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Prenatal ethanol exposure (PNEE) has been linked to widespread impairments in brain
structure and function. There are a number of animal models that are used to study the
structural and functional deficits caused by PNEE, including, but not limited to inverte-
brates, fish, rodents, and non-human primates. Animal models enable a researcher to
control important variables such as the route of ethanol administration, as well as the tim-
ing, frequency and amount of ethanol exposure. Each animal model and system of exposure
has its place, depending on the research question being undertaken. In this review, we will
examine the different routes of ethanol administration and the various animal models of
fetal alcohol spectrum disorders (FASD) that are commonly used in research, emphasizing
their strengths and limitations. We will also present an up-to-date summary on the effects
of prenatal/neonatal ethanol exposure on behavior across the lifespan, focusing on learning
and memory, olfaction, social, executive, and motor functions. Special emphasis will be
placed where the various animal models best represent deficits observed in the human
condition and offer a viable test bed to examine potential therapeutics for human beings
with FASD.
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INTRODUCTION
Ethanol is a teratogen that disrupts normal development. The use
of animal models to study how ethanol affects the development of
offspring in animal models can be traced back to the late 1970s,
when several groups began to study ethanol’s effects on the devel-
opment of laboratory rats. How this agent affects the development
of the brain and body remains a subject of intense investigation,
and it is worthwhile to appreciate some of the guiding principles
that drive this field of investigation, particularly as they relate to
the choice of animal model to be used. The choice of animal to be
used can be critical, as genetic susceptibility can play a major role
in determining ethanol’s effects. For instance, in some species any
teratogenic effects may be induced with relatively low doses, while
other species may be more impervious to the effects of ethanol.
Second, one has to appreciate that the developmental stage of the
organism at the time of exposure can play a significant role in how
ethanol disrupts development. There are critical periods of in utero
growth and development where certain brain or organ systems

Abbreviations: ARBD, alcohol-related brain defects; ARND, alcohol-related neuro-
logical disorder; BAC, blood alcohol content; CNS, central nervous system; EDC,
ethanol-derived calories; FAS, fetal alcohol syndrome; FASD, fetal alcohol spectrum
disorder; GD, gestational day; i.p., intraperitoneal; IQ, intelligence quotient; MWM,
morris water maze; PC, Purkinje cell; PND, postnatal day; PNEE, prenatal ethanol
exposure; s.c., subcutaneous.

will be undergoing rapid development and thus be more prone to
damage by teratogenic agents. Third, understanding how terato-
genic agents act on proteins and signaling systems in developing
cells will be key to understand how ethanol can initiate sequences
of abnormal development at a cellular level. Certain animal model
systems will lend themselves more readily to these sorts of exper-
iments, depending on the nature and complexity of the question
being asked. Fourth, it is critical to understand the nature of the
agent itself, as the route and degree of maternal exposure, as well
as the rate of placental transfer and systemic absorption are key
factors in determining how severely ethanol will affect organism.
A fifth consideration is that one needs to be vigilant for the four
major signs of deviant development (death, malformation, growth
retardation, and functional defect) when examining the effects of
ethanol in any animal model. Functional defects may occur with-
out any significant malformation or growth retardation. Finally,
it should be clear that any disruptions in normal development
will likely increase in frequency and degree as dosage increases.
Ethanol is unusual in that it is both lipid and water soluble, so
when it is consumed by pregnant females it can rapidly transit the
placental membrane and directly affect the fetus (1). With these
considerations in mind, let us briefly examine what we know of
how ethanol affects the human condition.

Fetal alcohol syndrome (FAS) is the most severe disorder
that results from prenatal ethanol exposure (PNEE). FAS is
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a disorder characterized by facial dysmorphologies (such as
midfacial hypoplasia, wide spaced eyes, and a smooth philtrum),
growth retardation, and CNS dysfunction resulting in cognitive,
motor, and behavioral problems (2). Since FAS was first defined in
the 1970s (3, 4) researchers have become more aware that the dam-
age caused by ethanol can vary due to the timing, frequency, and
volume of ethanol consumed. In addition, genetics and the metab-
olism of the mother can also play a role (5), leading to significant
variability in the severity and symptoms associated with PNEE.
Understanding that variability in genetic make-up, and variabil-
ity in the timing and dose of ethanol consumption, can impact
how ethanol affects development has resulted in the umbrella
term FASD being adopted to refer to any condition that results
from PNEE. This term encompasses children who exhibit varying
degrees of central nervous system (CNS) dysfunction including
alcohol-related birth defects (ARBD) and alcohol-related neuro-
logical disorders (ARND) that result from PNEE. These conditions
often lack the facial dysmorphology needed to meet the diagnostic
criteria for FAS, but are never-the-less the result of exposure to
this teratogen during development (2, 6).

Although we have been aware that ethanol is a teratogen since
the 1970s, there are still large numbers of children affected by
PNEE (7). In part, this is because many women do not realize they
are pregnant in the first trimester and continue binge drinking
(8, 9). Furthermore, in many countries a significant percentage of
pregnant women continue to consume ethanol throughout preg-
nancy – 10–20% in the USA, 40% in Uruguay, and 50% in some
parts of Italy (10–12). In the United States, the lifetime cost for an
individual suffering from FAS may be as high as $2 million. The
majority of these costs are required for special education, med-
ical, and mental health treatment (13). Currently in Canada, the
annual cost of health care problems associated with PNEE is over
$5 billion (14).

COGNITIVE SYMPTOMS
Prenatal ethanol exposure can lead to a host of cognitive impair-
ments. The severity and nature of these impairments depends on
the amount and duration of alcohol consumption during preg-
nancy (4, 15–19). Children with FASD display a multitude of neu-
ropsychological issues including deficits in mathematical ability,
verbal fluency, memory, attention, learning capabilities, executive
function, fine motor control, and social interaction, with the num-
ber of issues and the extent of damage varying from child to child
(15, 17, 19, 20). To be diagnosed with an intellectual disability,
generally a child must have an intelligence quotient (IQ) two or
more standard deviations below the norm, roughly equating a
score below 70, while scores between 71 and 85 are considered to
represent borderline intellectual function [DSM V (21)]. Children
with FAS generally have IQs estimated in the low 70s but the range
can be anywhere between 20 and 120 (16, 22). Children without
the complete FAS diagnosis (but with the FASD diagnosis) also
generally have low IQs with averages in the low 80s (23).

UNDERLYING MECHANISMS OF PNEE DAMAGE
Because of the variety of deficits that occur with FASD it can
be hard to pinpoint the structural and functional changes that
occur in the developing CNS and to identify how they relate to a

particular behavioral disorder. Multiple brain regions are affected,
and the areas and extent of damage depend on the amount and
timing of ethanol ingestion. A number of molecular mechanisms
may play a role, and these may be activated at different stages of
development or at different dose thresholds of exposure [see Ref.
(24, 25) for review]. These include disrupted cell energetics (26–
30); cell cycle interference, and a deregulation of developmental
timing (31–35); alterations in retinoic acid signaling (36); interfer-
ence with cell and growth factor signaling (37–39); and apoptosis
(38, 40, 41). Furthermore, many neurotransmitters, adhesive mol-
ecules, transcription factors, and trophic factors can be either
up- or down-regulated by PNEE, making FASD a very complex
syndrome [see Ref. (24) for review].

OBJECTIVES
The study of human subjects is invaluable for FASD research,
however, epidemiological studies are often limited by ethical
constraints and a multitude of confounding variables includ-
ing multi-substance abuse, diet, maternal health, and genetic or
socioeconomic background (25, 42). It is also difficult to get reli-
able estimates on the amount and timing of ethanol exposure
when self-reporting from the mothers is necessary. Due to these
constraints, studies in human beings have focused on finding bio-
markers of PNEE in fetal meconium (43) and hair samples [see
Ref. (44) for review] through the presence of fatty acid esters [see
Ref. (45) for review].

