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Background: Molecular genetic alterations with prognostic significance have been
described in childhood acute myeloid leukemia (AML). The aim of this study was to establish
cost-effective techniques to detect mutations of FMS-like tyrosine kinase 3 (FLT3), nucle-
ophosmin 1 (NPM1), and a partial tandem duplication within the mixed-lineage leukemia
(MLL-PTD) genes in childhood AML.

Reviewed by:

Ulrike Bacher, MILL Munich Leukemia
Laboratory, Germany

Matthew James Oberley, University
of Southern California, USA

*Correspondence:

Shuhong Shen, Department of
Hematology/Oncology, Shanghai
Children’s Medical Center, Shanghai
Jiaotong University School of
Medicine, 1678 Dongfang Road,
Shanghai 200127 China

e-mail: shenshuhong@scmc.com.cn

Procedure: Ninety-nine children with newly diagnosed AML were included in this study. We
developed a fluorescent dye SYTO-82 based high-resolution melting (HRM) curve analy-
sis to detect FLT3 internal tandem duplication (FLT3-/TD), FLT3 tyrosine kinase domain
(FLT3-TKD), and NPM1 mutations. MLI-PTD was screened by real-time quantitative PCR.

Results: The HRM methodology correlated well with gold standard Sanger sequencing
with less cost. Among the 99 patients studied, the FLT3-ITD mutation was associated
with significantly worse event-free survival (EFS). Patients with the NPM7 mutation had
significantly better EFS and overall survival. However, HRM was not sensitive enough for
minimal residual disease monitoring.

Conclusion: High-resolution melting was a rapid and efficient method for screening of
FLT3and NPM1gene mutations. It was both affordable and accurate, especially in resource
underprivileged regions. Our results indicated that HRM could be a useful clinical tool for

rapid and cost-effective screening of the FLT3 and NPM1 mutations in AML patients.
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INTRODUCTION
Acute myeloid leukemia (AML) is a group of heterogeneous dis-
ease harboring different genetic alterations and with considerable
diversity in clinical behavior and prognosis (1-3). Karyotype is the
major prognostic factors in AML (1-3). Several molecular alter-
ations have been previously identified in children with AML, espe-
cially in cases with cytogenetic normal AML (CN-AML) (4-15).
FMS-like tyrosine kinase receptor (FLT3) internal tandem
duplications (ITDs) are caused by the duplication of the exon
14 sequence at juxtamembrane domain, leading to constitutive
activation of downstream signaling (16, 17). FLT3-ITD has been
described in 4-27% of patients with childhood AML and a high
FLT3-ITD allelic ratio is associated with worse outcome (4-7).
Point mutations in codon 835 or 836 of the FLT3 gene tyrosine
kinase domain (FLT3-TKD) occur in 3—11% of patients (4-7, 18,
19), but the prognostic relevance remains to be defined.

Abbreviations: FLT3, FMS-like tyrosine kinase 3; HRM, high-resolution melting
curve; ITD, internal tandem duplication; MLL-PTD, partial tandem duplication
within the mixed linage leukemia; NPM1, nucleophosmin 1; TKD, tyrosine kinase
domain.

Nucleophosmin 1 (NPMI) is a nuclear and cytoplasmic pro-
tein, which functions as a molecular chaperone to prevent protein
aggregation in the nucleolus and to regulate p53 levels (9). Point
mutations within the C-terminal region of the NPM1 gene result in
cytoplasmic accumulation of the mutated NPM protein (9, 11,12).
This occurs in ~25% of pediatric CN-AML cases and is associated
with a favorable clinical outcome (8, 10).

Partial tandem duplication (PTD) of the myeloid/lymphoid or
mixed-lineage leukemia (MLL) gene without major chromosome
structural aberrations involving band 11q23 has been identified in
5-13% of patients with de novo AML (13-15). Event-free survival
(EFS) and complete remission (CR) duration were shorter in adult
patients with CN-AML bearing MLL-PTD mutation than patients
with the wild-type MLL gene (13-15).

