNA expression.
Many of the known regulators of the Wnt pathway were hyper-
methylated and down regulated at relapse, including inhibitors of
the β-catenin/TCF/LEF activity, as well as APC, WT1, cadherins
(CDH1, CDH11), and SOX genes (SOX2, SOX8, SOX11, SOX21).
Interestingly, PTPRO, a negative feedback inhibitor of the Wnt
pathway that binds to Wnt and blocks its association with other
receptors (21), was also hypermethylated and down regulated. This
suggests that the Wnt pathway is over-activated at relapse and that
aberrant DNA methylation may play a significant role in the acti-
vation of this pathway in relapsed ALL (3). Re-expression of these
hypermethylated and down regulated genes was observed when
leukemia cell lines were treated with decitabine. As well, enhanced
chemosensitivity was observed when ALL cell lines and primary
patient ALL samples were pretreated with decitabine followed by
conventional cytotoxic chemotherapy (4).

In summary, DNA hypermethylation appears to play a signifi-
cant role in the leukemogenesis of ALL and may be an important
contributor toward relapse. As more studies interrogate the spe-
cific genes and or pathways influenced by hypermethylation in
pediatric ALL,we will gain further insight toward strategies to ther-
apeutically target these aberrant epigenetic changes and hopefully
begin to make a greater impact in the treatment of this disease.

HISTONE MODIFICATIONS
Histones are small basic proteins involved in the spatial
organization of DNA within the nucleus. The chromatin

environment influences the “on–off” transcriptional states of a
gene depending on the post-translational modifications of the
histone proteins (22). Numerous covalent histone tail modifi-
cations, the most prominent being methylation and acetylation,
can directly affect gene transcription (23). These modifications
are highly specific for the particular amino acid position on the
N-terminal tails of the histones. For example, H3K4me3, H3K9
acetylation, H3K14 acetylation, and H3K79me2 are associated
with open chromatin structures and linked with transcriptional
activation, while H3K9me3 and H3K27me3 are associated with
closed chromatin, and hence transcriptional repression. These
histone marks are regulated by the balance between competing
enzymes such as the histone lysine methyltransferases (HKMTs)
and histone demethylases (HKDMs), and the histone acetyltrans-
ferases (HATs) and histone deacetylases (HDACs) (24). Moreover,
multiple histone modifications can be associated with critical reg-
ulatory elements of transcription such as enhancers, which can
determine cell fate and differentiation (23, 25).

Mutations in epigenetic modifying genes are common in hema-
tologic malignancies, including ALL (26–31). These mutations
can result in a gain or loss of function of key genes known to
regulate histone marks. Jaffe and colleagues, in pediatric ALL
cell lines, have used global chromatin profiling, a tandem mass
spectrometry strategy, to measure levels of histone modifications
on bulk chromatin (29). In this work, a novel cluster of cell
lines with a specific epigenetic signature was identified, charac-
terized by increased dimethylation of histone H3 at lysine 36
(H3K36me2) and decreased unmodified H3K36. Approximately
half of the cell lines in this cluster harbored the t (4;14) translo-
cation, which is known to induce overexpression of NSD2 (24,
32, 33). NSD2 is a member of the HKMTs that catalyze the con-
version of unmodified H3K36 to mono- and dimethylated forms
(28). Upon targeted sequencing in an extensive patient sample
set, NSD2 mutations were found to be enriched in ETV6-RUNX1
and TCF3-PBX1 sub-types of pediatric B-ALL, while no muta-
tions were identified in 30 adult ALL samples. These were gain-
of-function mutations and their overexpression led to a global
increase in H3K36me2, with concomitant decrease in H3K27me3.
Similar results were reported by others (34), showing these muta-
tions affect expression of a number of genes involved in normal
lymphoid development.