Animal models provide a simple and reliable method to study
the effects of alcohol on the developing brain and eliminate many
of the obvious confounds associated with human studies. These
models can be used to understand the mechanism of the toxic
effects of ethanol on the developing brain and to develop and test
potential therapies to combat these effects. Animal models enable
the experimenter to manipulate social and behavioral contexts; to
control for stress and nutritional variables; and to do all of this in
an organism that has a condensed lifespan in relation to human
beings. In this review, the different animal models of FASD will be
outlined and the advantages and disadvantages of each model will
be discussed. This will be followed by an in depth discussion of the
cognitive deficits that have been observed in the animal models of
PNEE.

FACTORS TO CONSIDER WHEN MODELING FASD
Because FASD is such a complex disorder and there are so many
facets to explore, there are many factors to consider when choosing
an appropriate model for a particular study. The level of intoxi-
cation achieved during brain development, the particular period
of brain development that is to be targeted (first, second, or third
trimester), the pattern of administration (chronic or acute) and
the route of administration (ingestion, injection or inhalation) can
all be manipulated.

There are also a wide variety of animal models available for
FASD research ranging from the simple (Caenorhabditis elegans,
Drosophila, zebrafish, Xenopus) to the complex (rodents and non-
human primates). Rodents are by far the most common model
employed, with rat, mouse, and guinea pig models utilized in
laboratories throughout Canada and the USA. All these mod-
els have been shown to mimic at least some aspects of the
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human condition including the craniofacial abnormalities (46,
47), growth retardation (48–50), physiological impairments (51–
53), and cognitive deficits (42, 54–56) reviewed in Ref. (42, 57).
However, similar to the variability that is observed in human
beings, there is no single animal model that mimics all the fea-
tures of FAS and/or FASD. When deciding on which model to
utilize, it is pertinent to choose based on the research question
to be examined. In this section, we will first discuss the pertinent
factors to consider when designing a study of PNEE followed by a
breakdown of each of the animal models, with the major strengths
and limitations of each method considered. It is important to note
that we have limited our discussion of animal models to simple
systems (C. elegans, Xenopus, and zebrafish) and more sophisti-
cated rodent and non-human primate models. There is also FASD
research being conducted using chicken (58) and sheep (59–62)
models, however, because there is little behavioral analysis using
these models we have omitted them from our review.

BLOOD ALCOHOL CONCENTRATION
In Canada and USA, a blood alcohol concentration (BAC) of
80 mg/dl is considered legally intoxicated. If a 150 lb pregnant
female consumes six alcoholic beverages, or a bottle of wine in a
2 h period a BAC of 200 mg/dl would be reached. In human stud-
ies, the BAC data from the mothers are generally not available,
however, estimates suggest that BACs of over 200 mg/dl may be
responsible for the severe FAS phenotype (63), while lower BACs
may produce milder forms of FASD. Despite the lack of BAC data
in human beings this measure is often used to compare exposure
levels across species. This is because the absolute dose of ethanol
administered (in gram of ethanol/kilogram) can vary greatly from
species to species (42) so the BAC is a more reliable measure of
intoxication.

Most animal studies use a dosage of alcohol exposure that pro-
duces a BAC in the range of 100–400 mg/dl (i.e., moderate to
binge-like levels of exposure). The peak BAC achieved will depend
on both the dose and pattern of exposure (64, 65). In order to
achieve a low to moderate BAC (80–150 mg/dl), experimenters
normally employ either liquid diets, voluntary drinking para-
digms, or vapor inhalation (see Route of Administration). Higher
binge-like BACs (>200 mg/dl) are normally achieved using either
oral intubation (gavage) or direct injections (see Route of Admin-
istration). Higher BACs are generally associated with increased
neurotoxicity, and even the administration of a single high dose of
ethanol during the period of brain development can cause signifi-
cant structural impairments if the BAC achieved is sufficiently high
(66, 67). Low to moderate BACs can also cause significant neu-
ronal damage, and while longer exposure periods (i.e., throughout
gestation) are usually used with these models (68–70), shorter
exposure can still cause significant deficits (31). Thus, continu-
ous low-level exposure to ethanol may be as damaging as a single
high-level exposure, though the types of deficits incurred may dif-
fer. The deficits observed with either mode of administration can
be affected by the timing of ethanol exposure.

DEVELOPMENTAL TIMING OF ETHANOL EXPOSURE
The timing of ethanol exposure can greatly influence the out-
come of the fetus. The mammalian brain develops in six major

phases, commencing with neural cell genesis, followed by neuronal
migration, glial cell proliferation, axon and dendrite proliferation,
synaptogenesis, extensive pruning and cell death, and finally myeli-
nation of the axons (71). These steps occur in all regions of the
brain but different regions develop at different times depending on
their caudal or rostral location. Brain development is a dynamic
process and it is therefore important to consider the developmen-
tal timing of alcohol exposure when choosing a model, based on
regional and temporal windows of vulnerability. Gestation and
development in simple vertebrates (e.g., Xenopus, C. elegans, or
zebrafish) and even rodents (mice, rats, guinea pigs) is signifi-
cantly different from human beings. The human gestation period
is characterized by three trimesters, all of which occur prenatally.
In the first trimester, formation of the neural tube and gastrulation
occurs and in the second trimester cell proliferation and migra-
tion occur profusely. Finally, in the third trimester a “brain growth
spurt” occurs, which is characterized by large amounts of growth
and differentiation (72).

Rodents are the most commonly used animal model used for
FASD research (see Rodents), however, their gestational period is
much shorter than that of human beings (18–23 days for mice/rats;
68 days for guinea pigs), and a significant amount of brain devel-
opment occurs following birth in these species (73, 74). The devel-
opment period of the rodent brain is also divided into trimester
equivalents; in the guinea pig, the three trimester equivalents
largely occur prenatally, and therefore more closely resemble brain
development in human beings. In rats and mice, the first trimester
equivalent is from gestational day (GD) 1–10, the second trimester
equivalent corresponds to GD 10–20 (just prior to birth) and the
third trimester equivalent and “brain growth spurt” occurs fol-
lowing birth [from postnatal day (PND) 1 to 10] (75). In order to
expose the brain to alcohol through all three trimester equivalents,
alcohol must be administered to neonate pups (via oral intubation;
see Ingestion), and the mechanisms of exposure, absorption, and
elimination of this substance are significantly different during the
prenatal and postnatal periods. For example, ethanol metaboliz-
ing enzymes, such as alcohol dehydrogenase, are only at 25% of
adult levels at birth (76). Normally, the fetus is partially protected
by the mothers’ capacity to metabolize ethanol, so in rodent pups
it is routinely reported that higher BAC levels are produced in
neonates with lower alcohol doses than those used in pregnant
dams (77–80).

ROUTE OF ADMINISTRATION
There are several different methods that can be used to administer
ethanol during pregnancy. In invertebrates and simple vertebrates
(C. elegans, Xenopus, zebrafish), alcohol exposure is usually by bath
application (see Simple Systems). In more complex models such as
those using rodents and primates, there are three major methods of
ethanol administration employed: ingestion (through diet, water,
or intubation), injection, or inhalation [for additional reviews see
Ref. (25, 81, 82)].