In the United States and Europe, mutation detections of FLT3-
ITD, FLT3-TKD, and NPM1 have been established as conventional
diagnostic tests in clinical practice. However, they have not been
applied to routine clinical care in China. Part of the reason has
been cost (20, 21); when facing a catastrophic event such as cancer,
it remains a significant challenge for Chinese pediatric oncologists
to provide valuable and affordable clinical diagnostic tests.
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Traditionally, FLT3-ITD, FLT3-TKD, and NPM1 mutations are
detected by PCR followed by electrophoresis or Tagman RQ-PCR
(17,22-24). The traditional PCR technique is convenient and less
expensive. However, it is an open tube system with increased
possibility of false positive results due to amplification prod-
uct carry-over contamination. Tagman RQ-PCR is a closed-tube
system requiring no post-PCR processing, and it has increased
sensitivity and higher resolution when compared to traditional
PCR. However, this technique can only detect known mutations
matching the designed probe. Thus, the search continues for a sen-
sitive, reliable, and good manufacturing procedure (GMP) leveled
detection system for both the known and potential unknown gene
mutations in clinical diagnosis.

High-resolution melting (HRM) curve analysis is a homoge-
nous, closed-tube, post-PCR technique for rapidly and efficiently
discovering genetic variations in DNA fragments (25-27), based
on the sequence dependent dissociation behavior of DNA when
exposed to increasing temperature. It is a simple, powerful, and
cost-effective method for a large scale genotyping project (28). The
accuracy of the technique depends on appropriate PCR design and
saturating DNA dyes.

In this study, we investigated using HRM analysis to evaluate
the prevalence of FLT3-ITD, FTL3-TKD, and NPM1 in childhood
AML. We also developed real-time quantitative PCR (RQ-PCR)
methodology to detect MLL-PTD gene mutations. We validated
the HRM technology and analyzed the clinical significance of gene
mutations in a group of 99 children with AML who were enrolled
in the AML-XH-99 protocol. The AML-XH-99 protocol was a
single arm clinical study to examine homoharringtonine, a plant
alkaloid that has been used to treat leukemia in China since the
1980s (29), in combination with chemotherapy to treat childhood
AML. The outcome of this trial has been previously published (30).

MATERIALS AND METHODS

PATIENTS

From January 1999 to December 2008, a total of 99 newly diag-
nosed PML/RARA negative AML pediatric patients were included
in this study. All 99 patients were already enrolled in the AML-XH-
99 protocol and had available bone marrow (BM) samples frozen
in the Biobank at Shanghai Children’s Medical Center.

At diagnosis, all patients underwent blood testing for complete
blood counts and biochemistry panels. BM cells were aspirated
for morphology, immunohistochemistry, karyotype, immunophe-
notyping, and molecular testings for RUNX1-RUNX1T1(AMLI1-
ETO), CBFB-MYH11, or PML-RARA gene mutations (31). CN-
AML is defined as leukemia without chromosomal abnormalities
by karyotype and negative for RUNX1-RUNX1T1, CBFB-MYH11,
or PML-RARA by PCR.

Additional BM samples were collected for research purposes at
the time of diagnosis (after a legal guardian signed an informed
consent). The mononuclear cells were isolated by Ficoll-Hypaque
gradient and cryopreserved in the Biobank. This study was
approved by the Institutional Review Board of Shanghai Children’s
Medica Center.

CHEMOTHERAPY
All patients were treated on the AML-XH-99 protocol, which
included induction, consolidation, and continuation therapies

(30). Induction consisted two cycles of DAE (daunorubicin
40 mg/m?/day, days 1-3, cytarabine 200 mg/m? every 12 h, days
1-7, and etoposide 100 mg/m?/day, days 1-3). Consolidation
included two courses of chemotherapy: (A) DA (cytarabine 2 g/m2
every 12 h, days 1-3, and daunorubicin 30 mg/m?/day, day 1 and
2); and (B) EA (cytarabine 2 g/m? every 12 h, days 1-3, and VP-
16 160 mg/m?/day, day 1 and 2). For continuation therapy, DA
alternating with EA, followed by two courses of HA (homohar-
ringtonine 3—4 mg/m?/day, days 1-9, and cytarabine 75 mg/m?
every 12 h, days 1-7), were given for a total of 12 cycles (30).

Complete remission was defined as marrow blasts <5%
with evidence of blood count recovery. Central nervous system
leukemia prevention consisted of intrathecal (IT) chemotherapy
with dexamethasone 5mg/m?, methotrexate 12.5mg/m? (max-
imum 12.5mg), and cytarabine 1mg/kg (maximum 35mg) at
various time points (30). Allogeneic hematopoietic stem cell
transplantation (Allo-HSCT) was performed in some relapsed or
refractory patients with suitable donors who had achieved CR or at
least a good partial response (PR, defined as a BM blast reduction
of >50%) after salvage chemotherapy.

