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Autism spectrum disorders (ASDs) are heterogeneous neurodevelopmental disorders char-
acterized by deficits in social interaction and social communication, restricted interests,
and repetitive behaviors. Many synaptic protein genes are linked to the pathogenesis of
ASDs, making them prototypical synaptopathies. An array of mutations in the synapsin
(Syn) genes in humans has been recently associated with ASD and epilepsy, diseases that
display a frequent comorbidity. Syns are pre-synaptic proteins regulating synaptic vesicle
traffic, neurotransmitter release, and short-term synaptic plasticity. In doing so, Syn iso-
forms control the tone of activity of neural circuits and the balance between excitation
and inhibition. As ASD pathogenesis is believed to result from dysfunctions in the balance
between excitatory and inhibitory transmissions in neocortical areas, Syns are novel ASD
candidate genes. Accordingly, deletion of single Syn genes in mice, in addition to epilepsy,
causes core symptoms of ASD by affecting social behavior, social communication, and
repetitive behaviors. Thus, Syn knockout mice represent a good experimental model to
define synaptic alterations involved in the pathogenesis of ASD and epilepsy.

Keywords: autism, synaptopathies, synaptic vesicles, synaptic transmission, social behavior, human mutations,
knockout mice

Autism spectrum disorders (ASDs) represent a wide array of
neurodevelopmental disorders characterized by restricted inter-
est, defective social interactions, repetitive behaviors, and deficit
in language and verbal communication that manifest within the
first 3 years of life (1, 2). The complexity of ASD is evident both
at the levels of symptoms variability and of causative factors. An
important genetic contribution has been observed for ASD, how-
ever, the mechanism of inheritance remains largely unknown (1).
More than 500 genes have been associated with different forms
of autism, but each of them account only for the minority of
ASD cases and indeed environmental contributions and other
modulating factors, as environment-genetic interplay and epi-
genetic modifications, are emerging as potential risk factors for
ASDs (3).

INVOLVEMENT OF SYNAPTIC PROTEINS IN THE
PATHOGENESIS OF ASDs
Autism spectrum disorders may result from mutations in a large
array of genes having roles in various physiological processes such
as chromatin remodeling, translation, metabolism, and synaptic
functions. In experimental models of ASD, a common break-
down appears to occur at the level of synapse formation and
stabilization, as well as of the ability of synapses to be modi-
fied by experience through plasticity mechanisms. Synapse dys-
functions are also at the convergence between ASD and other
neuropsychiatric disorders with unknown etiology, such as schiz-
ophrenia and intellectual disabilities (4). In addition, ASDs fre-
quently occur together with epilepsy and there may be com-
mon underlying mechanisms as well as common genetic and

environmental risk factors. Synapse maturation and function rely
on a vast array of compartmentalized protein–protein interac-
tions that allow fidelity in neurotransmitter release and synaptic
vesicle (SV) cycling at the pre-synaptic site and in neurotransmit-
ter receptor localization and signaling at the post-synaptic site.
Moreover, synaptic adhesion molecules link and stabilize pre- and
post-synaptic sites and control synaptic modification induced by
plasticity.

The synaptic theory for autism originally stems from the iden-
tification of ASD mutations in the Neuroligin genes [NLGN3
and NLGN4X; (5, 6)] coding for synaptic adhesion molecules
expressed at the post-synaptic site. Since then, a growing reper-
toire of synaptic genes, coding for both pre- and post-synaptic
proteins, have been implicated in non-syndromic ASDs: synaptic
adhesion molecules [neuroligins, neurexins, cadherins, contactins
and contactin-associated protein-like 2, or CNTNAP2; (7–9)],
synaptic scaffold proteins [PROSAP/SHANK gene family; (10)],
ion channels, and neurotransmitter receptors (11–13). Moreover,
mutations in additional synaptic genes, such as the pre-synaptic
RIMS3/NIM3 and the post-synaptic IL1RAPL1 and SynGAP1,
involved in either SV organization or synapse formation, have
been recently associated with ASD cases [(14–17); Figure 1 and
Table 1]. The identification of synaptic genes implicated in ASDs
is expanding together with the characterization of the respec-
tive animal models bearing mutations or deletions in these genes.
These models allow a more systematic analysis to study the role of
those genes in ASD etiology, to discover the biological mechanisms
underlying autistic behaviors and evaluate the efficacy of new
potential treatments (18–21).
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Giovedí et al. The synaptic bases of autism spectrum disorders

