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The evaluation and treatment of the heterogeneous group of kidney diseases poses a chal-
lenging field in pediatrics. Many of the pediatric disorders resulting in severe renal affection
are exceedingly rare and therapeutic approaches have remained symptomatic for most of
these disease entities. The insights obtained from cellular and molecular studies of rare
disorders by recent genetic studies have now substantially changed our mechanistic under-
standing of various important pediatric renal diseases and positive examples of targeted
treatment approaches are emerging. Three fields of recent breathtaking developments in
pediatric nephrology are the pathophysiology of nephrotic syndrome and proteinuria, the
molecular mechanisms underlying atypical hemolytic uremic syndrome, and the genetics
and cellular biology of inherited cystic kidney diseases. In all three areas, the combined
power of molecular basic science together with deeply characterizing clinical approaches
has led to the establishment of novel pathophysiological principles and to the first clinical
trials of targeted treatment approaches.
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THE GLOMERULAR FILTRATION BARRIER AND PROTEINURIC
DISORDERS: THREE LAYERS FOR ONE TASK
Glomerular diseases are among the most common reasons for
consultation of pediatric nephrologists. Pediatric glomerular dis-
ease frequently presents as the symptom complex of nephrotic
syndrome characterized by large proteinuria, hypoalbuminemia,
edema, and hyperlipidemia (1). While Minimal Change Disease is
the classic cause in pediatric nephrotic syndrome, the studies on
genetic causes of proteinuric disorders like primary focal and seg-
mental sclerosis (FSGS) have recently improved our understanding
of glomerular (patho-)physiology.

The kidneys constantly filter nearly protein-free primary urine
(2). This incredible achievement is accomplished in the glomeru-
lus where the primary urine is derived from the blood perfusing
the glomerular capillaries. The wall of these glomerular capil-
laries forms the glomerular filtration barrier, which consists of
three layers. On the blood side a highly specialized fenestrated
endothelium is found, which is covering the glomerular basement
membrane (GBM). On the outside of the GBM the podocyte,
a most remarkable cell type, can be found. Podocytes are char-
acterized by a large cell body with arising primary and secondary
foot processes. Secondary foot processes of neighboring podocytes
interdigitate and closely enwrap the whole surface of the GBM
(Figure 1A). Between the interdigitating foot processes, a slit is
formed that is covered by an electron-dense membrane like struc-
ture. This so-called slit diaphragm (SD) and the secondary foot
processes form the third layer of the glomerular filtration barrier
(Figure 1B). In most proteinuric glomerular disorders the sec-
ondary foot processes show dramatic structural changes, termed
foot process effacement (Figure 1C).

The debate on the question which layer of the filtration barrier
would act as “the real filter” was ongoing over decades (3–5). It
was therefore of major importance when Karl Tryggvason’s group
identified the genetic cause of the rare, but most severe Congenital
Nephrotic Syndrome of the Finnish Type. Truncating mutations
in NPHS1, encoding the SD-protein nephrin, result in this dev-
astating disorder (6, 7). Since the detection of NPHS1 multiple
genes have been identified that are associated with FSGS or famil-
ial proteinuria (2, 8, 9). Most of the corresponding gene products
either localize to the SD or are crucial for impaired podocyte func-
tion thus confirming a central role for podocytes in glomerular
disease. Podocyte biology has therefore become a major field of
renal basic science. Importantly, it was shown that the SD does not
function as a passive glomerular sieve, but that it rather regulates
intracellular signaling cascades, e.g., controlling actin polymeriza-
tion in this structurally highly complex cell type (2, 9). Many of
the proteins affected in inherited forms of nephrotic syndrome
have been found to form common protein complexes and to func-
tionally cooperate, e.g., in the regulation podocyte cell survival
(2, 8, 9).