SAMPLES

In this study, BM samples at diagnosis were analyzed for gene
mutations. Control BM samples came from patients with idio-
pathic thrombocytopenia who underwent BM aspiration to rule
out malignancy.

Total RNA was extracted from 1 x 10’7 BM mononuclear
cells (BMMC) using the phenol-chloroform—-isopropanol method
(TRIzol®, Invitrogen). One microgram of total RNA was reverse
transcribed according to the manufacturer’s protocols (Takara,
Japan). RNA quality and quantity were assessed relative to the
GAPDH housekeeping gene on the LightCycler® 480 System
(Roche Diagnostics, Penzberg, Germany). Samples with Ctgappn
values over 30 were considered uninterpretable.

HIGH-RESOLUTION MELTING ANALYSIS OF FLT3-ITD, FLT3-TKD, AND
NPM1 MUTATION

The PCR and melting analysis for FLT3 and NPM1I mutations was
performed on the LightCycler® 480, a real-time PCR machine with
HRM and 96/384 well capacity. All samples were tested in tripli-
cates. One positive control and one negative control with each gene
mutation, as well as one blank control with distilled water only,
were included in triplets on each run of unknowns. PCR was per-
formed from ~10 ng of cDNA, using 0.3 uM each of the relevant
forward and reverse primers in a total volume of 10 jL1 containing
5wl ES Taq HS premix (Takara) and 5 uM SYTO-82 (Invitrogen)
(32). PCR was performed at 94°C for 2 min, followed by 45 cycles
at 94°C for 10, 56°C for 105, 72°C for 20 s, and a final extension
step at 72°C for 5 min. The cycling conditions were the same for all
three amplicons, allowing them to be performed in one run. The
program ran for 40 cycles at 95°C for 30 s, 40°C for 30 s, then 60°C
—95°C (55, 1°C/s). Upon completion of the run, analysis was per-
formed using the software supplied with the LightCycler® 480. The
melting curves were normalized, and temperature shifted to allow
samples to be directly compared. Difference plots were generated
by selecting a negative control as the baseline. The fluorescence of
all other samples was plotted relative to this sample. Significant
differences in fluorescence were indicative of mutations.
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The primers used were: (1) FLT3-ITD: exon 11 (ITD-F)
GCAATTTAGGTATGAAAGCCAGC, exon 15 (ITD-R) GTTGCG
TTCATCACTTTTCCAA; (2) FLT3-TKD: TKD-FACGTGCTTGT-
CACCC, TKD-R TTAATGGTGTAGATGCCTTCAAAC; and
(3) NPMI: NPM-F TGACTGACCAAGAGGCTATTC, NPM-R
GACAGCCAGATATCAACTGTTAC.

RQ-PCR ANALYSIS OF MLL-PTD MUTATION

Real-time quantitative PCRs were performed on the LightCycler®
480 using ~20 ng of cDNA and 0.5 wM each of the relevant forward
and reverse primers: MLL-F3: AAGCAGCCTCCACCACCAGAAT
and MLL-R3: CCACGAGGTTTTCGAGGACTA in a total volume
of 10 il containing with 5l SYBR Green I premix (Takara) at
94°C for 2 min, followed by 35 cycles at 94°C for 10s, 56°C for
20s. Samples with CT values below 35 and with satisfying melting
peak at 82—-84°C were considered as MLL-PTD mutants.

SANGER SEQUENCING

For wild-type samples, PCR products were purified and sent
to outside facilities for Sanger sequencing. For samples with
mutations, PCR products were purified and cloned into TA vec-
tors (Takara, Japan). Plasmids extracted from clones that were
successfully inserted with target genes were sent for Sanger
sequencing.

STATISTICAL ANALYSIS

Event-free survival was defined as the time elapsed from study
enrollment to induction failure, relapse, or death. Overall sur-
vival (OS) was defined as the time from study enrollment until
death from any cause. EFS and OS were calculated using the

Kaplan—Meier method, and the log-rank test was used for com-
parisons of Kaplan—Meier curves. All p-values were two-sided and
p < 0.05 was considered as statistically significant. Statistical cal-
culations were performed using SAS version 9.2 (SAS Institute
Inc., Cary, NC, USA).