FIGURE 1 | Schematic diagram illustrating pre- and post-synaptic gene
products implicated in ASD. Glutamate (GLU) and GABA synapses are
shown. Different colors code for synaptic function: yellow, synaptic vesicle

cycling; green, synapse formation and maintenance; red, neuronal
excitability and neurotransmission; violet, glutamate receptors (GluR)
signaling/trafficking.

ASD IS ASSOCIATED WITH DYSFUNCTIONS IN CORTICAL
CIRCUITS THAT ALSO PREDISPOSE TO EPILEPSY
Autism spectrum disorder-like phenotypes are observed in a wide
variety of neurological and neurodevelopmental disorders, includ-
ing epilepsy, Rett syndrome, Fragile X Syndrome, Tuberous Sclero-
sis, or Fetal Anticonvulsant Syndrome, which are characterized by
an imbalance of the excitatory/inhibitory tone. This aspect is con-
sistent with the very high prevalence of epilepsy in autistic patients
(about 25%) with respect to the average prevalence of 1% in the
general population. Characteristic ASD phenotypes are associated
with impairments or gains of GABAergic transmission (22–25).

Decreases in the GABA synthesizing enzyme GAD and a reduc-
tion in quantal size have been reported in the experimental model
of Rett syndrome, the Mecp2 knockout (KO) mice (26). Various
impairments in GABAergic function, including deficient GABAer-
gic circuitry, decreased expression of GABAA receptor subunits
(particularly α5 and γ subunits) and of the tonic GABA cur-
rent, have been observed in mice lacking FMRP, a recognized
experimental model of Fragile X Syndrome (27). The chromo-
somal region 15q11–q13, which is deleted or duplicated in 1–2%
of idiopatic ASD patients, contains a cluster of genes encoding
GABA receptor subunits [Gabra5, Gabrb3, and Gabrg3; (11)]
and deletion of the Gabrb3 gene in mice, encoding for the
GABAA β3 receptor subunit, leads to an ASD-like phenotype
(28). Moreover, Reeler mice, lacking the protein reelin that is
expressed in cortical interneurons, display an ASD phenotype

that is associated with a decrease in GABA turnover (29, 30).
Mice lacking synapsins (Syns) also display a primary impairment
in GABA release dynamics that is associated with an ASD-like
phenotype [see below; (31–35)]. Taken together, all these exper-
imental data indicate that GABA systems are major actors in
the development and functioning of cortical networks, and that
their dysfunction can lead to altered development and/or function
of cortical circuits resulting in epilepsy, ASD, or both. More-
over, the role of GABAergic dysfunctions in ASD pathogenesis
is complex given the switch between excitatory and inhibitory
GABA transmission that occurs during development and the
multiple sites of action of GABA in mature neuronal networks,
where it acts on predominantly post-synaptic GABAA recep-
tors, extrasynaptic GABAA receptors regulating excitability and
predominantly pre-synaptic GABAB receptors modulating glu-
tamate release and short-term plasticity properties of excitatory
synapses. Thus, disruption or dysfunction of GABAergic sys-
tems may delay critical periods in specific brain regions and
perturb γ-oscillations implicated in high cognitive functions.
Given the importance of the excitation/inhibition balance in the
activity-dependent formation and plasticity of neocortical net-
works, we here review on the role of the Syns, a family of pre-
synaptic proteins regulating release and plasticity in inhibitory
and excitatory synapses, in the etiology of ASDs and the use of
Syn KO animals as a model for these complex neuropsychiatric
disorders.
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Giovedí et al. The synaptic bases of autism spectrum disorders

Table 1 | Synaptic genes associated with ASD.