Ingestion
Dietary. The liquid diet model of ethanol exposure is one of
the most commonly utilized routes of delivery in mouse and rat
models and was one of the first models to be developed (83–85).
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Generally, food is provided to pregnant dams as a liquid diet
throughout gestation in which a percentage of the calories (usu-
ally ~35%, which equates to 6.61% v/v) are derived from ethanol
(Figure 1). This diet is the only source of nutrition throughout
the pregnancy. Using this method, rats can consume on average
12 g ethanol/kg/day (and up to 18 g/kg/day) (25). Consumption
of the diet usually begins on GD 1 of pregnancy, and the diet
is introduced slowly over a three-day period (i.e., one third final
ethanol concentration on GD1, two thirds of final ethanol con-
centration on GD2, and final ethanol concentration on GD3 and
for the remainder of the pregnancy). Pair-fed control groups are
often included when using this method, where an isovolumetric,
isocaloric replacement (such as maltose dextrin) for the ethanol
calories is used and food is restricted to that of the ethanol con-
sumption groups (86) (see Finding the Right Control Group).
The liquid diet model reliably produces BACs between 80 and
180 mg/dl in rats, i.e., a low to moderate level of exposure (15, 17,
55, 87–90), which are accompanied by neurological deficits similar

FIGURE 1 | Common ethanol administration techniques in rodents
used to examine the effects of prenatal ethanol exposure in offspring.
Ethanol may be ingested by the animal via gavage administration during the
early postnatal period (upper panel, left-most) or during gestation (upper
panel, middle). Alternately, ethanol may be ingested as a liquid diet (upper
panel, right-most). Ethanol injections (bottom left panel) can be
administered pre- or postnatal for studies of exact timing of
ethanol-induced damage. During the early postnatal period of offspring, the
dam and litter can be placed in vapor chambers and be exposed to inhaled
gaseous ethanol (bottom right panel).

to what are observed in children with FASD (see Blood Alcohol
Concentration).

Voluntary drinking. Similar to the liquid diet model, ethanol
can also be administered through the drinking water (Figure 1).
This is usually achieved by training female mice or rats to vol-
untarily consume a saccharin-sweetened 10% ethanol solution
prior to pregnancy (68, 91). Control groups receive saccharin-
sweetened water only. Throughout pregnancy the rodents have
ad libitum access to regular rat chow. Following birth, ethanol
is removed from the water in a step-wise fashion to prevent
ethanol withdrawal effects (68, 91). Using this paradigm, rodents
tend to consume 14 g ethanol/kg/day and the BAC achieved is
120 mg/dl (68, 91).

Advantages of the liquid diet or voluntary drinking models are
that the techniques are simple, less time consuming, and less labor
intensive when compared to other methods. There is also much
less handling of the animals associated with these procedures (a
source of stress) and there is less risk of fatality. Disadvantages
result because this method does not allow for the precise control
over dosage or timing of ethanol exposure and this can lead to
increased variability in the BAC achieved, as ethanol consumption
depends on voluntary food consumption throughout the day. For
example, a study by Mankes et al. (92) found that ethanol con-
sumption of a group of 221 rats fed a liquid diet ranged anywhere
between 4 and 18 g/kg/day depending on that rat (92). It is also
important to remember that the liquid diet or voluntary drink-
ing paradigms do not include alcohol exposure during the third
trimester equivalent. While pregnant dams could be continued on
a liquid diet during the suckling period, it is uncertain how much
ethanol can cross into the breast milk and the actual dose of ethanol
consumed by the pups could not be controlled for. Dams consum-
ing ethanol during the suckling period may also be less attentive to
their pups and may not engage in appropriate maternal behavior
leading to social and nutritional stress [see Ref. (25) for review].
Therefore, these models are normally only used to examine expo-
sure during the first and second trimester equivalents in the rat
and mouse. Because human mothers can often be unaware they
are pregnant and inadvertently drink during these periods, these
models still have significant legitimacy for the human condition.

Intragastric intubation (gavage). Ethanol can also be delivered
directly to the stomach using an intubation method (73, 74, 78–80,
93, 94). Typically, a syringe is attached to a curved steel gavage nee-
dle, or plastic tubing, that is inserted down the esophagus to the
entrance to the stomach (Figure 1). This method allows ethanol to
be administered to pregnant females (ethanol is usually diluted in
water or saline) and to neonatal pups (ethanol is usually diluted in a
nutritional formula). An isocaloric control liquid (such as maltose
dextrin or sucrose) can also be administered by gavage to control
for the stress and nutritional effects of this procedure. This method
is commonly used in rodents including rats (74, 78–81, 95–98) and
guinea pigs (99–103), as well as primates (104–107). The dose of
ethanol typically ranges between 2 and 6 g ethanol/kg/day; but
produces BACs generally greater than 200 mg/dl. Often the daily
dose of ethanol is divided into two administrations, given 4–8 h
apart, creating two lower peak BACs in a 24 h period (42). A major
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advantage to this method of administration is the precise control
over the dose administered and hence the peak BAC reached. A
further advantage is that neonatal pups can be exposed to ethanol,
allowing study of the effects of ethanol during the third trimester
“brain growth spurt.” However, care must be taken to ensure that
neonates adequately gain weight during the period of alcohol con-
sumption and often a milk supplement needs to be provided to
maintain healthy body weight [see Ref. (25) for review]. A signifi-
cant disadvantage of intragastric intubation is that it is invasive and
a very time-consuming procedure to undertake. Increased stress
and higher mortality rates are also associated with this model, and
individuals performing this procedure need to undergo specific
training to become competent in the procedure.

Artificial rearing (pup in a cup). In order to provide neonate
rodents pups ethanol during the third trimester equivalent, pups
can be reared artificially though a method colloquially known as
“pup-in-the-cup” [see Ref. (25) for a review]. In this procedure,
the pup receives intragastric ethanol, or a control solution while
being maintained in a warm cup filled with nesting material in
an effort to mimic the cage environment and maternal interaction
early in life (108, 109). Although this method can be used to reli-
ably administer known amounts of food and ethanol, it is invasive,
expensive, and isolates each pup, removing many of the social fac-
tors that are present during normal neonatal development (i.e.,
presence of littermates, maternal grooming, etc.).

Injection
Ethanol is often administered to rodents via a subcutaneous (s.c.)
(40, 110, 111) or intraperitoneal (i.p.) injection (112–114) either
acutely or across multiple days during gestation (Figure 1). This
method of administration is particularly useful for examining the
acute effects of ethanol on distinct periods of development, and
allows for a rapid increase in BAC with limited handling-induced
stress. However, this method of administration does not resemble
ethanol consumption in human beings and may not accurately
replicate several important aspects of human PNEE. For example,
i.p. injections of ethanol during the first trimester equivalent in
mice result in a higher incidence of malformation when compared
to the same ethanol dose delivered via intubation (114). Ethanol
administered i.p. to pregnant guinea pigs was also shown to cross
from the intraperitoneal space into the uterus and chorioamniotic
membranes and amniotic fluid as well as being absorbed into the
mothers circulation (115). This indicates that the fetus is exposed
to high levels of ethanol very soon after injection, which does not
accurately mimic what occurs following oral ingestion.

Inhalation
The inhalation mode of administration is not as commonly used as
some of the other methods but a brief overview of the procedures
is warranted for this review. Using this method, pregnant dams,
neonatal pups, or the dam and her litter are placed in an inhala-
tion chamber filled with ethanol vapor for several hours (116–119)
(Figure 1). This method causes a rapid, reliable increase in BAC
without the stress of intubation. It is also much less labor intensive
than other methods and multiple animals can be in the chamber at
one time. However, this method of administration does not mimic

the route of intake in human beings and therefore may not be an
accurate model of FASD. Additionally, the irritation to the upper
respiratory tract by vaporized ethanol can be a significant factor
to consider. If this method is used to expose rat or mouse pups
to ethanol during the third trimester equivalent, then pups may
have to be removed from their mothers for extended periods of
time that may result in reduced food intake and stress associated
with the separation (117), which can have lifelong effects on pups
(120, 121). Finally, this method does not currently have an effective
control group to account for the loss of nutrition and separation
stress in the newborn pups.