Accumulating evidence suggests that histone modification is
an important aspect of MLL-fusion mediated transformation and
leukemogenesis (35, 36). It has been shown that wild type MLL
SET domain is a methyltransferase,modifying histone H3 on lysine
4 (H3K4), and positively regulating gene expression of multiple
Hox genes (37). In addition, MLL mediated transcriptional regula-
tion involves recruitment of HAT, such as CBP (38) and MOF (39).
Furthermore, DOT1L, a histone methyltransferase that methylates
lysine 79 on histone H3 (H3K79), has been associated with mul-
tiple MLL-fusion partners such as AF9, AF10, AF17, and ENL
(40–42), and has emerged as an attractive therapeutic target (36).
Several groups have used small molecule inhibitors to demonstrate
the feasibility of pharmacological inhibition of DOT1L enzymatic
activity in preclinical models of MLL-rearranged leukemia (43–
45) and are now under clinical investigation in a phase I study for
adults with advanced hematologic malignancies, including acute

Frontiers in Pediatrics | Pediatric Oncology May 2014 | Volume 2 | Article 42 | 2

http://www.frontiersin.org/Pediatric_Oncology
http://www.frontiersin.org/Pediatric_Oncology/archive


 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Burke and Bhatla Epigenetic modifications in ALL

leukemia with rearrangement of the MLL gene (NCT01684150).
One inhibitor in particular, EPZ-5676, has shown potent activity
in its ability to selectively inhibit the DOT1L histone methyltrans-
ferase, resulting in cell death of acute leukemia cell lines har-
boring MLL translocations as well as complete tumor regression
in a rat xenograft model of MLL-rearranged leukemia following
continuous iv infusion of EPZ-5676 (45).

In order to identify novel mutations in relapsed ALL, Mullighan
and colleagues performed targeted resequencing of 300 genes
in 23 matched relapse-diagnosis B-ALL pairs (30). The authors
identified novel mutations in CREBBP, a gene encoding the tran-
scriptional coactivator CREB binding protein with HAT activity.
The overall frequencies of these sequence and/or deletional muta-
tions were 18.3% in relapse cases (30). However, particularly high
incidences of somatic CREBBP alterations (63%) were found in
the high hyperdiploidy relapse cases. Of note, the majority of
these mutations occurred in the HAT domain (27). Although
less common, mutations in other important epigenetic regula-
tors were also seen such as NCoR1 (Nuclear corepressor complex),
EP300 (a paralog of CREBBP), EZH2 (histone methyltransferase
gene), and CTCF (zinc finger protein involved in histone modifica-
tions) (30). Additionally, transcriptome sequencing has identified
relapse-specific mutations in CBX3 (encoding heterochromatin
protein), PRMT2 (gene encoding protein arginine methyltrans-
ferase 2), and MIER3 (involved in chromatin binding); providing
further evidence of aberrant epigenetic mechanisms that play a
role at relapse (46).

Epigenetic alterations are not only restricted to B-ALL, but are a
notable feature of T-ALL, particularly the aggressive subtype early
T-cell precursor (ETP) ALL. Whole genome sequencing of 12 cases
of ETP ALL identified mutations in genes encoding components
of the polycomb repressor complex 2 (PRC2), including deletions
and sequence mutations of EZH2, SUZ12, and EED (47). Loss
of function mutations and deletions of EZH2 and SUZ12 genes
have also been found in T-ALL, where authors implicate the tumor
suppressor role of the PRC2 complex (48).