Gene Name Chromosomal locus Phenotype Function

SYN1 Synapsin1 Xp11.23 ASD, epilepsy Synaptic vesicle cycling

SYN2 Synapsin2 3p25 ASD, epilepsy Synaptic vesicle cycling

RIMS3 Regulating synaptic membrane exocytosis 3 1p34.2 ASD Synaptic vesicle cycling

CACNA1E Calcium channel, voltage-dependent R type,

alpha 1E subunit

1q25.3 ASD Neurotransmission

CACNB2 Calcium channel, accessory beta2 subunit 10p12 ASD Neurotransmission

SCN1A Voltage-regulated sodium channel type 1 2q24.3 Dravet syndrome, ASD Neuronal excitability

SCN2A Voltage-regulated sodium channel type 2 2q24.3 ASD, epilepsy Neuronal excitability

SCN3A Voltage-regulated sodium channel type 3 2q24 ASD, epilepsy Neuronal excitability

KCNMA1 Potassium calcium-activated channel,

subfamily M, alpha member 1

10q22.3 ASD Neuronal excitability

KCNMB4 Potassium calcium-activated channel,

subfamily M, beta member 4

12q ASD Neuronal excitability

KCNQ3 Potassium voltage-gated channel 8q24 ASD, epilepsy Neuronal excitability

KCNQ5 Potassium voltage-gated channel 6q14 ASD, epilepsy Neuronal excitability

KCND2 Potassium voltage-gated channel 7q31 ASD, epilepsy Neuronal excitability

NRXN1 Neurexin1 2p16.3 ASD, schizophrenia Cell-adhesion

NLGN3 Neuroligin3 Xq13.1 ASD Cell-adhesion

NLGN4X Neuroligin4 Xp22.32–p22.31 ASD, intellectual disability Cell-adhesion

CNTNAP2 Contactin-associated protein-like 2 7q35 ASD, intellectual disability,

epilepsy schizophrenia

Cell-adhesion

CDH5 Cadherin 5 16q22.1 ASD Cell-adhesion

CDH8 Cadherin 8 16q22.1 ASD Cell-adhesion

CDH9 Cadherin 9 5p14 ASD Cell-adhesion

CDH10 Cadherin 10 5p14.2 ASD Cell-adhesion

CDH11 Cadherin 11 16q21 ASD Cell-adhesion

CDH13 Cadherin 13 16q23.3 ASD Cell-adhesion

CDH15 Cadherin 15 16q24.3 ASD, intellectual disability Cell-adhesion

PCDHB4 Protocadherin beta4 5q31 ASD Cell-adhesion

PCDH10 Protocadherin delta 10 4q28.3 ASD Cell-adhesion

PCDH19 Protocadherin delta 19 Xq22.1 ASD, intellectual disability Cell-adhesion

CNTN4 Contactin 4 3p26.3 ASD, intellectual disability Cell-adhesion

CNTN5 Contactin 5 11q22.1 ASD Cell-adhesion

CNTN6 Contactin 6 3p26–p25 ASD Cell-adhesion

IL1RAPL1 Interleukin 1 receptor accessory protein-like 1 Xp22.121.3 ASD, intellectual disability Cell-adhesion

SHANK1 SH3 and multiple ankyrin domain protein 1 19q13.3 ASD Glutamate receptor signaling

SHANK2 SH3 and multiple ankyrin domain protein 2 11q13.3 ASD Glutamate receptor signaling

SHANK3 SH3 and multiple ankyrin domain protein 3 22q13.3 ASD Glutamate receptor signaling

SYNGAP1 Synaptic Ras GTPase activating protein 1 6p21.3 ASD Glutamate receptor signaling

GABRG3 Gamma3 subunit of GABA-A receptor 15q12 ASD Neurotransmission

SYNAPSINS
The Syns are a family of abundant neuronal phosphoproteins that
participate as regulators in synaptic transmission and plasticity, as
well as in neuronal development [see Ref. (36, 37), for review].
The family is composed of 10 homologous proteins: Syn Ia–b, Syn

IIa–b, and Syn IIIa–f (38–40), encoded in mammals by alternative
splicing of three distinct genes (SYN1, SYN2, and SYN3) mapping
on distinct chromosomes (chromosome X, 3, and 22, respectively)
in human and mouse. Notably, Syn III is the most precociously
expressed isoform that has a role in the early phases of neural
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development and is downregulated in mature neurons (40). On
the other hand, Syn I and Syn II are expressed at low levels at birth
and their expression progressively increases along synaptogenesis
to reach a stable plateau at 1–2 months of life, approximately the
time window epilepsy appears (41).