Choosing an administration model
When deciding on the appropriate route of administration, the
first issue that should be considered is the BAC we want to achieve.
The easiest way to get high binge-like BACs is to inject ethanol.
Using this method, stable high BACs are achieved in 45 min to
1 h following injection (111). Oral intubation with ethanol or
an ethanol/milk mix can also produce high BACs with maximal
effects 2 h post-injection (79, 80). The benefit of the oral intuba-
tion route of administration is that it is resembles the human
condition – the ethanol is being consumed orally, and there-
fore enters the circulation through the same mechanisms through
which it occurs when a human beings consumes alcohol. If mod-
erate steady BACs are more relevant to the research question, then
choosing a liquid diet or voluntary drinking model is more appro-
priate, as BACs between 80 and 180 mg/dl are usually achieved
(55, 88–90, 122–128). However, there is more variability associ-
ated with this model, because an animal’s eating patterns may
differ throughout the day and through each day of the pregnancy.

Another issue which needs to be considered when using many
of the well established models of FASD is that ethanol is often given
chronically (i.e., via a liquid diet or oral intubation) throughout
gestation. This method of administration may not directly resem-
ble the human condition. Pregnant human females are more likely
to binge drink early in the first trimester, prior to discovering
they are pregnant, or drink moderately on a couple of occasions
each month throughout pregnancy (129). While the period of liq-
uid diet exposure or oral intubation can be restricted, this often
introduces large amounts of variability into the groups, which can
make it difficult to infer the direct effects of ethanol. For exam-
ple, in a recent study both the liquid diet and gavage models were
utilized to expose rats to ethanol during the first (liquid diet),
second (liquid diet), or third (gavage) trimester equivalent. When
synaptic plasticity in the hippocampus was examined in adult ani-
mals, the variability between models was significant enough to
mask differences caused by ethanol alone between the treatment
groups (130).

FINDING THE RIGHT CONTROL GROUP
As well as affecting the brain, alcohol can also irritate the gut and
can affect nutrient intake and absorption (131). In fact, it can
often be difficult to separate the nutritional effects that accom-
pany alcohol consumption from the teratogenic effects of alcohol
alone (131, 132), and some studies suggest that nutritional deficits
exacerbate the effects of alcohol (133–135) or that supplemen-
tation during the period of alcohol exposure may limit damage
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(131, 136). Because of the large interplay between alcohol and
nutrition, having appropriate nutrition controls that help to dis-
tinguish between the deficits due to diet and the deficits purely
due to the teratogenicity of alcohol are important to consider
when choosing a model. A “pair-fed” control is often utilized for
this purpose in most rodent models of FASD. A pair-fed group
acts as a calorie-matched control group, with each animal receiv-
ing the same amount of food in g/kg/day as its matched ethanol
consuming pregnant dam. Normally, a carbohydrate substance
(such as maltose dextrin or sucrose) is used to account for the
ethanol-derived calories in the diet. Using a pair-fed group can
also control for the stress of any procedures that the ethanol group
may be subjected to. For example, if an oral intubation method
of ethanol administration is used, pair-fed animals can be orally
intubated with an isocaloric amount of maltose dextrin/sucrose,
and are therefore subjected to the same procedures as the ethanol
animals.

While the use of a pair-fed control group is desirable, it should
also be noted that they are not a perfect control group. They are
required because animals receiving ethanol generally consume less
food (and therefore less calories) than control animals (79, 90,
124, 126). However, imposing caloric restriction on naïve animals
can also be perceived as introducing a stressor which can be a
confounding factor in many studies (69, 124, 137). While ethanol-
exposed animals eat less food voluntarily, pair-fed animals are
forced to eat less and spend many hours of the day hungry. Another
potential problem with this model is that ethanol has inflamma-
tory effects in the stomach [see Ref. (138) for review]. This means
that any food that is ingested may not be metabolized as efficiently,
and nutrients from the food that is consumed may not be absorbed
(139, 140). Unfortunately, this side-effect of ethanol consumption
cannot be replicated in pair-fed animals, and therefore it is not
possible to be entirely certain that the results observed are not
due to a lack of absorption of nutrients. However, in mothers con-
suming ethanol during pregnancy, this mal-absorption would also
occur, therefore the effects we see are reflective of what occurs in
alcohol consuming mothers.

Rodent models using the liquid diet model of ethanol exposure,
where pair-fed animals consume a liquid diet with maltose dextrin
substituted for the ethanol-derived calories, show varying results
in pair-fed animals, with some studies showing deficits (128, 141,
142), and others showing no differences between pair-fed animals
and controls (88, 143, 144).

SPECIFIC ANIMAL MODELS OF FASD
Simple systems
There are several invertebrate species that have been employed
for alcohol studies. For FASD research, the microscopic nematode
worm C. elegans is the most commonly used. While mammals
offer significant advantages over invertebrates when examining
brain structures or complex behaviors, simple invertebrates such
as C. elegans can be extremely useful when examining basic bio-
logical development at the cellular, molecular, and genetic levels
(145). The complete genome of C. elegans has been sequenced,
and the simple nervous system contains only 302 neurons with
5000 synapses. Furthermore, the stages and timing of embryonic
development are well characterized and a transparent egg allows

for direct visualization of each of the developmental stages. A sig-
nificant disadvantage to using this model is that the egg develops
outside of the body and therefore alcohol exposure cannot occur
as it does in human beings (via the placental membrane following
oral ingestion). Instead, C. elegans eggs or newly hatched larvae are
exposed to ethanol through bath application (145). Another disad-
vantage with this model is that BACs cannot be directly measured.
However, if ethanol is applied at a 0.4 M concentration, previous
studies in adult C. elegans have shown that an internal ethanol
concentration equivalent to 100 mg/dl can be reached (146). In
studies that have used this model to examine the effects of ethanol
on development, ethanol exposure produced, in a dose-dependent
manner, significant growth retardation, slowed the developmen-
tal process, impaired reproduction, and lead to early demise in
the offspring (145, 147) indicating that ethanol can have similar
effects on development in C. elegans as in human beings. Future
work using this model may be able to shed light into some of the
genetic mechanisms of PNEE, and whether particular genes may
confer sensitivity or resistance to the toxic effects of ethanol during
development (145, 147).

Simple vertebrates such as the zebrafish (Danio rerio) and the
clawed frog (Xenopus laevis) are also commonly used in scien-
tific research. These animals are cheap, small, easy to keep, have a
very short developmental period, and can produce large amounts
of offspring (148). Like C. elegans, early stage embryos have a
transparent egg, and the mature zebrafish or immature Xenopus
tadpole are also relatively transparent, allowing internal structures
to be imaged very easily. Because the stages of development are
thoroughly understood and can be visualized easily, it is possible
to expose embryos to ethanol during very distinct and short peri-
ods of development, which can be very important for determining
critical periods of ethanol exposure (149).

Also important for FASD research is the fact that the genomes
of these simple vertebrates are completely sequenced and many
of the genes have a mammalian counterpart. However, like with
C. elegans, the developmental process and the physiology between
these species and a human are very different. An advantage of using
simple vertebrates over invertebrates such as C. elegans is that sim-
ple behaviors can be tested in both zebrafish and clawed frogs. This
means that these animals can be used to assess functional deficits
following PNEE as well as anatomical or physiological deficits
(148). However, ethanol application using these organisms must
still occur through bath application, with ethanol having to infil-
trate the chorion of the egg, so actual concentrations of ethanol
that the embryo is exposed to can be highly variable and large doses
of ethanol are needed to ensure that adequate amounts cross into
the embryo (binge-like exposure) (150, 151).