RESULTS

HRM ANALYSIS

Results were analyzed using the LightCycler® 480 associated soft-
ware (release 1.5.0). Data were presented in two formats: the
normalized plot (Figures 1A—C), in which the amount of interca-
lating dye remaining at any temperature point was expressed as a
fraction of the amount prior to data acquisition; and a difference
plot (Figures 1D-F), where the average HRM profile of the con-
trol samples was used by the genotype function of the machine
software as the standard wild-type profile for subsequent compar-
ison to each of the test samples. Each mutant allele had its own
distinctive melting curve when compared to the wild-type allele.
The distinct melting curves of the mutant became more apparent
when data were represented in a difference plot format than in a
normalized plot.

To assess the specificity of the HRM test, we selected nine
samples, seven of which tested positive and two negative for
FLT3-ITD. Direct Sanger sequencing confirmed 100% consis-
tency. Furthermore, we performed similar validation for the NPM1
gene mutation in six mutants and five wild-type samples. Results
were confirmed with 100% consistency when compared to Sanger
sequencing (Table 1). Sanger sequencing verification showed that
in patients with FLT3-ITD, the size of internal tandem duplication
varied from 3 to 66 bp. No difference was observed between the
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FIGURE 1 | Genetic variation of FLT3-ITD (A,D), FLT3-TKD samples were shown in two different plots: normalized plot (A-C) and
(B,E), and NPM1 (C,F) genes analyzed by high-resolution melting difference plot (D-F). Both plots enable differentiation between
(HRM) curve analysis. Fragments of three genes amplified by PCR control and wild-type samples (blue) and mutants (red, purple, and
and HRM analysis from cDNA isolated from patients and normal BM green). WT, wild-type.
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Table 1 | Sanger sequencing validation of FLT3-ITD (A) and NPM1 (B) gene mutations detected by HRM analysis using fluorescent dye SYTO-82.

No. 1 No. 2 No. 3 No. 4 No.5 No. 6 No. 7 No. 8 No. 9 Confirmation
(A) FLT3-ITD MUTATION VALIDATION
HRM Mut Mut Mut Mut Mut Mut Mut Wit Wit 100%
Sequencing Mut Mut Mut Mut Mut Mut Mut Wit Wit /
No. 1 No. 2 No. 3 No. 4 No.5 No. 6 No. 7 No. 8 No. 9 No. 10 Confirmation
(B) NPM1 MUTATION VALIDATION
HRM Mut Mut Mut Mut Mut Mut Wit Wit Wit Wit 100%
Sequencing Mut Mut Mut Mut Mut Mut Wit Wit Wit Wit /
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FIGURE 2 | Evaluation of the ability of HRM for MRD detection. Mutant
cDNA of FLT3-ITD (A), FLT3-TKD (B), and NPM1 (C) genes was titrated and
mixed with different ratio of wild-type cDNA to produce a range of mutant

s

MUT WT 1/100

1/1000 MUT WT 1/10 1/100 1/1000

allele dilutions. Fractions show the proportion of mutated/wild-type genes.
Color differences demonstrate the identification of sample types.
Duplications were made in columns.

size of the ITD and the results seen in HRM analysis in all the
samples analyzed. Sequencing of samples with FLT3-TKD con-
firmed the most frequent D835Y mutation. The NPM1 mutation
involved 4 bp insertions, which altered the tryptophan at amino
acid position 288.

We also tested whether HRM analysis could be used as a method
for MRD monitoring. The ability to detect low levels of FLT3-ITD,
FLT3-TKD, and NPM]I gene mutations in a background of non-
mutated DNA was evaluated by titrating each of the mutant alleles
with wild-type DNA to produce a range of the mutant allele dilu-
tions. Unfortunately, the lower limit of detection was 1/10 ~ 1/100
for FLT3-ITD and 1/100 ~ 1/1000 for both FLT3-TKD and NPM1.
This suggested that HRM analysis was not sensitive enough for
MRD monitoring in this study (Figure 2).

PATIENT CHARACTERISTICS AND GENETIC FINDINGS

Patient characteristics were summarized in Table 2. The mean
age of patients was 7 years (range 0.3-16.9 years). Slightly more
males than females were included in the study. Five patients had
M3 morphology. However, they were all negative for ¢(15;17)
and PML-RARA. Therefore, they were all treated with AML-
XH-99 protocol and were included in the analysis. Among all

99 PML-RARA negative AML patients, 22 (24.2%) were positive
for RUNX1-RUNXI1T1, and 1 (1.0%) was positive for CBFB—
MYH11. Fifty four patients (54.5%) had normal karyotype and
were defined as CN-AML.