In addition to the discovery of somatic mutations in epige-
netic machinery in ALL, mRNA expression of HDACs has been
shown to be dysregulated. Higher mRNA expression of HDAC7
and HDAC9 in a study of 94 childhood ALL cases was shown
to correlate with poor prognosis (49). Similarly, another group
identified the correlation of HDAC4 overexpression with pred-
nisone poor response, T-ALL phenotype, and a high initial WBC
(50). Given the compelling evidence of HDAC’s involvement in
tumor development and progression, inhibitors of HDACs have
emerged as an attractive therapeutic option in hematologic malig-
nancies (4, 51). Through a connectivity map search (52) for agents,
which could potentially reverse the characteristic gene expression
signature specific for relapse ALL (3, 53) and potentially endow
chemosensitivity, vorinostat (HDACi) was identified as the most
promising candidate (4). In fact, vorinostat not only modulated
the gene expression signature characteristic of relapse in ALL cell
lines and patient samples, but showed a synergistic effect when
given sequentially with chemotherapy (4). The fact that vorino-
stat showed significant alteration of gene expression correlating
with histone modifications, indicates that the perturbation of
histone marks may have a key role in aberrant gene regulation

at relapse. Bachmann and colleagues have reported glucocorti-
coid resistance associated with epigenetic silencing of the BIM
gene in pediatric ALL and showed synergistic effect of vorinos-
tat with dexamethasone in both in vitro and in vivo models (54).
The potential importance of these changes is highlighted by the
promising activity of several other drugs from the same class that
target epigenetic alterations (55).

In summary, similar to the influence DNA hypermethylation
has in pediatric ALL leukemogenesis, maintenance, and relapse,
aberrant epigenetic changes involving histones have been associ-
ated with disease progression and relapse in ALL. With growing
experience using HDACi in hematologic malignancies, includ-
ing pediatric trials (NCT01483690, NCT01321346), the impact
of these agents will become clearer as well as their role in future
relapse and upfront ALL studies.

MicroRNA ALTERATIONS
MicroRNAs are a class of small endogenous single stranded
non-coding ribonucleic acids (RNA) composed of roughly 22
nucleotides that are primarily involved in post-transcriptional
gene regulation. miRNAs play a critical regulatory role in target-
ing mRNAs for cleavage or translational repression, with greater
than 1,000 miRNAs currently identified in the human genome
(56). MicroRNA genes are preferentially localized to CpG islands,
which leads to the plausible mechanism that they can be controlled
through aberrant epigenetic regulation (e.g., hypermethylation,
histone modification) (57).

Altered expression of miRNAs has been implicated in leukemo-
genesis and appears to have the ability to influence critical growth
regulatory pathways in ALL (58–61). An example of the func-
tional impact miRNA can have in B-cell ALL was reported with
the restoration of miR-196b expression, which led to significant
down-regulation of c-myc and its effector genes fhTERT, Bcl-2, and
AATF, suggesting a tumor suppressor function role for miR-196b
(62). Some specific miRNAs that have been implicated in pediatric
ALL include miRNA (miR) miR-34, miR-128, miR-142, and miR-
181, all reported to be over expressed (58, 63, 64) and miR-100
and miR-196b, both under expressed (59, 63). Schotte and col-
leagues investigated 397 miRNAs using qRT-PCR in 81 pediatric
ALL cases in comparison to 17 normal CD34+ stem cell con-
trols (65). Unique miRNA signatures were identified for various
ALL sub-types including ETV6-RUNX1, MLL-rearranged, T-ALL,
hyperdiploidy, and E2A-PBX1. Overall, expression of miR-143 and
miR-140 were found to be 70- and 140-fold lower in the B-ALL
samples compared to controls (pFDR= 0.0007 and pFDR= 0.001,
respectively). Hyperdiploid samples showed a clustering of high
expression of miR-98, miR-222, miR-223, and miR-511 and the
ETV6-RUNX1 cases had a 5- to 1700-fold increase expression in
miR-99a, miR-100, miR-125b, and miR-383 compared to controls
(pFDR < 0.001). Together these findings lend support for epige-
netic alterations involving miRNAs in the leukemogenesis of some
of the more common variants of pediatric ALL.