Studies utilizing the zebrafish or clawed frog as models for
PNEE have shown that ethanol exposure during development can
cause growth retardation including reduced body length, micro-
cephaly, skeletal deficits, and eye malformation (48, 149–154) as
well as cognitive dysfunction in simple behavioral tasks such as
visual acuity tests (149),associative learning (54),and social behav-
ior (155), which were apparent even in the absence of physical
malformations (54, 155). These deficits were also accompanied
by changes in gene expression (151, 153, 154). These effects were
dependent on the dose of ethanol used and the developmental
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timing and length (chronic vs. acute) of exposure, with the blas-
tula, gastrulation, and somitogenesis periods being particularly
sensitive to the effects of ethanol (48, 150).

Rodents
Rodents are the most commonly employed models for FASD
research. Rodent models are ideal for exploring basic science
questions that relate to molecular biology, synaptic plasticity, and
cognition. There is also a vast body of literature on rodent phys-
iology, behavior, anatomy, development, reproduction, and tera-
tology (25, 57). The advantages and disadvantages of each of the
models as well as the main routes of exposure used are discussed
in detail below.

Mice. Mice are the most commonly used mammals in scientific
research due to the ease of care, the availability of transgenic and
disease models, their short life span and their similarities to human
beings in terms of genetics and basic physiology. Mouse models
of FASD first began to appear in the early 1980s and seminal work
by Dr. Kathleen Sulik paved the way for small mammalian mod-
els of FASD (47). The route of administration varies from study
to study, with the most common models using i.p. injection (47,
113, 156, 157), s.c. injection (111, 158, 159), voluntary drinking
paradigms (91, 160, 161), liquid diets (162–164), or oral intuba-
tion (165). Most studies employ chronic exposure paradigms (i.e.,
throughout pregnancy or throughout the third trimester equiva-
lent), but intermittent exposure is also common, particularly in
studies where the i.p. route of ethanol administration is used, and
where critical periods of vulnerability are being examined (47, 113,
158, 159, 162, 166, 167). The BACs achieved in most studies range
between 80–180 mg/dl (for voluntary drinking or liquid diet) and
over 200 mg/dl for studies where i.p. injections or oral intubation
is used. C57BL/6 is the most common strain of mouse used, but
other similar strains are also employed. The ability to genetically
manipulate mice can be a huge advantage and many studies into
the genetic components associated with FASD have utilized mice
as a model (160, 165, 167, 168). A disadvantage with using mice
is that the third trimester equivalent of development occurs fol-
lowing birth (see Developmental Timing of Ethanol Exposure).
To overcome this, many studies will administer ethanol during the
early postnatal period (third trimester equivalent, PND 1–10, see
Artificial Rearing), however, issues arise with this method because
ethanol exposure occurs outside of the confines of the placental
barrier and kinetics and metabolism may be fundamentally differ-
ent when compared to what happens in utero. Despite this, mice
are still commonly used, and many common features of FASD that
are observed in human subjects are also observed in mice, includ-
ing craniofacial abnormalities (47, 113, 157), eye malformation
(47), growth retardation (162, 163, 166), and cognitive deficits
(111, 156, 159–161, 163, 165) [see Ref. (169) for review]. These
deficits have been observed across the lifespan (i.e., in neona-
tal, adolescent, adult, and aged animals) and with all routes of
exposure, although the severe growth malformations and facial
deficits are often not apparent in models with lower BACs. As well
as fundamental studies on the underlying pathologies associated
with PNEE, mouse models are also useful for examining potential
therapeutics (156).

Rats. Like mice, rats are commonly used as models of FASD. One
of the more obvious advantages of rats is their larger size, which
makes handing and sampling procedures easier. Rat models also
offer an advantage over mouse models because more sophisticated
behaviors, including tests of learning and memory and executive
function (see Behavioral Manipulations) can be examined more
easily in rats, whereas mice have a more limited behavioral reper-
toire. Like mice, rats have a short lifespan, a gestational period
that is analogous to the first two trimesters of human gestation,
and neither species requires very sophisticated housing facilities
normally (see Developmental Timing of Ethanol Exposure).

Many routes of ethanol administration are used in rat models
of FASD: chronic exposure (i.e., throughout gestation) produc-
ing moderate stable BACs occurs with liquid diet and voluntary
drinking paradigms (55, 69, 87–90, 122–128, 170–180), or if high
BACs are preferred oral intubation can be used, either during
the gestation period (181), the third trimester equivalent only
(56, 95–98, 182–187), or through all three trimester equivalents
(78–80). Vapor inhalation (188, 189) is seldom used in current
protocols and injection of ethanol i.p. or s.c. does not occur as
commonly in rat models and tends to be reserved for mouse mod-
els where the effects of ethanol on neuroanatomical features are
examined (47, 67, 157).

Like with mice, all the hallmark features of FASD have been
demonstrated in rats including growth retardation (174, 188),
structural abnormalities (31, 79, 80, 181, 183, 190–193), CNS dys-
function (88, 89, 124, 179, 180, 189, 194), and cognitive deficits
(55, 56, 78, 95, 174–178, 184–187). Many of the impairments
observed are dose and timing dependent, but are observed across
the lifespan and with all routes of ethanol administration. It is also
possible to screen potential therapeutics in rat models of FASD
and many treatments given either concomitantly with ethanol or
following ethanol exposure (i.e., by supplementing offspring after
birth) show promise for the mitigation or reversal of some of the
cognitive impairments associated with FASD (56, 89, 90, 122).

Guinea pigs. Guinea pig models are utilized in some laborato-
ries as they offer the advantage of being a true in utero exposure
model because the three trimester equivalents of brain develop-
ment largely occur during gestation (as opposed to the rat/mouse
where the third trimester equivalent is during the early postnatal
period). The oral intubation administration route is commonly
utilized in guinea pig studies with the dose of ethanol ranging from
3 to 6 g/kg/day (99, 102, 103, 195, 196). In some studies, ethanol
administration begins prior to gestation (196) but in the majority
of studies ethanol administration begins on GD 1–2 (100, 102, 103,
197,198). In most studies [excluding (196)], a nutrition/stress con-
trol group (which receive sucrose by oral intubation) was included.
Results from these studies have indicated that PNEE can cause
structural (101, 196–198), functional (103), and cognitive deficits
(102, 103, 195) that mimic the human condition. These deficits
were observed in neonate (101, 102, 196, 198), adolescent (197,
198), and adult (102, 103, 197, 198) animals. There has been only
one study where ethanol administration has been restricted to
the third trimester equivalent (classified as GD 43–62) (99) and
surprisingly, hippocampal synaptic plasticity and spatial learning
were not significantly affected in adult animals even with BACs
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of 245 mg/dl (99). Recently, studies utilizing the guinea pig model
have been exploring the idea of biomarkers for FASD. Specifically,
the accumulation of fatty acid ethyl esters, which form during
non-oxidative metabolism of ethanol, in the hair may be a use-
ful indicator of PNEE (199). The advantage of using the guinea
pig model for this research is that guinea pigs are the only rodent
species that are born with neonatal hair. This line of research may
result in the guinea pig model being more widely used in the
FASD field. A drawback in using guinea pigs is that the litter size
is much smaller than in rats/mice and the longer gestation period
can increase the time and costs of a project. Furthermore, guinea
pigs may be more difficult to use for behavioral testing as they are
not naturally exploratory and may not perform as well as rats in
many behavioral tasks (200).

