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Excessive oxygen (O2) can cause tissue injury, scarring, aging, and even death. Our labora-
tory is studying O2-sensing pulmonary neuroendocrine cells (PNECs) and the PNEC-derived
product gastrin-releasing peptide (GRP). Reactive oxygen species (ROS) generated from
exposure to hyperoxia, ozone, or ionizing radiation (RT) can induce PNEC degranulation and
GRP secretion. PNEC degranulation is also induced by hypoxia, and effects of hypoxia are
mediated by free radicals. We have determined that excessive GRP leads to lung injury
with acute and chronic inflammation, leading to pulmonary fibrosis (PF), triggered via ROS
exposure or by directly treating mice with exogenous GRP. In animal models, GRP-blockade
abrogates lung injury, inflammation, and fibrosis.The optimal time frame for GRP-blockade
and the key target cell types remain to be determined. The concept of GRP as a mediator
of ROS-induced tissue damage represents a paradigm shift about how O2 can cause injury,
inflammation, and fibrosis.The host PNEC response in vivo may depend on individual ROS
sensing mechanisms and subsequent GRP secretion. Ongoing scientific and clinical inves-
tigations promise to further clarify the molecular pathways and clinical relevance of GRP
in the pathogenesis of diverse pediatric lung diseases.
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INTRODUCTION
Oxygen (O2) is essential for life. In aerobic animals, the lung
evolved as a critical organ for gas exchange permitting species
to move from water to land. Lungs are exposed to all the elements:
air, earth, water, and fire/radiation. Homeostasis and health repre-
sent a natural equilibrium between opposing forces. Disease results
when there is an imbalance between environmental exposures and
host defense. Individual responses to diverse challenges can vary
due to genetic factors.

Life hinges on a delicate balance. Too much or too little heat,
humidity, or O2 can be lethal. Although O2 is essential for life,
too much O2 can lead to tissue injury, fibrosis, senescence, and
death (1–4). For several decades my research has focused on
O2-sensing pulmonary neuroendocrine cells (PNECs) and their
product gastrin-releasing peptide (GRP), a mammalian homolog
of amphibian bombesin (5). GRP secretion can be induced by
reactive oxygen species (ROS) from exposure to hyperoxia (6),
ozone (7), or ionizing radiation (RT) (8). Furthermore, PNEC
degranulation is known to be induced by hypoxia (9), which is
also associated with increased ROS levels (10).

In the current review, I will introduce background information
about PNECs as O2-sensing cells. The discussion will then sum-
marize the highlights of over 25 years of work from my laboratory
regarding the role of GRP in lung development and postnatal lung
diseases, especially bronchopulmonary dysplasia (BPD). Cumula-
tively, these studies provide the foundation for future exploration
of how GRP could mediate lung injury including acute and chronic
inflammation and pulmonary fibrosis (PF) (7, 8, 11).

