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Focus on apoptosis to decipher how alcohol and many
other drugs disrupt brain development
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Maternal ingestion of alcohol during preg-
nancy can cause a disability syndrome
termed fetal alcohol spectrum disorder
(FASD), which may include craniofa-
cial malformations, gross structural brain
pathology, and a variety of long-term neu-
ropsychiatric disturbances, or it may con-
sist of subtle brain changes and neuropsy-
chiatric disturbances in the relative absence
of gross dysmorphogenic features. Based
on a large body of recent evidence, we
have proposed (1) that most, if not all,
of the deleterious effects of alcohol on
the developing brain can be explained by
a single mechanism. Alcohol has apopto-
genic properties that cause large numbers
of CNS progenitor cells, or fully differen-
tiated brain cells (depending on develop-
mental age at time of alcohol exposure) to
commit suicide and be deleted from the
pool of cells that would ordinarily sur-
vive and contribute to the normal func-
tions of the brain. If excessive cell suicide is
triggered by alcohol in a very early stage
of development, the result, as Sulik and
colleagues have shown (2), will be gross
dysmorphogenic anomalies (e.g., craniofa-
cial and midline brain anomalies), because
the cells deleted are progenitor cells that
are responsible for generating cell popu-
lations that comprise the building blocks
of these craniofacial and brain structures.
But if, as we have demonstrated (3-5), alco-
hol triggers suicide of CNS cells in later
stages of development after these cells are
already differentiating into neurons and
glia, the result will be a reduced number of
brain cells, derangement of brain circuitry,
and various neuropsychiatric disturbances,
depending on which populations of cells
have been deleted and what combination of
synaptic connections have been disrupted
or destroyed.

Alcohol’s apoptogenic action is linked
to its NMDA glutamate antagonist and
GABA, agonist properties. Many other
drugs that have one or both of these prop-
erties also trigger developmental apopto-
sis, including other drugs of abuse (phen-
cyclidine, ketamine, benzodiazepines, and
barbiturates), and many drugs used in
obstetric and pediatric medicine [all seda-
tive/anesthetic drugs (SADs), and most
anti-epileptic drugs (AEDs)] (3, 6-8). It
was demonstrated quantitatively in early
studies that neurons are permanently
deleted from the developing brain by expo-
sure to these drugs, and that brain vol-
ume is permanently reduced and synap-
tic ultrastructure disrupted. No region
of the central nervous system is totally
spared, in that the degenerative response
has been demonstrated in neurons distrib-
uted widely throughout the forebrain, mid-
brain, cerebellum, brainstem, spinal cord,
and retina (3, 4, 9—11). Although alcohol’s
apoptogenic action was originally thought
to impinge only on neurons, it is now
well established that oligodendrocytes (oli-
gos), distributed diffusely throughout the
white matter, also succumb to apoptosis
following developmental exposure to alco-
hol or to SADs or AEDs (12-16). The injury
induced by apoptogenic drugs is dose and
developmental age-dependent, with several
different patterns of neuronal degenera-
tion observed, depending on developmen-
tal age at time of drug exposure. The cell
death process involves Bax-mediated extra-
mitochondrial leakage of cytochrome ¢
(17), which is followed by a sequence of
changes culminating in the activation of
caspase-3 (5, 18). An important property
that apoptogenic drugs have in common
is that they rapidly suppress phospho-
rylation of extracellular signal-regulated

kinases (ERK) (signaling system that reg-
ulates cell survival) in the in vivo develop-
ing brain. This has potentially important
implications for preventing this type of
brain injury, in that lithium counteracts the
suppressant action of apoptogenic drugs
on pERK (19), and also protects against
apoptogenic injury induced by these drugs
in the infant mouse (19-21) or infant
monkey brain (22).

The developing rhesus macaque brain is
quite sensitive to the toxic action of apopto-
genic drugs, and in both rodents and mon-
keys two specific cell types are affected —
neurons and oligos — and the mode of
cell death for both cell types is apopto-
sis. Many of the structural brain changes
reported in children with FASD are also
seen in the brains of rodents and monkeys
following exposure to alcohol and related
apoptogenic drugs [illustrated extensively
in Ref. (1)]. A prime example of a promi-
nent structural brain change caused by
alcohol and all other apoptogenic drugs
following exposure of the primate brain
in the early third trimester is loss of basal
ganglia (BG) neuronal mass. This has long
been recognized as a prominent finding in
children who were exposed in utero to alco-
hol (23, 24), and also has been reported
in children who were exposed to AEDs
in the third trimester of gestation (25),
and in premature infants who have learn-
ing disability following exposure to surgi-
cal anesthesia (26) or following prolonged
sedation in the neonatal intensive care
unit (27).