Primates
Because primates are our closest evolutionary ancestors, primate
models of FASD are considered a “gold standard.” Developmen-
tal gestation and length resembles human pregnancy, and more
importantly, primates can be used to study more sophisticated
behaviors than are possible in rodents or other animal models
(201). However, primate research is time consuming (pregnancy
length is similar to human beings), expensive, and ethical approval
can be difficult to obtain. Because of this, there are very few studies
of PNEE that have been conducted in primates and those studies
that have been done usually have a very small sample size and
there are wide variations in ethanol dosage and administration.
For example, one of the first studies conducted by Elton and Wil-
son (202) allowed four pig-tailed macaques (Macaca nemestrina)
to consume an orange-flavored ethanol solution prior to concep-
tion and throughout pregnancy. While three of the monkeys drank
very little of the ethanol and had apparently normal infants, one
of the monkeys consumed large amounts of the ethanol through-
out her pregnancy and her infant was noted to be hyperactive
and tremulous (202). The majority of primate studies utilize the
oral intubation method for administering alcohol (104–107), with
many studies only giving alcohol once weekly rather than daily,
which may more closely resemble human drinking patterns dur-
ing pregnancy (104, 106, 107). Dosage of ethanol ranges from 0.3
to 5 g/kg and while BACs are not often reported in these stud-
ies, in those where they are reported they range from 150 to
250 mg/dl (104, 203). Voluntary drinking paradigms are also used
in some studies (0.6 g ethanol/kg/day), and much lower BACs are
achieved (20–50 mg/dl) (204–206). There is a large variation in
the period of ethanol exposure; in some studies ethanol is admin-
istered throughout pregnancy (202, 204, 207), in some it starts
after the first month of pregnancy (106) and in others it is inter-
mittent (104, 105, 205). Results from primate studies have shown
that ethanol exposure during development produces growth retar-
dation (104–106) as well as behavioral deficits in adolescence and
adulthood (104, 105, 204–206) similar to those observed in human
beings with FASD.

SUMMARY
There are many different factors to consider when choosing a
model to conduct research on FASD. The animal model that is
chosen should reflect the specific research question that is to be

answered. Depending on what is to be examined, each model offers
its own advantages and disadvantages. Peak BAC, developmental
timing, route of administration, and stress and nutrition controls
should also be considered. Simple invertebrates and vertebrates
such as C. elegans, Xenopus, and zebrafish can be excellent tools
for examining the effects of ethanol at a genetic level or on very
specific stages of development. Rodents are more commonly used
for translational research where the effects of therapeutics can
be examined for future use in a clinical population. Non-human
primate models are gold standard when it comes to examining
complex behavior, but studies are often limited due to small sample
sizes, large costs, and time constraints.

BEHAVIORAL MANIPULATIONS
There are many documented behavioral manipulations that have
been used to characterize the functional consequences of PNEE in
animal models that often correlate with known human dysfunc-
tions [see Ref. (208) for a review of human behavioral work]. With
respect to animal models, behavioral experiments are necessary
tools when assessing the use of novel therapeutic approaches for
PNEE offspring. Here, we will outline five major classes of behav-
ior, including several key behavioral tasks where performance is
affected by prenatal ethanol ingestion, injection and inhalation.

MOTOR SKILLS
The cerebellum is a region of the fetal brain that is particularly
vulnerable to damage by ethanol in utero. Motor hyperactivity is
often reported in children with FASD. Children with FASD per-
form poorly on fine motor coordination and reaching tasks (209)
and have deficits in postural balance (210). Recently, children diag-
nosed with FASD were found to have poor saccade accuracy (211),
a task dependent on the cerebellum (212). Motor performance can
readily be evaluated in animal models using standardized tasks that
include the rotarod, runway, directed reaching, and gait analyses.

In rat pups exposed to ethanol via intubation throughout all
stages of pregnancy and during the early postnatal period, the
overall volume of the cerebellum and Purkinje cell (PC) num-
bers were reduced (213). Others have identified the third trimester
equivalent as a period of particular vulnerability for PCs (214). PC
density is reduced in PND 10 rat offspring exposed to ethanol (ges-
tational intubation) and the ultrastructure of this neural popula-
tion is modified, indicating a delay in cellular development (215).
The widely reported damage to the cerebellum has observable,
functional consequences on motor-related behaviors.

Behavioral tasks such as the rotarod, runway tasks, and gait
analysis software may be used to examine damage to the cerebel-
lum and related motor structures. In the rotarod task, a rodent
is placed in a rotating bar and is required to run on the rod
for as long as possible. The rotational speed of the bar can be
increased, and the experimenter can then measure the duration
of time that the animal can remain on the bar at various speeds
(see Figure 2). In rodents, it is thought that the motor deficits
caused by PNEE are most apparent early in life, and in most cases
unseen at adulthood. Bond and DiGiusto (gestational liquid diet)
showed these age effects with the anticipated motor hyperactiv-
ity in PND 28 and 56 rat offspring, while seeing no evidence of
motor impairment at PND 112 (216). Similarly, adult rat offspring

Frontiers in Pediatrics | Child and Neurodevelopmental Psychiatry September 2014 | Volume 2 | Article 93 | 8

http://www.frontiersin.org/Child_and_Neurodevelopmental_Psychiatry
http://www.frontiersin.org/Child_and_Neurodevelopmental_Psychiatry/archive


Patten et al. Behavior and FASD animal models

FIGURE 2 | Standardized behavioral measures are used in rodents to
examine the functional consequences of developmental ethanol
exposure. Motor performance in rodents may be measured on tasks such
as the rotarod (upper panel, left-most) where the animal must balance and
run on a rotating rod. Social interactions, such as evidence of aggressive
behavior can be deduced by observations of wrestling, rearing, and pinning
(upper panel, middle) when two conspecifics are paired. Passive avoidance
(upper panel, right-most) is a measure of executive behavior in rodents
where the animal must learn to inhibit exploratory behavior in order to avoid
a shock for the duration of a trial, as indicated by a light. Trace fear
conditioning (middle panel) is a hippocampal-dependent behavior where the
animal is trained in a context where a signal such as a light indicates a
footshock, then after a delay in placed in a novel context and freezing
responses can be measured while the light is presented without the
footshock. Associative olfactory memories (bottom panel) are formed when
an odor, such as lemon is paired with a stimulus such as a footshock and
may be tested in a two choice preference chamber, where orientation
toward or away from an odor can indicate the presence of a memory for
that odor.

(intubation GD 7–20) shows no evidence of motor dysfunction or
hyperactivity on a rotarod or open field task (217). During this
early window of observation, rats (gestational liquid diet) have
been found to be ataxic, exhibiting asymmetrical gait, shorter
stride length, and greater step angle than their respective controls
(218). Young mice (<PND 60, gestational ethanol in drinking
water) perform poorly on the runway and rotarod tasks (219).
However, when ethanol administration was restricted to the post-
natal period (intubation PND 4–9) as adults (>PND 70), these
animals perform poorly on an eyeblink conditioning task, a form
of classical conditioning where a light is paired with a puff of
air on the eye, causing the animal to blink (220). The impaired
performance on this hippocampal-independent task is thought to
be due to ethanol-induced damage to the interpositus nucleus of

the cerebellum (221). Thomas and colleagues (182) examined the
specific timing of postnatal exposure to ethanol (via gastronomy)
in relation to cerebellar damage and motor performance. This
study identified PND 4/5 as a critical period for ethanol exposure
where the greatest deficits could be seen on a parallel bar task at
PND 30 and 52, where the width between bars that the animal
was required to cross over was gradually widened. This time point
also produced the greatest decreases in cerebellar and brainstem
weights at PND 55 (182). Others have shown that when ethanol is
restricted to the postnatal period (intragastric ethanol PND 2–10),
motor hyperactivity in rats persists into adulthood, at least until
PND 91 (74).

These studies stress the importance of considering the timing
of ethanol administration, the age of the offspring when conduct-
ing motor behavior studies, and highlight the need for additional
studies in this area in aged animals.