OXYGEN-SENSING CELLS: PULMONARY NEUROENDOCRINE
CELLS
O2-sensing cells are important regulators of vascular tone and
cardiac function. Historically, most research about O2-sensing cell
biology and physiology has been focused on cardiomyocytes (12),
vascular smooth muscle cells (13), and carotid body cells (glo-
mus cells) (14), although interest in PNEC biology is growing
(15). Much has been written about all of these cells (Figure 1)
and their collective tissues, with numbers of PubMed citations
on July 5, 2014 as follows: 228,676 for cardiomyocyte(s), car-
diac muscle cell(s), or cardiac muscle (cells vs. tissue= 61,228
vs. 213,615); 77,151 for vascular smooth muscle cell(s), vas-
cular smooth myocyte(s), or vascular smooth muscle (cells vs.
tissue= 53,567 vs. 72,628); 13,068 for carotid body cell(s), glo-
mus cells(s) or carotid body (cells vs. tissue= 6,462 vs. 11,987).
However, relatively little is known about PNECs or their clusters
in pulmonary epithelium, called neuroepithelial bodies (NEBs):
3,547 total citations, representing 3048 for PNECs and/or 624 for
NEB(s). If cancer is excluded from the search for the cardiac, vascu-
lar, or carotid cells or tissues, the numbers drop modestly (Figure 1,
lower panel) with the percentage of non-cancer citations: cardiac
muscle or myocytes and vascular smooth muscle or myocytes, and
79–80% for carotid body or glomus cells. In contrast, the num-
bers of non-cancer citations for PNECs is only 26%, providing
objective evidence that PNEC research has been largely focused on
lung cancer, especially small cell carcinoma of the lung, a highly
malignant cancer apparently derived from PNECs (16). Although
a PubMed search for NEBs yielded only 624 citations, 508 (81%)
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FIGURE 1 | Major subsets of O2-sensing cells: proportions of the total
number of 322,442 publications per subgroup. Top panel: relative
numbers of citations per subgroup in July 2014. This comparison addresses
four major subgroups of O2-sensing cells: cardiac muscle/cardiomyocytes,
vascular smooth muscle (VSM)/myocytes, carotid body/glomus cells, and
pulmonary neuroendocrine cells (PNECs)/neuroepithelial bodies. Actual
numbers are given in the text. Lower panel: when citations including the
keyword “cancer” are excluded, the number of citations is decreased per
subset by 3–21% for cardiac muscle, vascular smooth muscle, and carotid
body, but is decreased 74% for PNECs. (Mary E. Sunday, original
unpublished data)

of these are not related to cancer, possibly because PNEC-derived
cancers do not develop as normal, slow-growing, innervated,
and organoid NEBs (17). Of note, postnatally and in adults,
NEBs represent an important stem cell niche involved in lung
injury/repair as well as lung carcinogenesis (17–21). The biology
of non-neoplastic/homeostatic PNEC responses to environmental
challenges has been relatively under-explored. The low number of
cancer-related publications is also likely due in part to challenges
in culturing normal PNECs or NEBs, which have a low rate of
cell proliferation both in vitro (22, 23) and in vivo (24), although
PNEC proliferation can occur in vivo following acute injury (25).

PNECs were first identified in the lung by Feyrter as part of
a diffuse epithelial endocrine system (26, 27). Studying airway
epithelium of human newborn lung, Lauweryns later identified
clusters of similar amine-producing cells, which he called “NEBs,”
containing dense-core neurosecretory vesicles (DCV) (28). He
investigated physiological responses of PNECs to altered O2 and
CO2 levels in a series of seminal experiments (9, 29–31). He
first studied hypoxia- or hypercarbia-induced exocytosis of DCV
from NEBs (9). Second, by using cross-circulation studies in rab-
bits, he observed that airway hypoxia but not hypoxemia induced

exocytosis of DCV from NEBs (30). He postulated that NEB react
to the composition of inhaled air and by releasing serotonin or
peptides could produce a local vasoconstriction and/or bron-
choconstriction in hypoxically aerated lung areas, thus enabling
intrapulmonary regulation of the V/Q ratio (30). Innervation of
single PNECs and NEBs is extensive in newborn rabbits (32),
consisting predominantly of vagal afferent sensory nerves (15,
33). Although the function of NEB innervation remains unclear,
evidence suggests a role in the generation of dyspnea (34).

Investigating how PNECs sense hypoxia, Cutz et al. carried out
patch-clamp analysis of intact NEBs stained with a vital dye. They
found the key players in rabbit and human lung are a membrane-
bound O2-binding NADPH oxidase coupled to an H2O2-sensitive
K+ channel protein (35, 36), later confirmed in knockout mice
as Nox2 (37). Although NEBs express multiple NADPH oxidases
and diverse voltage-gated potassium channels (Kv) and tandem
pore acid-sensing K+ channels (TASK) (38), there is molecular
complex formation between NOX2 (gp91 phox) and Kv but not
TASK1. This observation implicates NOX2/Kv as the major O2

sensor complex in PNECs (39, 40).