Aberrant miRNA expression has been implicated in leukemia
drug resistance and lower event-free survival (EFS). Schotte
and colleagues identified a lower expression of miR-454 (1.9-
fold lower) in leukemia blasts with l-asparaginase resistance
(pFDR= 0.017) and patient samples resistant to vincristine and
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daunorubicin were found to have over expression of miR-
99a, miR-100, and miR-125b (14- to 25-fold) (pFDR≤ 0.002
and pFDR < 0.05, respectively) (65). In terms of EFS, six miR-
NAs (miR-33, -215, -369-5p, -496, -518d, and -599) were asso-
ciated with worse survival (HR 1.3–1.52, 95% CI 1.01–2.04;
0.003≤ p≤ 0.046) and another eight (miR-10a, -134, -214, -484,
-572, -580, -624, and -627) with greater EFS (HR 0.59–0.82, 95%
CI 0.41–0.99, 0.004≤ p≤ 0.045) (65). The authors concluded that
the miRNAs associated with a more favorable outcome likely had
tumor suppressor activity through their signaling of apoptosis
(miR-10a), inhibition of proliferation (miR-10a and miR-214),
and oncogene SOX2 down-regulation (miR-134).

In a report of 18 matched-pair diagnosis and relapse (n= 8) or
diagnosis and remission (n= 10) pediatric ALL samples, data was
summarized for the most differentially expressed miRNAs (66).
Down-regulation of miR-23a and miR-223 was observed at time
of relapse compared to remission whereas miR130b, -181, and
-708 were over expressed at relapse. Specifically, the expression
of miR-708 was greater in relapse samples and lower in remis-
sion samples when compared to diagnosis whereas miR-223 was
up-regulated in remission samples compared to diagnosis and
confirmed with qRT-PCR. These two miRNAs at diagnosis along
with miR-27a were shown to correlate significantly with 3-year
relapse-free survival (p= 0.0483, 0.0079, and 0.0024, respectively)
and thus could potentially be used as prognostic biomarkers for
newly diagnosed patients. The functional impact these miRNAs
had on gene expression was described as well with targets identified
for BMI1, transcription factor necessary for hematopoietic stem
cell and leukemia stem cell self-renewal, in miR-27a and miR-128b
as well as E2F1, master cell cycle regulator, a target of miR-223.
The variations in miRNA expression that exist between diagnostic,
remission, and relapse samples identified by Han and colleagues
suggest that critical epigenetic mechanisms exist through these
non-coding miRNAs that may assist in driving leukemogenesis
and disease recurrence.

In an analysis of 353 diagnostic bone marrow samples from
patients with ALL (<15 years of age, n= 179), 65% had at least one
of 13 previously identified miRNAs hypermethylated (67). These
13 miRNAs were found to be regulated by methylation and histone
modification and associated with a closed chromatin conforma-
tion of 11 CpG islands close to where the 13 miRNAs resided. The
hypermethylation was associated with miRNA under expression
but could be reversed with decitabine.

In summary, aberrant miRNA expression, particularly sec-
ondary to methylation, is a common finding in ALL. These data
support that epigenetic modifications of specific miRNAs are asso-
ciated with chemotherapy resistance and clinical outcomes. As
these modifications can be secondary to DNA hypermethylation
(65, 68–71), exposure to agents such as DNMTi could reverse the
aberrant expression, normalize miRNA levels, and ultimately lead
to improved clinical outcomes.

CLINICAL TRIALS INVESTIGATING EPIGENETIC MODIFYING
THERAPIES IN PEDIATRIC ALL
The majority of clinical experience using epigenetic modifying
agents in the treatment of acute leukemia has been in adults (72,
73). The Children’s Oncology Group (COG) piloted a phase I study

investigating decitabine (10 mg/m2/day× 5 days/week× 2 weeks)
in children with relapsed/refractory acute leukemia that closed
prematurely due to low patient accrual (NCT00042796, unpub-
lished). No maximum tolerated dose (MTD) was identified and
5/15 patients reported grade 3/4 cytopenias (anemia, throm-
bocytopenia, and leukopenia) that were possibly related to the
study drug.