All Syn isoforms display a domain structure with the NH2-
terminal region, highly conserved across isoforms and species,
divided in domains A, B, and C, and the COOH-terminal por-
tion, more divergent, composed of different spliced domains [D–I;
(38)]. Many of these isoforms share consensus sequences for phos-
phorylation by several protein kinases, which all contribute to
the modulation of Syn function (36). Domain A contains the
phosphorylation site for PKA and CaMKI/IV that modulates
the reversible association of Syn with SVs. Domain B, less con-
served and considered as a link region, contains phosphorylation
sites for MAPK/Erk, which also causes the redistribution of Syn
from SVs to the cytosol. Domain C, a large central region of
about 300 amino acids, mediates the interaction with actin fil-
aments and SVs and promotes SV clustering by inducing Syn
homo/hetero-dimerization (42, 43). This domain is phospho-
rylated by the tyrosine kinase Src (44) and contains residues
mediating the binding to ATP (45). The sequences of Syn iso-
forms at the COOH-terminal region diverge (domain D in Syn Ia
and Ib, domain G in Syn IIa and IIb, domain H in Syn IIa, and
domain J in Syn IIIa), although they all bear proline-rich regions
binding to several SH3-containing proteins (46, 47), and addi-
tional phosphorylation sites for CaMKII, MAPK/Erk, and cdk1/5,
which affect the biochemical properties of Syn I resulting in a
drastic reduction of its binding to both actin and SVs (48, 49).
Finally domain E, highly conserved and common to all “a” iso-
forms, modulates Syn targeting to the pre-synaptic terminals and
SV trafficking (50–53).

The best-characterized function of Syns is to control SV traf-
ficking and modulate neurotransmitter release at the pre-synaptic
terminal. The fine regulation of the balance between the reserve
and the readily releasable pool of SVs is strictly controlled by Syn
site-specific phosphorylation in response to stimulation, which
modulates Syn association with SVs, actin cytoskeleton, and other
synaptic proteins, and leaves SVs free to move close to the active
zone and undergo fusion. Besides the function of Syns in these
pre-docking stages of neurotransmission, recent data, supported
by the fact that at least part of Syn do not dissociate from SVs
upon fusion, strongly indicate that Syns play a role in the final
post-docking stages of exocytosis, including SV priming, fusion,
and recycling of the synaptic membrane in the area surrounding
the active zone [see Ref. (36), for review].

Beyond the role in synaptic transmission, the various Syn
isoforms play an important role in neuronal growth and synap-
togenesis. Lack of Syn I or Syn II was shown to impair neurite
outgrowth during the first days in vitro (54), while downregulation
or ablation of Syn III caused an impairment in the development
of axons at early stages in culture (55). Moreover, clear-cut struc-
tural and physiological defects were observed in the pre-synaptic
terminals of Syn KO neurons (56–58), confirming the role of Syn
isoforms in the modulation of synapse formation, maintenance,
and rearrangement [see Ref. (37), for review].