GASTRIN-RELEASING PEPTIDE DURING PHYSIOLOGICAL
HYPOXIA AND PHYSIOLOGICAL HYPEROXIA
Ernest Cutz is a pediatric pathologist who has carried out much
of the seminal work on PNECs and GRP in pediatric lung diseases
(17, 41). Writing a chapter together, we explored temporal and
spatial expression of GRP expression during perinatal physiolog-
ical processes versus postnatal disease states (42). This dichotomy
can be viewed as functions of GRP in fetal lung development
and perinatal transitioning (physiological hypoxia and physiolog-
ical hyperoxia) versus GRP mediating pathological responses to
sustained hyperoxic exposure, such as BPD.

In utero development can be considered a state of “physiological
hypoxia.” Peak PNECs occur during the canalicular stage of devel-
opment (at midgestation in primates and during late gestation in
rodents), during which the foundation of the pulmonary capillary
bed is established. At term, the umbilical artery pO2 is ~16 mm
Hg (~24% O2 saturation), and umbilical vein pO2 is ~27 mm Hg
(~55% O2 saturation), in contrast to postnatal arterial pO2 of
~100 mm Hg with O2 saturation >90% for term infants on room
air (43).

Peak GRP mRNA levels are present in human fetal lung at
midgestation (44), in the setting of physiological hypoxia (43).
GRP (also known as bombesin, bombesin-like peptide or BLP)
is initially synthesized as a 138–148 amino acid pro-hormone
composed of three isoforms (45). These are all cleaved at methio-
nine #27. This Met becomes the carboxy terminus of GRP that
must be amidated to form the bioactive GRP peptide with GRP
(14–27) amino acid sequence of – Met-Tyr-Pro-Arg-Gly-Asn-His-
Trp-Ala-Val-Lys-His-Leu-Met-NH2.

Intrigued by this prenatal abundance of GRP gene expression,
my laboratory began testing whether GRP alters fetal lung develop-
ment. Our approach has focused on mouse, human, and baboon
fetal lung organ cultures, and developing mice in utero. Cumula-
tively, we have determined that GRP or its amphibian homolog
bombesin can promote widespread cell proliferation and acceler-
ated differentiation of type 2 pneumocytes and PNECs (46–50).
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These observations were later confirmed by Fraslon and Bourbon
in France (51) and Asokananthan and Cake in Australia (52), with
the additional observation of GRP-induced surfactant secretion
(52). We also determined that bombesin and a related frog peptide,
Leu8-phyllolitorin, promote branching morphogenesis and cell
proliferation in embryonic mouse lung buds (53).

In contrast to in utero development, postnatal adaptation is
often referred to as “physiological hyperoxia” in recognition of the
sudden change in O2 levels in the infant from ~27 mm Hg in utero
to 100 mm Hg on room air (43). Room air is essentially hyper-
oxic to the newborn lungs. It has been recognized since the 1950s
that postnatal lung development in premature infants is a unique
medical situation, as first defined in pioneering work by Mel Avery
that led to the discovery that respiratory distress syndrome (RDS)
is due to a deficiency of surfactant. Consequently, preterm infants
cannot readily expand their lungs with air to allow breathing (54).
Before the arrival of surfactant therapy, premature infants often
needed high levels of O2 therapy to survive. New challenges arose
because prematurity is also associated with inadequate antioxi-
dant defenses (55). Chronic lung disease of newborns, called BPD
(56), was linked to O2 therapy, a mainstay of treatment for pre-
mature infants (57). The severity of BPD has decreased thanks
to surfactant therapy and modern medical management such as
low-barotrauma high-frequency ventilation and CPAP (58, 59).
Despite improved medical care, the incidence of BPD has paradox-
ically increased or remains unchanged,which is puzzling regardless
of how BPD is defined (57, 60, 61).

BPD: NEUROENDOCRINE CELLS AND GASTRIN-RELEASING
PEPTIDE
Bronchopulmonary dysplasia remains a major cause of morbidity
and mortality in very low birth weight infants with gestational age
<28 weeks (60, 62). BPD is associated with persistent respiratory
morbidity including increased hospital admissions for respira-
tory distress, bronchiolitis, status asthmaticus, and pneumonia
(59). BPD is also associated with other complications including
pulmonary hypertension, systemic hypertension, intraventricular
hemorrhage, periventricular leukomalacia, neurocognitive delay,
and cerebral palsy (62–65).