Of the total 99 patients, HRM analysis detected 33 patients
with FLT3-ITD mutations, 10 with FLT3-TKD mutations, and 21
with NPM1 mutations. Four patients were positive for MLL-PTD
mutations (Table 3) by RQ-PCR. The presence of the mutations
was not mutually exclusive. Among the 33 patients with the FLT3-
ITD mutations, 4 had NPMI mutations, and 2 patients had the
MLL-PTD mutations. Similarly, among the 10 patients with the
FLT3-TKD mutations, 2 of them had NPM1 mutations and 1 had
the MLL-PTD mutation. One patient was found to have concur-
rent FLT3-ITD, FLT3-TKD, and NPM1 mutations. In total, 66%
patients had at least one gene mutation.

Of the 54 CN-AML patients, there were 18 (33.3%) FLT3-
ITD mutants, 4 (7.4%) FLT3-TKD mutants, 13 (24.1%) NPMI
mutants, and 3 (5.56%) MLL-PTD mutants (Table 3).

CLINICAL OUTCOME
The EFS and OS at the median follow-up time of 49.6 months
for all patients were 45.2 and 50.0%, respectively. The EFS

Frontiers in Pediatrics | Pediatric Oncology

September 2014 | Volume 2 | Article 96 | 4


http://www.frontiersin.org/Pediatric_Oncology
http://www.frontiersin.org/Pediatric_Oncology/archive

Liuetal.

HRM for AML mutations

Table 2 | Clinical characteristics of 99 AML patients.

Characteristics Total patients

Number 99
Mean age (year) 70 (0.3-16.9)
Sex, number of patients (%)

Male 65 (65.7)
Female 34 (34.3)
Median WBC count, x10%/L (range) 20 (1.3-262)
Median BM blasts, % (range) 72 (18.4-99.6)

Fab subtype, number of patients (%)
MO 0(0)
M1 10 (10.1)
M2 47 (475)
M3 5(5.1)
M4 10 (10.1)
M5 23 (23.2)
M6 1(1.0)
M7 3(3.0)

Cytogenetic alterations, no. (%)
t(8;21)(022;G22)/RUNX1-RUNX1T12 22 (22.2)
Inv(16)(p13.1922)/CBFB-MYH112 1(1.0)
Others® 22 (22.2)

°t(8;21)(q22;922) and Inv(16)(q13.1922) were detected by karyotyping or PCR (for
RUNXT-RUNX1T1 and CBFB-MYH11).
bSamples with other cytogenetic abnormalities.

Table 3 | Mutation frequencies in pediatric AML.

Gene mutations Total (n=99) CN-AML (n=54)
FLT3-ITD 33 (33.3%) 18 (33.3%)
FLT3-TKD 10 (10.1%) 4(74%)
NPM1 21 (21.2%) 13 (24.1%)
MLL-PTD 4 (4%) 3 (5.5%)

of patients with FLT3-ITD mutations were significantly worse
when compared to that of patients without FLT3-ITD mutations
(p=10.038, Figure 3A). The OS for patients with and without
FLT3-ITD mutations were 38 and 55%, respectively. However, the
difference was not statistically significant (Figure 3D). There was
no significant difference in EFS and OS for patients with or with-
out FLT3-TKD mutations (Figures 3B,E). The EFS and OS for
all patients with NPM1 mutations were significantly better than
patients without NPM1 mutations (p =0.01, Figures 3C,F). All
four patients with MLL-PTD mutations died from disease.

In the CN-AML group of 54 patients, the EFS and OS time
were 50 and 53%, respectively. We found no significant difference
in EFS and OS for patients with or without FLT3-ITD muta-
tions (Figures SIA,D in Supplementary Material) or FLT3-TKD
mutations (Figures S1B,E in Supplementary Material). There is
a trend toward better EFS in patients with the NPMI muta-
tion when compared to patients without the mutation (p =0.07,
Figure S1C in Supplementary Material); OS was significantly bet-
ter (p=0.05, Figure S1F in Supplementary Material). All three

patients with MLL-PTD mutations in the CN-AML group died of
disease progression.