Still, SD changes are not exclusively responsible for the devel-
opment of proteinuria. The GBM is affected in genetic pro-
teinuric disorders like Alport’s syndrome or Pierson syndrome
(10) and proteinuria precedes detectable podocyte changes in
a mouse model of Pierson syndrome (11). Furthermore, alter-
ations in the fenestrated glomerular endothelium can also result in
states of proteinuria (12). These fenestrae within the endothelium
develop under the influence of vascular endothelial growth factor
(VEGF) that is locally generated by podocytes and dysregulation of
podocyte-produced VEGF results in proteinuria and endotheliosis
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Liebau Recent molecular pediatric nephrology

FIGURE 1 | (A) Podocyte-specific inducible and mosaic change of expression
of membrane-tagged fluorescent proteins proves interdigitation of
neighboring podocytes. Induction results in the expression of green
fluorescent protein while non-induced cells express a bright red fluorescent
protein. Podocytes expressing the different types of fluorescent reporter
interdigitate and closely enwrap the glomerular capillaries. (B) Electron

microscopy of the three layers of the glomerular filtration barrier (EC,
endothelial cell; GBM, glomerular basement membrane; P, podocyte; FP, foot
process; SD, slit diaphragm). (C) In a podocyte-specific proteinuric knockout
mouse model secondary foot processes lose their structure and show
effacement, a structural change also observed in multiple human proteinuric
disorders.

(13). Clinical situations resulting in proteinuria due to inhibi-
tion of glomerular VEGF function are, e.g., treatment with VEGF
antagonists during oncologic therapy or pre-ecclampsia with ele-
vated serum levels of soluble fms-like tyrosine kinase-1 (sFLT-1)
that binds and inactivates VEGF (14, 15). The insight into this
pathomechanism has recently led to a pilot study on the removal
of sFLT-1 in pre-ecclampsia (14).

Given these findings on all three components, the glomerular
filtration barrier is nowadays rather seen as a single functional unit
than as three independent layers (16, 17). It is the joint action of
endothelium, GBM, and podocytes that keeps the filtration barrier
working (16, 17).

How do these findings on cellular mechanisms affect our daily
clinical work? A very good example is the way we treat steroid-
resistant nephrotic syndrome, e.g., in primary FSGS. Primary
FSGS results from podocyte injury, is often difficult to treat and
frequently progresses to end stage renal disease (ESRD) (18).
Currently, a widely accepted treatment approach will escalate
immunosuppression in a patient with biopsy-proven FSGS in a
primary episode of steroid-resistant nephrotic syndrome. Still,

such treatment will be associated with substantial adverse events.
Furthermore, podocyte biology backed by recent evidence from
clinical observations suggests that immunosuppression will fre-
quently not address, e.g., the genetic cause of primary FSGS and
will be ineffective in a number of patients (2, 19). The intensity of
immunosuppressive treatment chosen by the pediatric nephrol-
ogist will therefore depend on the presence or absence and in
some cases potentially on the subtype of a detected mutation
(1, 20). As mutations in multiple genes can result in FSGS, age-
dependent recommendations for targeted genetic testing have
been established (21).

While the decision to include or withhold in immunosuppres-
sion in the initial treatment may already be a major reason for
genetic testing in these patients, the proof of a mutation in a
podocyte-gene has additional important implications for treat-
ment. As chronic kidney disease progresses kidney transplantation
may become necessary. For FSGS patients without proof of genetic
alterations, it has been suggested that a so-called circulating fac-
tor in the blood may be the cause of glomerular damage. The
concept of a circulating factor is among other findings based on
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the observation that around 30% of the patients without genetic
alterations show recurrence of FSGS after transplantation (22).
Such a recurrence may again be difficult to treat and requires
a high level of suspicion as well as rapid therapeutic interven-
tion. In contrast, patients with a genetic alteration affecting SD
or podocyte structure will not show recurrence after transplanta-
tion and these patients have an excellent prognosis as the intrinsic
defect of podocytes will be cured by transplantation. While the
idea of a circulating factor has been established for a long time, the
factor itself has not been clearly identified. Recent work suggested
that soluble uPAR could be a candidate but doubts have risen
(23–26). In summary, the recent pathophysiological and clinical
insights suggest that we should aim to clearly identify potentially
underlying genetic alterations in children with steroid-resistant
nephrotic syndrome to individually adapt treatment.