Early prediction of BPD has proven challenging. Relative num-
bers of GRP-positive PNECs normally decrease over the first post-
natal months, and are markedly decreased in premature infants
dying of RDS at postnatal day (PND) 1–7, thought to reflect
PNEC degranulation (66). In contrast, PNECs are increased in
bronchioles of infants dying with BPD at 2 weeks to 6 months of
age (66). We hypothesized that elevated urine GRP levels pre-
cede BPD. One hundred thirty-two infants born at 28-weeks
gestation or less, were studied. Urine GRP levels, determined
by radioimmunoassay, were normalized for creatinine. BPD was
defined as O2 dependence at 36 weeks post-menstrual age. Con-
sistent with the increased number of PNECs, urine GRP was also
elevated in a first urine sample at PND 1–5 in ≤28-week gesta-
tion infants who later developed BPD (67). GRP is excreted as a
stable peptide in the urine; urine GRP levels are positively cor-
related with bronchoalveolar lavage (BAL) GRP levels (68). In
the analysis by Anne Cullen (now Anne Cullen Twomey), a first

urine specimen with GRP level greater than 20,000 pg/mg cre-
atinine between PND 1–5 occurred among 54% of the infants
who later developed BPD (p < 0.001), versus 10% among non-
BPD infants (specificity 90%). Multivariable logistic regression
analyses demonstrated that elevated urine GRP levels were asso-
ciated with a 10-fold increased risk of BPD (p < 0.001) after
adjusting for all confounding factors. Furthermore, urine GRP
elevation occurs in parallel with markedly increased levels of GRP
mRNA in newborn baboon lung (69). Utilizing urine GRP for
screening might permit early therapeutic interventions to reduce
disease progression and could provide a target for new preventive
therapies.

We tested the hypothesis that GRP is linked to the pathogen-
esis of BPD through analysis of two baboon models of BPD:
hyperoxia (140-day-old animals [∼32 weeks human gestational
equivalent] given 100% O2 for 10 days, vs. non-BPD 140-day-old
animals given PRN O2) and barotrauma (125-day-old animals
[∼26 weeks human gestational equivalent] given PRN O2 for
14 days) in collaboration with Jackie Coalson and the NIH Pro-
gram in BPD (70–72). In both BPD models, GRP was elevated
at 24–72 h after birth. This GRP elevation was closely correlated
with impaired respiratory function with increased oxygenation
index, and also arrested alveolar number with alveolar wall thick-
ening, decreased secondary alveolar septa, and blunted capillary
tubulogenesis (69, 73). Remarkably, postnatal inhibition of GRP
with a blocking anti-GRP antibody prevented the functional and
histological changes of BPD in these animal models (69, 73).
These observations suggest that GRP could be an important ther-
apeutic target to decrease BPD prevalence and later pulmonary
morbidity.

OXIDATIVE STRESS, NEUROENDOCRINE CELLS, AND
GASTRIN-RELEASING PEPTIDE
PNEC hyperplasia occurs in weanling rat lungs in response to
cigarette smoke (74) or hyperoxia (75). Elevated GRP has been
associated with oxidative stress in humans including cystic fibro-
sis (CF) patients (76), asymptomatic smokers (68, 77), and patients
with chronic obstructive pulmonary disease (78).

ROS, also known as oxygen free radicals, have been implicated
in the pathogenesis of BPD. In the hyperoxic baboon model of
BPD, inhibition of oxidative stress using a catalytically active met-
alloporphyrin (AEOL10113) decreased the number of PNEC cells,
decreased GRP levels, and diminished BPD severity pathologically
(6). The antioxidant not only decreased PNECs, but abrogated
parenchymal mast cells and eosinophils (6). Subsequent work
determined a direct link between GRP and mast cell accumula-
tion (79). Despite the epidemiologic evidence that oxidative stress
is linked to risk for BPD, this knowledge has not yet been translated
into validated biomarkers for disease, or into mechanism-specific
therapies to mitigate BPD morbidity.