EXECUTIVE FUNCTION
Executive functioning is the ability to use appropriate problem
solving in goal-directed behaviors, and includes behaviors such
as response inhibition, working memory, and set shifting. These
functions have long been thought to be dependent on frontal lobe
structures [see Ref. (222) for review] such as the prefrontal cortex,
though some argue that extra-frontal-lobe structures may also be
involved [see Ref. (223) for review]. In human beings, these behav-
iors can easily be measured through standardized tests, and they
appear to be gravely impacted by prenatal alcohol use [see Ref.
(224) for a review]. Children with FASD have difficulties inhibit-
ing responses on the Stroop test (225), a task where an individual
must inhibit the natural tendency to read words, being required
instead to state the color of the font. In addition, these individu-
als have difficulty in suppressing saccade responses in visual tasks
while waiting for the proper initiating signal (211) and exhibit
poor working memory when asked to recall digit spans backwards
(226). On the Wisconsin card sorting task, where the subject must
detect, use, and change card sorting strategies, individuals with
FASD make more errors related to shifting sort strategies (227).
In rodents, executive function tasks are complex and a single task
often requires the use of response inhibition, working memory,
and set shifting among others.

Response inhibition tasks require the subjects to inhibit
responses that the organism may be naturally predisposed to per-
form in particular environments. For example, in rodents, passive
avoidance is a task commonly used to show response inhibition.
In these tasks, the rodent is placed in a box on a “safe” area, adja-
cent to a grid floor that will provide a shock if the animal steps
onto the grid within a trial. The animal must learn to inhibit the
natural tendency to explore new environments and remain on the
“safe” side of the test chamber for the entire trial (see Figure 2
for a schematic). PNEE rats prenatally exposed to ethanol (liquid
diet GD 6–16) show impairments in these passive avoidance tasks,
at both PND 18 and PND 41–53 (228). In a large rat study, off-
spring exposed to ethanol (liquid diet GD 5–20) again exhibited
impaired passive avoidance of a shock at both PND 17 and PND
48, but not at PND 114, and took longer to spontaneously alter
their exploratory strategy on a T-maze where the animal would
be confined after visiting a particular arm when tested at PND 16
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and PND 63 but not at PND 112 (229). Rats exposed prenatally
to ethanol (liquid diet, GD 1–20) have fewer cells in layers II and
V of the medial prefrontal cortex, which was correlated with poor
performance on a reversal learning task in adulthood [>PND 90;
Ref. (230)].

Working memory is a short form of memory where infor-
mation from a recent experience must be used to perform the
appropriate response on a following trial or task. Working memory
is a form of memory that is known to primarily require the func-
tional activity of the prefrontal cortex [see Ref. (231) for review
of human beings working memory and see Ref. (232) for a review
of the cellular mechanisms of working memory], differentiating it
from other forms of memory discussed in Section “Learning and
Memory.” Behavioral tasks that evaluate working memory include
delayed matching to sample tasks where a stimulus is provided,
followed by a delay then a choice between multiple different stim-
uli. In these experiments, the organism must remember the initial
stimulus then pick the matching stimulus when given a choice
after the delay, and is readily adapted for rodent, non-human pri-
mates, and human beings. For rodents, the task can be modified to
a delayed matching-to-place task in a Morris water maze (MWM),
where a platform is located in an arm during a search trial, then
after a delay the animal must return to the location of the platform
during the search session. When ethanol administration occurs in
the third trimester equivalent (gastronomy PND 6–9), these rats
perform poorly on the matching-to-place task, at PND 35, PND
105, and PND 180, when the delay between the search and test
trials is 2 h (233) though this task requires both intact working
and spatial memory.

Set shifting is a complex task that can readily be performed by
human beings and non-human primates, with variable evidence
from rodents. In rats, set shifting tasks are not as well established
as human beings and non-human primate work. In delayed non-
matching-to-sample tasks, the subject not only requires functional
working memory and inhibitory control but also set shifting where
the organism must be able to observe the sample stimulus then
shift their attention to choose the non-matching option during the
subsequent test trial. In one rat study of delayed non-matching-
to-sample, adult PNEE animals (liquid diet GD 1–22) showed no
impairments in set shifting (234). Future rodent work in this area
may use a unique behavioral task adapted from primate stud-
ies (235) in order to fully understand how set shifting may be
altered by PNEE in rodents and shed light on the underlying
neural substrates for these behaviors. In a study of rhesus mon-
keys exposed to ethanol (GD 5 – parturition, voluntary drinking),
the 32–34 month old offspring had difficulty acquiring a delayed
non-matching to sample task (204).

When using animal models to examine the effect of PNEE on
executive functions, it is critical to design appropriate tasks for the
model in question. Tasks used for one particular species may not
be easily applied to other without modifications for the species in
question.

LEARNING AND MEMORY
The damaging effects of PNEE on learning and memory have
been reliably reported in many species. Here, we will focus on
hippocampal-specific learning and memory behaviors in rodents

and in human beings. In spatial object memory tasks where a
child must remember the location of multiple objects on a semi-
random grid, children with FAS were unable to recall objects after
a delay and exhibited distorted spatial array when asked to recall
where the objects were (236). Additional work with human beings
with FASD is necessary to understand the manifestations of neural
damage caused by PNEE. Future studies of spatial memory may
utilize virtual 3D object-recognition tasks where the subject can
undergo PET or fMRI scans while virtually exploring a space (237)
as in (238).

In rodents, hippocampal-dependent memory can be assessed
in a variety of behavioral tasks including tasks such as the MWM
and fear conditioning. PNEE-induced hippocampal damage has
been widely reported in rodents (193, 194, 239), for review see
Ref. (25, 86).

The MWM is a standard task where a T, plus or open field maze
can be submerged in cloudy water. A platform can then be hidden
below the surface, and visual detection of the rodent when swim-
ming in the maze. The animal must swim to explore the maze
and find the submerged platform to escape the water in multi-
ple training trials where variables such as latency to the platform,
swim speed, and distance traveled to platform can be measured.
As described above, the MWM can be adapted for many func-
tions, such as delayed matching-to-place (233), which are readily
learned by healthy rodents. However, PNEE rodents exhibit sig-
nificant impairments on this task [rats: liquid diet GD 1–22 (55,
141, 175) and intubation PND 4–9 (56, 95, 184–186); guinea pigs
intubation GD 2–67 (102)].

Fear conditioning is a behavioral task that is both easily imple-
mented and readily learned by rodents. Trace fear conditioning
occurs when an unconditioned stimulus (US), such as a footshock,
follows a conditioned stimulus (CS) such as a tone or a light. Fol-
lowing multiple training sessions, the animal is tested in a novel
context similar to the training context and freezing responses are
recorded in response to presentation of the CS alone (see Figure 2).
PNEE rats perform poorly on this task when ethanol is given in the
third trimester equivalent [intubation PND 4–9 (240)], with poor-
est performance observed when ethanol administration occurred
from PND 4–6 [intubation (241)].

Other forms of hippocampal memory are impaired by PNEE
in rodents. Popovic and colleagues (177) subjected PNEE off-
spring exposed to gestational ethanol in a liquid diet and/or the
early postnatal period to an extensive battery of memory tasks to
evaluate performance in spatial learning, orientation, and simple
and more complex object recognition. Generally, ethanol-exposed
offspring performed poorly, though the impairments in these ani-
mals became increasingly evident as the task difficulty increased,
with animals treated during the early postnatal period performing
worse than others (177).

SOCIAL BEHAVIOR
Social behaviors in human beings and non-humans alike are com-
plex interactions between genetics, early life experiences, and later
social learning that can be altered by PNEE [for a review, see Ref.
(242, 243)]. For human beings, appropriate behavior in a social
context is critical for societal integration, therefore, it is critical to
consider that PNEE can shape lifelong behavior, and that FASD
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is not simply a childhood disorder as highlighted by Streissguth
and colleagues (16) in a longitudinal study examining childhood,
adolescents, and adults (16).