SYNAPSIN KO MICE ARE EPILEPTIC
Knockout mice for either Syn gene are viable and fertile, have a
normal life expectancy and brains of normal size and gross struc-
ture. As Syns are involved in the regulation of the excitability of
neuronal networks, it is not surprising that the impairment of Syn
function can result in epilepsy. Syn I KO, Syn II KO, Syn I/II dou-
ble KO, and Syn I/II/III triple KO are all prone to epileptic seizures
that appear approximately at 2–3 months of age, and progressively
aggravate with aging and the number of Syn genes ablated [(59,
60); see Ref. (61) for review]. The fact that epilepsy does not appear
at birth after ablation of Syn I or Syn II genes and that Syn III KO
mice are not epileptic can be explained by the specific expression
profile of the three Syn genes during development (55, 62). It is
therefore likely that mature synapses require physiological levels
of both Syn I and Syn II to achieve a stable excitation/inhibition
balance during activity, while Syn III seems to be dispensable
in this respect. In general, the loss of Syns disrupts the reserve
pool of SV and alters release dynamics. However, the pre- and
post-docking effects of the Syns differentially affect excitatory and
inhibitory neurons. This, together with the selective distribution
of the various Syn isoforms in distinct neuronal populations and
the non-overlapping functions of Syn isoforms on neurotrans-
mitter release, can result in an imbalance between excitatory and
inhibitory synaptic transmission, both under conditions of basal
activity and of high-frequency stimulation, potentially leading to
epileptogenesis (31, 33, 34).

SYNAPSIN KO MICE DISPLAY AN ASD-LIKE PHENOTYPE
Although it is not an easy task to translate the complex symptoms
of human ASD into mouse behaviors, the study of the phenotype
of mice bearing deletions in the genes found to be mutated in
ASD patients is fundamental for the understanding of how dys-
function of single components of the synaptic protein network
may result in a general functional impairment that generates the
disease. Such mouse models of ASDs should display decreased
interest toward the environment, impaired sociability, and social
interactions/communication, as well as repetitive behaviors.

Synapsin KO mice have generally preserved cognitive func-
tions. A prospective study performed on Syn I and Syn II KO
mice revealed that cognitive and emotional performances are not
altered before the onset of epilepsy both in terms of spatial mem-
ory, object recognition, and emotional memory. Only later on,
during aging and in the presence of an overt epileptic pheno-
type, behavioral deficits in emotional memory in both genotypes
and spatial memory in Syn II KO mice emerged with respect to
wild type controls, and were associated with neuronal loss and
gliosis in the cortex and hippocampus (63). On the other hand,
Syn III KO mice that are not epileptic, exhibit only minor alter-
ations in spatial memory, object recognition, fear conditioning,
and fear-potentiated startle (40, 64).

When an array of socially directed behaviors (social interac-
tion and novelty, social recognition and social dominance, social
transmission of food preference, and social memory) were inves-
tigated in Syn I, Syn II, and Syn III KO mice before (2-months
old) and after (6-months old) the appearance of epilepsy (in Syn I
and Syn II KO mice), it was immediately clear that mice presented
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various impairments in social behaviors and repetitive behaviors
well before the appearance of the epileptic phenotype (65).

Synapsin III mice had the mildest phenotype and showed
impairments only in social interactions with an intruder, a
decreased social dominance and a decreased social transmission
of food preference. Syn I KO mice had an intermediate pheno-
type and had deficits in social and environmental exploration,
social transmission, and an increased social dominance. Finally,
Syn II KO had the more severe behavioral phenotype and exhib-
ited significant deficits in virtually all social behaviors tested
(with the exception of the social transmission of food preference)
together with an increased social dominance and repetitive self-
grooming behaviors (Figure 2). These data indicate that Syn KO
mice represent an interesting animal model for ASDs. The physio-
pathological importance of this model for the understanding of
ASD pathogenesis is underlined by the occurrence of ASD-linked
loss-of-function mutations in human SYN genes, as described in
the following section.

MUTATIONS IN THE SYN GENES ARE ASSOCIATED WITH
ASD IN HUMANS
Autism spectrum disorder-associated mutations were found in
both human SYN1 and SYN2 genes. Mutations in SYN1 were
mainly identified in patients affected by both epilepsy and autism,
whereas, mutations in SYN2 were observed in cases of ASD
without association with epilepsy. The identified mutations are
schematized in Figure 3. Two SYN1 nonsense mutations, causing
truncations at protein level (W356X and Q555X), were identified
in two large families with epilepsy with recessive X-linked trans-
mission. In addition to epilepsy, few males carrying the mutations
in SYNI also presented learning difficulties, low average IQ and
three of them meet criteria for ASD (66, 67). The SYN1 missense
mutation A550T was isolated in four patients: two with epilepsy,
one with autism, and one with both, whereas, the missense muta-
tion T567A was isolated in two individuals with ASD only. A
frameshift (A94fs199X) and two missense (Y236S and G464R)