Notably, several urine biomarkers of oxidative stress have been
shown to be elevated in BPD in published clinical studies: F2-
isoprostane (80,81),8-hydroxydeoxyguanosine (82,83),and allan-
toin (84). F2-isoprostanes are increased in term infants ventilated
with FiO2 of 1.0 for severe pulmonary disease due to meco-
nium aspiration, neonatal pneumonia, or primary pulmonary

www.frontiersin.org July 2014 | Volume 2 | Article 72 | 3

http://www.frontiersin.org
http://www.frontiersin.org/Neonatology/archive


Sunday Oxygen, GRP, and lung disease

hypertension (85) or in preterm infants with BPD. 8-hydroxy-
2′-deoxyguanosine is an established marker of in vitro and in vivo
oxidative stress and is increased in preterm infants (82), is greater
in sick vs. stable preterm infants (83), and is increased in patients
with chronic obstructive pulmonary disease (86), smokers (87),
and workers exposed to traffic exhaust (88).

The question arose whether administration of GRP alone dur-
ing perinatal transition could lead to histopathological and func-
tional perturbations similar to BPD, even in a clinical setting free
of abnormal oxidative stress. To test this hypothesis, we turned to
a mouse model, considering that basic molecular mechanisms of
lung development have often been explored in mice (89–94).

MODEL OF NEWBORN MICE TREATED WITH EXOGENOUS
GRP
Extending Koch’s postulates (95) to a non-infectious disease
process, we tested whether exogenous GRP would alter lung devel-
opment in newborn mice. To recapitulate elevated GRP levels
shortly after birth, as observed in infants with BPD, we treated
newborn mice with bombesin or GRP twice daily from PND
1–3 (11). On Day 14, when alveolarization is normally about
half complete, we observed pathological effects similar to BPD
induced by bombesin or GRP: alveolar myofibroblast prolifer-
ation, increased alveolar wall thickness and diminished alveo-
larization. Compared with wild-type littermates, bombesin or
GRP-treated GRP receptor (GRPR)-null mice (96) had reduced
defects in alveolarization, although bombesin-induced interstitial
fibrosis was the same as in wild-type littermates. Neuromedin B
(NMB) receptor-null (97), and bombesin receptor subtype 3-null
(98) mice had the same responses as their wild-type littermates
(11). Neither NMB nor a synthetic bombesin receptor type 3
ligand had any effect, consistent with effects of GRP being abro-
gated in GRPR-null mice. Bombesin/GRP can induce features of
BPD, including interstitial fibrosis and diminished alveolariza-
tion. GRPR appears to mediate all effects of GRP, but only part
of the bombesin effect on alveolarization, suggesting that novel
receptors may transduce some effects of amphibian bombesin in
newborn lung.

These observations in newborn mice indicate that excessive
GRP alone can alter normal lung development, potentially medi-
ating a cascade leading to abnormal pulmonary structure and
function weeks to months later. GRP levels are elevated in urine
and BAL of asymptomatic smokers (68), who also have elevated
oxidative stress markers in urine (99). Maternal smoking is associ-
ated with many pediatric lung diseases, including asthma (100). It
was hypothesized by Sam Aguayo that GRP could mediate tobacco-
related lung diseases (77). We began to explore whether GRP can
mediate lung injury due to oxidative stress in older patients, such
as that occurring secondary to radiation (RT) exposure.

GRP AND RADIATION-INDUCED PULMONARY FIBROSIS
RT-induced lung injury is a clinically relevant model for studying
PF in humans, including idiopathic pulmonary fibrosis (IPF). RT
produces ROS in target tissues, inducing acute and chronic radia-
tion pneumonitis, and ultimately leading to interstitial fibrosis. In
mice and other experimental animals, PF is similar to the human

disease caused by environmental exposures or autoimmune dis-
eases, and idiopathic PF. In humans, PF is progressive and irre-
versible, usually developing over 6–12 months post-RT. The mean
survival of patients following the diagnosis of idiopathic PF is 3–
5 years. There is no cure for PF except for lung transplantation,
which has limited accessibility and has its own set of morbidities.
We seek to reverse fibrotic responses in lung by identifying new
pathways and bridges preserving organ integrity and homeostasis.