aHUS, MPGN, AND C3GN: “COMPLEMENTARY” RENAL
MEDICINE
A second important pediatric renal disease affecting the glomeru-
lus is hemolytic uremic syndrome (HUS). HUS is the most
common cause of acute renal failure in childhood (27). It is
characterized by microangiopathic hemolytic anemia, thrombo-
cytopenia, and acute renal failure. The vast majority of patients
(>90%) show typical HUS due to infection with Shiga-toxin pro-
ducing Escherichia coli (STEC). However, a heterogeneous group
of patients with atypical forms of HUS (aHUS) exists, often show-
ing a more severe long-term clinical outcome (27–29). A high
percentage of these patients dies or develops ESRD within a year
after presentation (30). Recent research has highlighted the role of
the alternative pathway of the complement system in the patho-
genesis of a large group of aHUS patients. The complement system
is a central component of the innate immune system, which is, e.g.,
involved in the lysis of target cells or bacteria. A crucial step in com-
plement activation is C3 convertase activation and amplification
leading to cleavage of C5 and ultimately resulting in the assembly
of the membrane attack complex (MAC). Three major pathways
activate complement but activation of the so-called alternative
pathway is crucial in aHUS (27–29, 31). Mutations in multiple
genes encoding proteins associated with the control of the com-
plement cascade C3 convertase complex have been reported in
patients with aHUS leading to a hyperactivation of complement
on the surface of the endothelium. aHUS may be seen as a par-
adigm disease for inefficient protection of the endothelium from
complement attack (27–29, 31).

Plasma therapy has been the first-line therapy for aHUS for a
long time to either replace deficient regulatory complement com-
ponents or to also remove existing mutant autoantibodies. Still,
long-term plasma therapy is associated with substantial morbidity
(32–34). Based on the previously described molecular mecha-
nisms, a novel treatment strategy has emerged. Eculizumab is
a fully humanized IgG2/IgG4 monoclonal antibody that acts by
binding the complement component C5 with high affinity. In
this way, Eculizumab inhibits cleavage of C5 and thus the gen-
eration of the MAC and has emerged as a powerful treatment
approach in aHUS. The effects of Eculizumab in aHUS have
recently been described in detail in various excellent reviews (28–
30). In summary, efficacy of prevention and treatment of aHUS

episodes is greater than with plasma therapy and there are positive
results even in case of plasma resistance or dependence. Despite
an increased risk of infection especially with Neisseria menin-
gitidis under Eculizumab treatment, no severe life-threatening
adverse events have been associated with treatment in the few
conducted clinical studies (30). It has therefore been suggested that
Eculizumab may be considered as a first-line therapy in children
with a first episode of aHUS and that Eculizumab may be helpful
in patients at risk for post-transplant aHUS recurrence (28, 35).
Like for FSGS and proteinuria, the molecular understanding of
aHUS has led to the establishment of a novel mechanistic concept
and has paved the way for individual decisions on treatment.

In addition to aHUS, membranoproliferative glomeru-
lonephritis (MPGN) and the recently newly classified entity of C3
glomerulonephritis (C3GN) have been linked to activation of the
alternative pathway of the complement system (27, 28, 31, 36–42).
It has been suggested that complement activation in MPGN and
C3GN may take place in the fluid phase rather than on the surface
of endothelial cells, thus leading to a phenotype that differs from
aHUS. Eculizumab is also considered as a potential therapeutic
approach in these patients but more evidence will be needed to
establish clear treatment recommendations.

Finally, evidence for complement activation in STEC–HUS
exists. First reports on the successful use of Eculizumab in STEC–
HUS have been published but data remains ambiguous (27,
43–46). More evidence will be needed, but the insights from
rare diseases have helped to shed light into a common pediatric
challenge.

CYSTIC KIDNEY DISEASES: SMALL ORGANELLE – HUGE
IMPACT
A third common cause of ESRD both in children and adults
are polycystic kidney diseases (PKD). The most important forms
of pediatric cystic kidney diseases are nephronophthisis (NPH),
autosomal recessive polycystic kidney disease (ARPKD), and auto-
somal dominant polycystic kidney disease (ADPKD) (9, 47–49).
ADPKD is the most common genetic cause of ESRD in adults and
is among the most common genetic diseases overall, with an inci-
dence of 1:500–1:1000. In children, NPH and ARPKD are currently
seen as the most important entities (9, 47–49).