Similar to the DNMTi, HDACi (e.g., vorinostat, panobinostat)
have been studied in the treatment of acute leukemia, primarily as
single agents and almost exclusively in adults (74, 75). The COG
completed a phase I study investigating vorinostat in combination
with 13 cis-retinoic acid in children with refractory/recurrent solid
tumors and vorinostat alone for patients with refractory leukemia
(76). Six patients with refractory leukemia were enrolled with 2
DLTs reported at the solid tumor MTD (230 mg/m2/day) includ-
ing an elevated AST (n= 1), hyperbilirubinemia (n= 1), elevated
GGT (n= 1), and hypokalemia (n= 1). As the solid tumor MTD
for vorinostat did not appear tolerable for patients with hemato-
logic malignancies, there was no further dose finding attempt in
this study. Currently, there is a phase I study of panobinostat in
children with refractory hematologic malignancies open through
the therapeutic advances in childhood leukemia and lymphoma
(TACL) Consortium (NCT01321346).

The first study incorporating a DNMTi and HDACi followed
by chemotherapy for children and adults with relapsed/refractory
ALL was recently completed (72). In this phase II trial, decitabine
(15 mg/m2/day) and vorinostat (230 mg/m2 divided BID) were
given over four consecutive days prior to re-induction chemother-
apy (vincristine, prednisone, PEG-asparaginase, doxorubicin)
(NCT00882206) (72). Thirteen eligible patients enrolled with a
median age of 16 (range, 3–54) years. There was a single toxic
death occurring on study attributed to the chemotherapy regi-
men, which included a grade five hemorrhage/bleeding (n= 1).
A second patient experiencing grade five hypoxia/acute respira-
tory distress died on day 4 of study attributed to disease pro-
gression (n= 1). There were an additional 14 grade 3/4 serious
adverse events, which were at least possibly attributed to decitabine
or vorinostat, the most common being fever with neutropenia
(n= 2) and infection (blood) with neutropenia (n= 5). Results
of the eight patients evaluable for response, identified a CR rate
of 50% (n= 4/8) (95% CI 15.7–84.3%) and an overall response
rate (CR+PR) of 75% (n= 6/8) (95% CI 34.9–96.8%). As well,
minimal residual disease (MRD) negativity by flow cytometry
was observed in 4/8 patients (50%, CI: 15.7–84.3%). Five of the
eight patients who completed the study proceeded to allogeneic
hematopoietic cell transplantation (four in second CR and one in
third CR). Three patients succumbed to transplant related deaths
without evidence of leukemia while the remaining two patients
remain alive with no evidence of disease. Based on the results
of this study, a pediatric trial for relapse/refractory ALL combin-
ing decitabine and vorinostat with re-induction chemotherapy is
currently open through the TACL Consortium (NCT01483690;
R21CA161688-01).

SUMMARY
Underlying epigenetic alterations in pediatric ALL are com-
mon events, which appear to be more common at relapse than
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diagnosis. Thus children with relapse ALL may be an ideal popu-
lation for clinical trials incorporating epigenetic modifying agents
aimed at reversing these aberrant signatures. Whether such trials
will lead to improved clinical outcomes has yet to be determined
but early findings in studies incorporating these agents have been
encouraging.

In conclusion, leukemogenesis of pediatric ALL is heavily influ-
enced by epigenetics, particularly DNA hypermethylation, histone
modification, and alterations in miRNA expression. Epigenetic
modifying agents such as DNMTi and HDACi as well as newer
therapies (e.g.,histone methyltransferase inhibitors) are now being
incorporated into early phase clinical trials for relapse leukemia.
As more trials for children with relapse ALL, incorporating epige-
netic therapies into standard and/or novel salvage regimens, are
developed and completed, we will have a better understanding
as to which patients might benefit the most using this approach
and ultimately where these agents may be best served in treating
pediatric ALL.
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