Long-term survivors of childhood malignancies, especially
those treated with RT for thoracic tumors, are at a ninefold
increased risk of developing PF (101). Post-treatment pulmonary
disease is becoming less common with newer modalities of RT
therapy such as high-resolution RT and proton beam therapy. In
contrast, children undergoing total body irradiation (TBI) prior
to bone marrow transplantation frequently develop serious pul-
monary sequelae including interstitial fibrosis (102). Like IPF,
there is no effective treatment for this post-TBI PF. Similarly,
accidental nuclear exposure of children can lead to significant
interstitial (restrictive) lung disease that is greater in those individ-
uals exposed to the highest doses of radioactivity (103). Analysis
of GRP+ PNECs or urine GRP levels in patients post-RT could
clarify the disease pathogenesis and potentially set the stage for
GRP-blockade treatment to prevent the chronic lung disease in
similar clinical settings.

Considering that GRP-blockade abrogates pulmonary inflam-
mation and fibrosis in the hyperoxic baboon model of BPD, we
sought to determine whether GRP contributes to inflammatory
and fibrotic phases of RT induced lung injury. Using a well-
characterized mouse model of PF developing ~20 weeks after
high-dose thoracic RT (15 Gy) (104), we injected GRP blocking
small molecule 77427 1 h after RT then twice weekly for up to
20 weeks (8). Mice given RT plus PBS had increased interstitial
CD68+ macrophages 4 weeks later and increased GRP+/PGP9.5+

PNECs 6 weeks later. Ten weeks post-RT, PBS controls had
increased pSmad2/3+ nuclei indicating active TGFβ signaling.
GRP-blockade with 77427 abrogated or significantly diminished
CD68+, GRP+, and pSmad2/3+ cells. Twenty weeks post-RT
interstitial fibrosis was demonstrated by α-smooth muscle actin
(SMA) immunostaining for myofibroblasts (105, 106), which exe-
cute organ fibrosis, and also by Masson’s trichrome histochemical
staining for interstitial collagen deposition (107, 108). Treatment
with 77427 abrogated both interstitial SMA and collagen. Sham
mice given 77427 did not differ significantly from PBS controls
(8). These observations indicate that GRP-blockade decreases
inflammatory and fibrotic responses to RT in mice. Similar to
our experiments with hyperoxia and ozone, we propose a gen-
eral working hypothesis, summarized in Figure 2. Environmental
exposures generating ROS trigger PNECs to secrete GRP, which
can act directly on target cells bearing cognate receptors, includ-
ing airway smooth muscle cells (109), macrophages (7), CD4+

T cells (7), neutrophils (7, 110), endothelial cells (69), and pul-
monary fibroblasts (69). Secondary effects could be due to GRP-
induced cell differentiation (46, 50) and/or secretion of cytokines
by macrophages and T cells (7, 111). Novel approaches to inter-
rupting GRP signaling could prevent or reverse lung injury and
fibrosis caused by RT, hyperoxia, or ozone.
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FIGURE 2 | Schematic drawing of overall hypothesis: mechanisms by
which GRP mediates lung injury and fibrosis. Environmental exposures
generating ROS trigger PNECs to secrete GRP, which acts directly on target
cells bearing GRPR or NMBR. These target cells include airway smooth
muscle cells, macrophages, CD4+ T cells, neutrophils, endothelial cells, and
pulmonary fibroblasts. Secondary effects could be due to GRP-induced cell
differentiation or secretion of cytokines by macrophages and T cells.