Cysts are fluid-filled epithelium-lined excavations within the
kidney (Figure 2A). While a single cyst is frequent and usually
benign in adults, even a single cyst should raise suspicion in
children and lead to a detailed diagnostic workup looking for a
potentially underlying cystic kidney disease that will lead to a pro-
gressive loss of renal parenchyma and to ESRD. In addition to the
renal findings genetic cystic kidney diseases show typical extrarenal
features that may give decisive information to identify the under-
lying diagnosis (9, 47–49). These extrarenal manifestations are not
just a pure coincident but reflect the underlying cellular pathogen-
esis of genetic cystic kidney diseases. These disorders are nowadays
believed to result from dysfunction of a highly – specialized cellular
organelle, the primary cilium. Primary cilia are small membrane-
bound and microtubule-based protuberances that can be found
on nearly all cell types (Figure 2B) (47, 50, 51).

The link between PKDs and cilia was first established when
Maureen Barr identified the homolog of the human gene most
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FIGURE 2 | (A) Cystic phenotype in a mouse model of ciliary dysfunction. (B) Immunofluorescence staining of cilia (acetylated tubulin) and the ciliary base
(pericentrin) in human epithelial cells in cell culture. (C) Schematic illustration of the involvement of cilia in the regulation of intracellular signaling pathways.

frequently mutated in ADPKD in the nematode Caenorhabitis ele-
gans and could show that the corresponding gene product both
localizes to and affects the function of cilia in sensory neurons
in the worm (52). The link was strongly supported by the obser-
vation that the underlying mutations in a mouse model of PKD
affected ciliogenesis and that this mechanism was evolutionarily
conserved down to the green algae Chlamydomonas reinhardtii
(53). In the meantime, nearly all human gene products affected in
PKD have been found to localize to cilia (47). The ciliary hypoth-
esis therefore claims that cystic kidney diseases are disorders of
the primary cilium, so-called ciliopathies (54). As cilia are present
on nearly every human cell type, it becomes obvious, that genetic
cystic kidney disease should not just be seen as renal problems
but rather are systemic disorders. A ciliary dysfunction in the
liver results in congenital hepatic fibrosis in ARPKD and ciliary
dysfunction in the retina in subtypes of NPH leads to retinitis
pigmentosa. Interestingly, these pathophysiological insights have,
e.g., led to the detection of anosmia and defects in peripheral
thermo- and mechanosensation in patients with Bardet Biedl
syndrome (55, 56).

Over the last 15 years mutations in multiple genes have been
identified as the cause of ciliopathies and excellent reviews have
recently summarized these findings (47, 48, 50, 51). Mechanisti-
cally, cilia have been linked to the regulation of multiple intracellu-
lar signaling pathways (Figure 2C) (47, 48, 50, 51). The identifica-
tion of dysregulated signaling pathways and subsequent promising
animal studies have led to the first international randomized con-
trolled clinical trials for the treatment of cilia-associated polycystic
renal disorders (49).

Most studies have been performed for ADPKD, including clin-
ical trials on the role of mTOR inhibitors and vasopressin receptor
antagonists in ADPKD. A detailed presentation of the underly-
ing pathophysiological considerations is beyond the scope of this
review. To most briefly summarize the recent developments, it
is crucial to understand the significance of total kidney volume
(TKV) for the evaluation of ADPKD treatment approaches. Clini-
cal studies on ADPKD are facing the challenge that renal function
in this disease remains stable for a very long time even though
substantial structural changes already occur in the kidney. Once
renal function starts to decline cystic lesions and fibrosis have mas-
sively replaced renal parenchyma and treatment at this late stage
will not be able to undo these structural alterations (57). Data
from the Consortium on Radiological Investigations in Polycystic
kidney disease (CRISP) and the SUISSE study have shown that a
rapid increase in TKV, as measured by magnet resonance imaging,
is associated with poor outcome in ADPKD (49, 58, 59). It was
therefore suggested to monitor TKV as a surrogate parameter for
kidney function in clinical studies on ADPKD.