The window of vulnerability in primates
appears to be very similar for all of these
drugs. Valproate, an AED with very strong
apoptogenic properties (7), mimics alcohol
in causing craniofacial and midline brain
anomalies following human exposure in
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the first trimester (28), and in causing a
large 1Q deficit following human expo-
sure in the third trimester (29, 30). SADs
have not been studied adequately for early
dysmorphic effects, but we have shown
that alcohol and numerous SADs (isoflu-
rane, propofol, ketamine, benzodiazepines,
and barbiturates) trigger a robust apop-
tosis response in the fetal monkey brain
on gestational days 100-120 (comparable
to human late second trimester), and vul-
nerability continues throughout the third
trimester and up to a yet to be established
age after birth (12-16, 31, 32). Mounting
evidence from animal studies prompted a
series of recent human studies, which have
documented that brief anesthesia expo-
sure of premature infants (26), or full term
human infants (33-40) is associated with
increased risk for neurocognitive deficits.
Thus, it is clear that apoptogenicity is a
property that alcohol and certain other
drugs have in common, and emerging evi-
dence suggests that in both early and late
gestation these drugs have the potential to
cause FASD-like structural brain changes
and FASD-like neurodevelopmental dis-
ability syndromes. Available evidence sug-
gests that FASD syndromes induced by
anesthetic drugs are usually less severe than
the syndrome that alcohol often causes,
the obvious reason being that pregnant
mothers who have a strong alcohol habit
expose their fetuses multiple times dur-
ing gestation to prolonged “binge” blood
levels of alcohol, whereas the vast major-
ity of human infants or fetuses who are
exposed to anesthetic drugs are exposed
only once for a relatively brief duration.
Consistent with this thesis, the numerous
human studies cited above are in good
agreement that risk for poor neurocogni-
tive outcome is greater following multi-
ple anesthesia exposures than following a
single exposure.

Although many mechanisms have been
proposed to explain the FASD syndrome,
the only mechanism identified, thus far,
that can actually explain most if not all of
the brain and behavioral pathology com-
prising that syndrome can be summed
up in a single word — apoptosis. Within
only a few hours after alcohol enters the
developing brain, millions of brain cells
that were on a healthy survival track, sud-
denly become derailed and commit sui-
cide. The cells that die belong to both

the neuronal and oligo lineages. Oligos
are vitally important for normal neuronal
function. Although widespread loss of neu-
rons, or their progenitors, from the devel-
oping brain would be a sufficient mecha-
nism to explain the signs and symptoms
of FASD, simultaneous deletion of oligos,
or their progenitors, makes the case even
stronger for apoptosis as a single primary
mechanism that can explain all features
of the FASD syndrome. Once the apop-
totic deletion of neurons and oligos (or
their precursors) has occurred as the pri-
mary injurious event, there are numer-
ous secondary mechanisms that come into
play as the brain attempts to compen-
sate for the disruptive influence of this
primary injury. For example, loss of neu-
rons causes an impoverishment of den-
dritic fields for receiving synaptic inputs
from incoming axons, and loss of neurons
also means there will be fewer axons to
establish those synaptic contacts (41, 42).
Developing brain networks must recon-
stitute and reorganize themselves to cope
with this primary insult. Researchers can
spend lifetimes studying the myriad steps
in this reorganization process, but identi-
fying these many features of the deranged
and reorganized circuitry, will not yield
insights necessary for preventing alcohol
(or SADs and AEDs) from causing the ini-
tial injury and consequent derangements.
The scenario I have just described per-
tains to a single episode of alcohol expo-
sure. Consider how complicated the reor-
ganization task will be for the brain of a
fetus whose mother heavily abuses alcohol
multiple times, both early and late, dur-
ing pregnancy. Again, much time can be
spent in studying this multi-layered com-
plex reorganization process, but if the end
goal is to learn how to prevent this type
of developmental injury, the time will be
better spent focusing on apoptosis as the
primary cause, and deciphering the mol-
ecular mechanisms by which alcohol (or
SADs and AEDs) unleash the apoptosis
cascade. A better understanding of these
mechanisms can lead to effective meth-
ods for preventing apoptogenic drugs from
injuring the developing brain.
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