POTENTIAL RELEVANCE OF GRP TO OTHER PEDIATRIC LUNG
DISEASES
Additional pediatric lung diseases have been associated with
altered numbers of GRP-positive PNECs (17). A large body of
work has identified PNECs as airway O2 sensors that may func-
tion in perinatal adaptation, as detailed above (9, 112). In addition,
PNEC and NEB are associated with a stem cell niche that is
implicated in airway epithelial regeneration and possibly lung car-
cinogenesis (17–21). PNEC abnormalities have been described in
seemingly unrelated lung diseases, especially PNEC hyperplasia or
elevated GRP levels in association with inflammatory lung diseases
(113, 114), a few of which will be briefly discussed here. It should
be emphasized that increased numbers of PNEC may be due to
cell differentiation rather than proliferation (24, 115), and this
could represent a general adaptive response to injury or hypoxia.
The clinical relevance and precise mechanisms leading to PNEC
hyperplasia remain to be explored. Notch family genes (116, 117),
human achaete–scute homolog (15, 118), and NeuroD (119) are
likely to be involved, but specific signaling defects in patients are
unknown.

Idiopathic neuroendocrine cell hyperplasia of infancy (NEHI)
has been identified by Robin Deterding as a cause of chronic
interstitial lung disease in young children (120–122). The cause
of this disorder is unknown. Typically, patients present before
2 years of age with persistent tachypnea, hypoxia, retractions, or
respiratory crackles. Lung biopsy findings are non-specific and
non-diagnostic, with increased GRP-positive PNECs compared to
age-matched controls. Radiographs demonstrate hyperinflation,
interstitial markings, and ground-glass densities. Most patients
have been treated with O2 for long periods of time, but symptoms
are generally not eliminated by any medical treatment. Although
there has been no mortality in over 5 years of follow-up, a few
NEHI patients have improved (120). Thus, NEHI represents a dis-
tinct group of pediatric patients with clinical signs and symptoms

of interstitial lung disease (120). NEHI may occur in families in
some cases (122). However, the abundance of NECs may not fully
explain the disease pathogenesis (115).

PNEC hyperplasia has been demonstrated in lungs of infants
dying of sudden infant death syndrome (SIDS), possibly secondary
to chronic hypoxia in infants at risk (123, 124). Considering that
PNECs function as airway O2 sensors, Cutz suggested that GRP or
another PNEC marker could herald airway chemoreceptor dys-
function as a risk factor for SIDS (125). However, GRP levels
are low in SIDS victims, suggesting that another PNEC-derived
product could play a role, such as calcitonin gene-related peptide
(CGRP) (124). Moreover, parents of SIDS infants have a dimin-
ished ventilator response to acute hypercapnia (126), whereas
hypercapnia has no effect on PNEC secretion (9).

Cystic fibrosis has also been associated with increased num-
bers of PNECs immunostaining for GRP, calcitonin, and sero-
tonin (113). CF is a complex lung disease with altered mucus,
chronic infection with lung inflammation, and destruction lead-
ing to bronchiectasis (127). Urine GRP levels are high postnatally
in children with CF, in contrast to the decline in normal infants
(76). PNECs express CFTR at the apical membrane, suggesting
that NEBs could contribute to CF lung disease, including the early
stages before establishment of chronic infection and progressive
lung disease (128, 129). Although PNECs, airway innervation, and
smooth muscle are altered in Cftr-null mice (130), it remains pos-
sible that PNEC abnormalities are secondary to infection and/or
inflammation. For instance, NE cell differentiation can be induced
by TNFα (131) or other cytokines. At this time, there is no clear-
cut evidence for a pivotal role for GRP or PNEC in CF lung
disease.

TIME FOR A PARADIGM SHIFT
Early and excessive GRP secretion is associated with chronic lung
disease in infants. With regards to the variable interstitial fibrosis
and arrested alveolarization that are characteristic of modern-
day BPD, the body of evidence indicates a cause-and-effect rela-
tionship: elevated GRP can cause the clinical and pathological
hallmarks of BPD in animal models. An NIH observational mul-
ticenter clinical investigation of premature infants is currently
underway with Judy Voynow and Mike Cotten as PIs, with out-
comes including urine levels of GRP and oxidative stress markers.
The focus of this collaborative work has now intensified: to deter-
mine how transient, early GRP elevation triggers chronic lung
disease with fibrosis weeks to months later. Last, but not least,
we are actively seeking an optimal approach for GRP-blockade to
most effectively prevent BPD in infants and PF in older children
and adults.
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