FIGURE 2 | Summary of the abnormalities in social behavior (gray
squares) observed in young (Y, 2-month old) and adult (A, 6-month
old) Syn I, Syn II, and Syn III KO mice with respect to the behavior of
age-matched controls sharing the same genetic background [data from
Ref. (65)]. Adults, but not young, Syn I and Syn II KO mice are epileptic.

mutations were identified in the SYN2 gene in three males affected
by ASD (68). The mutation was transmitted by the non-affected
mother. Although this phenomenon was observed only in a lim-
ited number of individuals, it is consistent with a recent report
on the autosomal SHANK1 gene deletions associated with ASD in
males but not females (69). Autosomal sex-limited expression, in
addition to the mutation in X-linked genes, may contribute to the
increased prevalence of ASD in males with respect to females. The
exact mechanism at the basis of the higher penetrance in males
remains to be determined.

EFFECTS OF HUMAN SYN MUTANTS EXPRESSED IN SYN KO
NEURONS
To get insight into the molecular mechanisms of the pathogene-
sis of these diseases, the physiological effects of the SYN genetic
variants associated with ASDs or epilepsy (or both) were ana-
lyzed in vitro by expressing the mutants in primary hippocampal
neurons from Syn I KO or Syn II KO mice and their effects
on neuronal development, nerve terminal targeting, dynamics
of exo-endocytosis, and synaptic transmission were studied and
compared with wild type Syn.

For the W356X mutation in Syn I, the presence of a premature
stop codon in the human SYNI transcript leads to nonsense-
mediated mRNA decay (NMD). The few transcripts escaping
NMD process give rise to a mislocalized and non-functional pro-
tein (70). On the contrary, the second nonsense mutation (Q555X)
in Syn I does not lead to NMD and a truncated form of Syn I is
expressed that lacks about a half of the D domain and the COOH-
terminal domains E/F. The lack of D domain impairs its binding to
SVs, its phosphorylation by CaMKII and MAPK/Erk and its inter-
actions with SH3 domain-containing proteins such as PI3K, Src,
endophilin, and intersectin (67). Neurons expressing the Q555X-
Syn I showed a transient impairment of axonal outgrowth,but nor-
mal dendritic arborization, nerve terminal targeting, and synaptic
density (67). However, the exocytosis was impaired and the size of
the readily releasable and recycling pools of SVs decreased. Elec-
trophysiological recordings from neurons expressing Q555X-Syn
I mutant in Syn I KO background showed that, while the basal

FIGURE 3 | Human mutations in SYN1 and SYN2 associated with
epilepsy and/or ASD. Nonsense and missense mutations are indicated in
blue and black, respectively together with the associated pathology (E,
epilepsy; ASD, autism spectrum disorder).

www.frontiersin.org September 2014 | Volume 2 | Article 94 | 5

http://www.frontiersin.org
http://www.frontiersin.org/Child_and_Neurodevelopmental_Psychiatry/archive


 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Giovedí et al. The synaptic bases of autism spectrum disorders

excitatory and inhibitory transmissions were equally depressed by
the mutant, a clear imbalance in short-term plasticity was present
with excitatory synapses showing markedly increased paired-pulse
facilitation and post-tetanic potentiation as well as faster recov-
ery from depression, whereas, inhibitory synapses displaying an
enhanced post-tetanic depression and synaptic depression dur-
ing sustained high-frequency stimulation, as well as a marked
slowed-down recovery from depression. This excitatory/inhibitory
balance in the temporal domain of short-term synaptic plasticity
produced a marked hyperexcitability and enhanced network burst-
ing behavior at network level as demonstrated by multi-electrode
array recordings, also underlining the key role of short-term plas-
ticity at excitatory and inhibitory synapses in the regulation of
network excitability (71). Two further missense mutations in Syn
I (A550T and T567A) located in domain D did not significantly
affected phosphorylation, molecular interactions of Syn I, or neu-
ronal development. However, the mutants were not correctly tar-
geted to nerve terminals and, in addition, the dynamics and sizes
of the readily releasable and recycling pools of SVs at synaptic
terminals were impaired (67).