DISCUSSION

In this study, we developed HRM assays for assessment of
FLT3-ITD, FLT3-TKD, and NPM1 gene mutations. As previously
described, HRM allows closed-tube identification of mutations
using a real-time PCR machine now common to most labs. Using
the LightCycler® 480 Real-Time PCR System, PCR and analysis
can be performed in one instrument. There is also less cDNA
processing required, compared to non-homogeneous (gradient or
gel-based) mutation screening methods. The PCR was easy to set
up and the turn-around time was about 24 h. Fluorescent dye
SYTO-82 did not inhibit the PCR, did not affect melting tempera-
ture, and was accurate for mutation detection. More importantly,
it only cost $0.011 USD/test, a fraction of the cost of Sanger
sequencing (25-27, 33).

Previously, Tan et al. (34) studied FLT3 and NPMI exon 12
mutations in a cohort of 44 adult patients with normal karyotype
AML. HRM was used as a screening tool for confirmatory sequenc-
ing. In the pediatric samples we tested, HRM demonstrate 100%
accuracy when compared to the gold standard Sanger sequenc-
ing in the randomly selected samples. This was consistent with
the previous reports using HRM to detect mutations in different
cancer types (33, 35-38). Compared to Sanger sequencing, the
cost of HRM was lower and turn-around time was shorter (33). It
was shown that FLT3-ITD with large base pair insertion could be
analyzed with agarose gel electrophoresis (39). However, gel elec-
trophoresis will not be able to differentiate mutant from wild-type
when inserted fragments are shorter, such as the NPM1 mutations
in our study, in particular, most of which have only 4 bp insertions.

High-resolution melting analysis also had its limitations. HRM
can only serve as a screening method and it will not give the exact
mutational status. The allelic ratio of FLT3-ITD also could not be
identified using HRM. Furthermore, as we experienced, this test
was not sensitive enough to be used as MRD monitoring. How-
ever, HRM is time- and cost-saving, with the major advantage of
preventing sample contamination due to the closed tube system.
HRM could be a suitable initial clinical screening tool for resource
underprivileged countries with large patient populations. Once a
mutation is detected, Sanger sequencing could be used as confir-
mation if necessary. Overall, it can be considered cost-effective in
these regions.

Our analysis included 99 children with AML. The frequencies
of FLT-ITD, FLT3-TKD, and NPM1 identified in this study are
similar to previous reports in the pediatric series (4-8, 11, 12).
In our whole cohort of patients, FLT3-ITD mutations were sig-
nificantly associated with worse EFS. In patients with FLT3-TKD,
no significance in clinical outcome was found. These results were
also in agreement with other reports (4-8). Similarly, the favorable
outcome among patients with the NPM1 mutation in our patient
cohort was consistent with previously published data (8, 11, 12).

Regarding the prognostic significance of gene mutations in the
CN-AML group, we and others found that FLT3-ITD and NPM1
were still the most common among the mutated genes examined
(4-8, 11, 12). However, we failed to find a significant difference
in the outcome between CN-AML patients with and without
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FIGURE 3 | Kaplan-Meier curves of EFS (A-C) and OS (D-F) for all 99 patients with or without FLT3-ITD, FLT3-TKD, and NPM1 gene mutations.

FLT3-ITD mutations, while the survival advantage in patients
with NPMI mutations remained significant. The discrepancy in
the outcome of CN-AML patients with FLT3-ITD mutations in
our study when compared to published data could be due to some
of the patients possibly not having a high FLT3-ITD allelic ratio,
or small sample size. In addition, some of the CN-AML patients
may not be truly “cytogenetic normal” because FISH was not per-
formed in most of the patients due to the high cost of the test
($350 USD per test).

Our study also established an RQ-PCR analysis for MLL-PTD
and identified that 4% of patients harbored MLL-PTD mutations,
similar to the published results (13—15). The survival results of
this group were extremely poor. All of the patients with MLL-PTD
mutations died of recurrent or refractory disease. However, the
number is too small to make any meaningful conclusions, and
further studies are warranted.

In conclusion, HRM is a fast, cost-effective screening diagnostic
method for detection of the gene mutations FLT3-ITD, FLT3-TKD,
and NPMI, especially in resource underprivileged countries. The
frequencies and outcome prediction values of FLT-ITD, FLT3-
TKD, and NPMI gene mutations identified in this study were
similar to previous reports in other pediatric studies. Further
studies are planned using Sanger sequencing to validate the HRM
analysis in all patient samples in current pediatric AML trials.
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