The first major international phase-3 trials for pharmacological
treatment of ADPKD focused on mTOR inhibitors (60–62). Data
from basic science research including data from multiple mouse
models suggested that the mTOR pathway is activated in cyst-
lining epithelium in ADPKD (63–65). Treatment with an mTOR
inhibitor showed a reduction of kidney growth in these animals.
However, the studies on current mTOR inhibitors did not show the
hoped-for positive effects in two large European ADPKD studies.
While the study by Walz et al. on 433 patients with progressed
ADPKD found a significant reduction in kidney volume after
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1 year of treatment with everolimus vs. placebo, this effect was not
significant any more after 2 years. There was a high dropout rate
in the rapamycin group. Surprisingly, the estimated glomerular
filtration rate (eGFR) even decreased more rapidly in intervention
group (60). Serra et al. found no significant difference in kidney
volume or eGFR in 100 less progressed ADPKD patients after
18 months of treatment with sirolimus or placebo, but detected an
increase in albuminuria in the sirolimus group (61). The observed
results may partly be due to the chosen study designs. Furthermore,
it has recently been shown that mTOR signaling in glomerular
podocytes requires tight control and proteinuria is a well-known
side effect of mTOR inhibition (49, 66–68). A novel generation of
modified mTOR inhibitors specifically targeting proliferating cells
expressing the folate receptor may become an interesting alterna-
tive. Low doses of modified mTOR inhibitors recently showed
beneficial effects in murine PKD models (69).

Based on the observation of increased intracellular cAMP
in cyst epithelium, increased vasopressin levels in the serum of
ADPKD patients and increased levels of V2 receptor expression
as well as the knowledge that vasopressin via the V2 receptor
increases intracellular cAMP, a second approach suggested that
inhibition of the vasopressin-V2R-cAMP axis may reduce cys-
togenesis an cyst growth (48). Animal data strongly supported
hypothesis (70, 71). Both the pharmacological as the genetic inter-
ference with vasopressin action showed distinct beneficial effects.
The TEMPO 3/4 trial therefore recently studied the effects of the
vasopressin antagonist tolvaptan or placebo on 1445 patients with
ADPKD and observed a reduction in TKV and loss of renal func-
tion after treatment with tolvaptan. However, while there were
also less ADPKD-related adverse events, adverse events related to
aquaresis occurred as did an increase of liver enzymes. Further-
more, cost-effectiveness of tolvaptan treatment may become an
issue (72–74).

Another way to influence intracellular cAMP levels are somato-
statin analoga (48). Again, animal data suggests positive effect on
PKD and multiple small studies have shown beneficial effects
of somatostatin analoga that were also tolerated well (75–78).
Recently, the ALADIN trial (a long-acting somatostatin on disease
progression in nephropathy due to autosomal dominant polycystic
kidney disease), a multicenter, randomized, single-blind, placebo-
controlled trial on 79 patients with ADPKD compared octreotide
long acting release to placebo (79). There was a significant dif-
ference in MRI-measured TKV between control and intervention
group after 1 year, but mean TKV increase was only numerically
smaller in the octreotide group after 3 years as this effect had lost
significance. GFR decline also tended to be less pronounced in the
intervention group, but again this effect did not reach significance.
Serious adverse events were similarly found in both groups. The
data provide evidence for a larger and more powerful follow-up
study (79).

The presented developments very clearly illustrate how the
novel molecular understanding of cellular events underlying
ADPKD has brought up multiple promising treatment approaches
for this common cause of ESRD. Furthermore, as cysts start to
develop and to grow in childhood, the development of a safe treat-
ment retarding ADPKD progression may also convert this disorder
into a major disease for pediatric nephrologists in the near future.

CONCLUSION
Over the past years the cellular and molecular studies on rare
pediatric renal diseases have resulted in dramatic new patho-
physiological insights. Multiple individual signaling cascades and
molecular mechanisms crucially involved in the pathogenesis of
severe pediatric renal disorders have been identified and novel
therapeutic approaches have successfully been established. How-
ever, it has also become clear that many of the described signaling
pathways are closely interconnected in complex cellular signaling
networks in multiple organs and must thus not be seen in isolation.
It will now be fundamental to identify and deeply characterize spe-
cific subgroups of patients within a single group of disorders. A
most detailed clinical phenotyping together with profound molec-
ular studies will expand our functional cellular understanding and
may thus open trails for more individualized treatment approaches
of severe renal diseases of childhood and adolescence.
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