The Syn II mutants had distinct physiological effects. The
A94fs199X-Syn II mutant was not expressed in neurons, probably
because fast degradation of the aberrant protein. Both missense
mutants Y236S- and G464R-Syn II were correctly expressed in Syn
II KO neurons and targeted to nerve terminals. However, both
mutants impaired the size of the recycling pool of SVs, leaving
the readily releasable pool unaffected. Moreover, the G464R-Syn
II mutant also caused an impaired axonal growth and dendritic
development of neurons (68). Similar defects in neuronal devel-
opment and dendritic arborization were found in neurons silenced
for the ASD-associated gene CNTNAP2, with a resulting impair-
ment of neural circuit assembly and changes in network activity,
possible causes of ASD pathogenesis (72).

Synapsin KO neurons expressing the genetic variants of Syns
share common defects in SV pool dynamics. Syn I and Syn II
are known to control the density of SVs at the nerve terminal
and regulate their availability for release differentially, with Syn I
affecting both the readily releasable and recycling pools of SVs, and
Syn II only affecting the latter pool. The analysis of the dynam-
ics of exo-endocytosis in neurons expressing genetic variants of
Syns reflects these distinct effects. ASD manifestations begin in the
second/third year of life, a period of intense refinement, remodel-
ing, and experience-dependent plasticity of synapses. This periods
overlaps with developmental expression pattern of Syns. Impair-
ments in SV pool dynamics, associated with defects in short-term
plasticity and/or neuronal development, may thereby destabi-
lize the key processes of assembly of neuronal networks and the
balance between excitation and inhibition.

CONCLUDING REMARKS
Synapsins are not essential for synaptic transmission, but play a
key role in synaptic homeostasis and plasticity with direct con-
sequences in network activity and excitatory/inhibitory balance.
Based on the findings in human and mice, Syn genes may represent
a common genetic basis for epilepsy and ASD and, accordingly,
Syn KO mice can be considered a potentially interesting animal
model for ASD. Similar to what occurs in children with ASDs

and epilepsy, ASD-related behaviors in Syn I KO and Syn II KO
mice precede the onset of seizures and epilepsy does not sig-
nificantly affect the expression of the behavioral alterations in
adult mice. Moreover, the non-epileptic Syn III KO mice also
display some traits of social deficits. These observations lead to
the idea that epilepsy and ASD follow distinct and independent
pathogenic pathways, although the genetic basis appears to be
largely shared by the two diseases. Although the mutations in
the Syn genes found thus far account only for a limited num-
ber of ASD cases, they map into a “synaptic autism pathway”
in which dysfunctions of any of the genes essential for the reg-
ulation of synapse formation, excitation/inhibition balance and
activity-dependent plasticity can result in a similar ASD pheno-
type. Despite the inherent redundancy and robustness of mam-
malian biological systems, a focused dysfunction in one synaptic
gene can induce secondary changes in the synaptic machinery
impacting on synaptic plasticity, leading to complex dysfunc-
tions at the circuit level associated with the appearance of the
pathological phenotype. An example of this potential derange-
ment of a complex machinery by genetic dysfunction of a single
component is provided by the numerous and diverse genes impli-
cated in phototransduction whose mutation converges toward
the common clinical phenotype of Retinitis pigmentosa (73). In
addition, it has been proposed that gene alterations and sec-
ondary dysfunctions may accumulate non-linearly in complex
gene networks implicated in neural computation and higher brain
functions, such as those constituting the synaptome (74, 75).
In conclusion, although our map of ASD vulnerability genes is
rapidly progressing, many challenges remain for the future, par-
ticularly concerning the interactions between genetic, epigenetic,
and environmental factors to produce the complex ASD clinical
manifestations.
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