Social dysfunctions in human beings with FASD are apparent
early in life with altered sleep patterns, increased irritability, and
feeding difficulties during infancy (244). Similarly, neonatal rats
exposed to ethanol in the early postnatal period (gastronomy PND
2–12) take longer to attach to the nipple and spend less time suck-
ling than controls (245), emit more vocalizations on PND 5 when
separated from the dam after pre- and postnatal ethanol exposure
[intubation GD 1–22 and PND 2–10 (246)] and are not retrieved
by the dam as quickly as unexposed pups [drinking water GD 0–
30 (247)]. These negative early life experiences can play a role in
shaping social development long term.

For human beings, other social behavioral problems associated
with fetal ethanol exposure become apparent at school age. When
matched with unexposed children with low verbal IQs, children
with FAS have poor coping skills and interpersonal relationship
skills according to the Vineland adaptive behavior scale [VABS
(248)], performing three standard deviations below the norm
for their age. Others have also reported increased aggression in
children with FAS (249). In juvenile PNEE rats (liquid diet GD
6–20), the sexually dimorphic play behaviors were reversed where
males displayed female behaviors and vice versa (250). Prior to
puberty, ethanol-exposed rats (intubation GD 6–19) exhibit more
play behavior though males that are more aggressive (see Figure 2
for a schematic) following puberty than unexposed controls (251).
It must be noted, however, the great differences between the com-
plexity of social behavior between human beings and rodents
at this age and beyond when drawing parallels between the two
species.

Unlike other previously discussed behaviors, disruptions in the
social behaviors of adult human beings and rats have been readily
shown. In adolescent and adult human beings exposed to ethanol
in utero, whose average chronological age was 17, the average adap-
tive functioning as measured by the VABS was equivalent those of
a 7-year-old healthy child (16). In this same study, all adolescents
and adults were classified in the significant and intermediate cate-
gories of the maladaptive behavior section of the VABS including
behaviors such as social withdrawal and teasing or bullying of
others. In a report on secondary disabilities associated with FASD,
Streissguth et al. (252) reported that of adult females exposed to
ethanol in utero, 40% had drank alcohol while they were pregnant,
and over 50% of the children had been removed from the care of
the mother. Difficulties in parenting have also been observed in
rats that drank ethanol throughout gestation (253). In this study,
females exposed to ethanol mother failed to retrieve pups removed
from their nests, a task normally accomplished in a short time by
control animals. The researchers also observed disorganized and
distracted behavior in the mothers. For instance, dams might start
carrying a pup part of the way toward the nest, but then drop
it and be distracted by self-grooming, eating, or drinking and
forget about the retrieval effort (253). Adult males also show dis-
rupted social behaviors at adulthood. Male rat offspring exposed
to ethanol prenatally spend less time sniffing other rats at PND
90 than those exposed to maternal saccharin water [gestational
ethanol in drinking water; Ref. (254)] and display more aggressive

behaviors, including attacks, tail rattling, and chasing in the pres-
ence of conspecifics (255). These findings in both rodents and
human beings stress that the effects of FASD do not exist in child-
hood alone, and that they can have effects on the next generation
of offspring.

OLFACTION
Olfaction is a complex sense that has recently become of spe-
cial interest in the area of neurodevelopmental diseases in human
beings as early indicators of disease onset, permitting for early
intervention [see Ref. (256) for a review]. An early neuropatho-
logical report noted significant damage to the olfactory bulbs
and stalks in children and fetuses prenatally exposed to alcohol
(257) though few studies have examined the functional conse-
quences of this damage. Olfactory abilities can readily be tested in
many organisms, from human beings with “Sniffin” sticks (258)
to Drosophila [see Ref. (259) for a review]. A recent study (260)
used two sensory profiling measures filled out by caregivers to
examine the sensory abilities of children with FASD. They found
that children with FASD have under responsive smell and taste,
though the two variables were combined in these forms. In the
first study of its kind, children and adolescents exposed to ethanol
in utero were administered the San Diego Odor Identification Test,
where the child is presented with common household odors such
as chocolate and peanut butter and must name the odor, revealing
significant impairments in the identification of these odors (261).
These findings in human beings are compelling, raising questions
about the ability for human beings with FASD to discriminate
between similar and different odors. Others have reported that
fetal ethanol exposure increases infant reactivity to the smell of
ethanol after birth, indicating some prenatal sensory memory that
persists after birth (262, 263).

Olfaction is the primary sensory modality in rodents and has
been extensively studied in the context of memory [for a review
see Ref. (264)] and odor identification and discrimination [see
Ref. (265) for review]. The olfactory circuitry is susceptible to
damage from prenatal ethanol with consistent reports of olfactory
bulb damage following various ethanol administration methods
in mice [drinking water GD 0–26 (266); injection GD8 (67)] and
rats [gastronomy PND 4–9 (267)]. Odor memory can be exam-
ined through classical conditioning tasks where an odor can be
paired with either an appetitive or aversive stimulus followed by
examining the orienting response of the animal to an odor. These
tasks can easily be carried out early in life, by pairing an odor with
tactile stimulation (268) or a footshock (269) among others (see
Figure 2). These tasks can be modified for use in juvenile and adult
rodents in odor operant boxes, or olfactometers, where the deliv-
ery of an odor signals an action for the animal, such as a nosepoke,
in order to receive a water reward (270). These olfactometers can
also be used to examine odor discriminative abilities in rodents.
Odor memory in early life is impaired by prenatal ethanol (liquid
diet, GD 6–20) where a PND 3 rat pup is unable to learn aversive
(odor + footshock) and appetitive (odor + milk delivery) odor
association tasks (271). Interestingly, the impairment in odor asso-
ciative memory is not apparent at adulthood in an aversive odor
association (271). Mice exposed to ethanol in utero (drinking water
GD 0–26) have poor discriminative abilities when given similar
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odors in odor mixture studies though odor associative mem-
ory remained intact (266). As with human beings, neonate rats
exposed to ethanol in utero (liquid diet GD 5–22) where ethanol
odor presentation at P15 elicits an altered behavioral response to
the odor compared to controls (272).

Disruptions in olfactory memory and odor identification and
discrimination as a result of PNEE require more extensive behav-
ioral work to understand how the olfactory circuitry is selectively
damaged by ethanol in utero. Further behavioral studies in this area
are required; though with extensive information available regard-
ing healthy olfactory processing this is a viable area of study for
the future.

SUMMARY
The study of the effects of PNEE on offspring has produced
extensive evidence of behavioral disruption across multiple neural
systems. When describing the damage caused by PNEE, one must
consider the interactions between these systems at the behav-
ioral level and therefore make careful choices when designing
animal experiments. Together, human beings and animal behav-
ioral impairments can shed light on potential neural targets of or
vulnerabilities to PNEE.

CONCLUSION
Fetal alcohol spectrum disorder remains a prevalent problem in
our society (7), though there are a great deal of laboratories around
the world delineating the mechanisms behind the teratogenic
effects of ethanol and the underlying biochemical, molecular, and
genetic events that lead to the cognitive deficits characteristic of
FASD. Human beings work has identified diagnostic criteria for
FASD, which has permitted the proper diagnosis of more indi-
viduals that require intervention. Animal models have also been
invaluable for this body of work particularly because they allow
us to examine different drugs and supplements for their potential
therapeutic properties on both neural structures and observable
behavior. It is critical for both fields to consider the potential life-
long implications of FASD, as there is a gap in what is understood
of PNEE in adults and particularly in aged populations. Moving
forward, translational research linking human beings and animal
work is imperative in order to paint a vivid picture of damage
caused by PNEE and to eventually find a way to overcome some
of the devastating effects of PNEE.
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