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The development of the layered cerebral cortex starts with a process called preplate
splitting. Preplate splitting involves the establishment of prospective cortical layer 6 (L6)
neurons within a plexus of pioneer neurons called the preplate. The forming layer 6 splits
the preplate into a superficial layer of pioneer neurons called the marginal zone and a deeper
layer of pioneer neurons called the subplate. Disruptions of this early developmental event
by toxin exposure or mutation are associated with neurological disease including severe
intellectual disability. This review explores recent findings that reveal the dynamism of
gene expression and morphological differentiation during this early developmental period.
Over 1000 genes show expression increases of ≥2-fold during this period in differentiating
mouse L6 neurons. Surprisingly, 88% of previously identified non-syndromic intellectual-
disability (NS-ID) genes are expressed at this time and show an average expression increase
of 1.6-fold in these differentiating L6 neurons.This changing genetic program must, in part,
support the dramatic cellular reorganizations that occur during preplate splitting. While dif-
ferent models have been proposed for the formation of a layer of L6 cortical neurons within
the preplate, original histological studies and more recent work exploiting transgenic mice
suggest that the process is largely driven by the coordinated polarization and coalescence
of L6 neurons rather than by cellular translocation or migration.The observation that genes
associated with forms of NS-ID are expressed during very early cortical development raises
the possibility of studying the relevant biological events at a time point when the cortex
is small, contains relatively few cell types, and few functional circuits. This review then
outlines how explant models may prove particularly useful in studying the consequence of
toxin and mutation on the etiology of some forms of NS-ID.

Keywords: preplate, reelin, fetal alcohol spectrum disorders, dendritogenesis, Golgi apparatus

INTRODUCTION
Neocortical development in human is initiated in the seventh week
of gestation by the appearance of a layer of pioneer neurons, called
the preplate or primordial plexiform layer (1, 2). Preplate neurons
lie underneath the meninges and ultimately these neurons cover
both cerebral vesicles. At this time, the human cortical wall is only
~250 µm thick, the majority of which is ventricular zone (VZ)
(neural precursor cells) and the remaining 20–30 µm contains
these early differentiating neurons of the preplate (3, 4). For com-
parison, the mouse preplate stage corresponds to embryonic day
12.5 post conception (E12.5), a time when the cortical wall has a
similar composition of cells and a similar thickness (~150 µm) to
the human preplate stage cortex.

Starting at the seventh to eighth week of gestation in human or
E13.5 in mouse, a process called preplate splitting initiates the for-
mation of cortical layering. In the mouse, preplate splitting begins
in the lateral neocortex and proceeds dorsally and caudally over
the next embryonic day (5). Preplate splitting is an early event in
cortical development and involves the establishment of an orga-
nized layer of cortical plate (CP) neurons within the preplate. The

establishment of future layer 6 (L6) neurons splits the preplate into
a superficial layer of pioneer neurons called the marginal zone
(MZ) and a deeper layer of pioneer neurons called the subplate
(SP) (6–10). Preplate splitting is the first step in the formation of
the layered cortex and is followed by the successive migration and
lamination of cortical layers 5–2 in an inside out fashion (11).

PIONEER NEURONS OF THE PREPLATE
Both MZ neurons and SP neurons have essential roles in orga-
nizing the developing cortex (12, 13). MZ neurons, primarily
Cajal–Retzius cells, secrete a critical chemotropic factor called
Reelin (14) (discussed below) that is required for correct posi-
tioning of migrating CP neurons. SP neurons constitute a diverse
group of cells (15, 16), which are essential for correct thalamocor-
tical afferent targeting (17–19). Absent correct preplate splitting,
the SP cells remain superficial in the cortex and both cortical lay-
ering (20) and thalamocortical targeting is disrupted (21, 22).
Thus, preplate splitting is a fundamental event that enables the
later assembly of the upper cortical layers and leads to a properly
formed cerebral cortex (23–25).
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Olson Early cortical development and neurological disease

GENE EXPRESSION DURING EARLY CORTICAL
DEVELOPMENT
The significance of preplate splitting is underscored by the large
number of genes specifically upregulated during this period. A
prior study used fluorescence activated cell sorting to purify genet-
ically labeled, developing L6 neurons (26). Sorted cells from the
transgenic Eomes:eGFP1 mouse embryos (27) were subjected
to RNA extraction and Affymetrix gene chip analysis. In these
embryos, enhanced green fluorescent protein (eGFP) expression
is under the control of the Eomes (Tbr2) promoter. Eomes is a
transcription factor that is selectively expressed by intermediate
neural precursor cells of the glutamatergic cortical lineage (28,
29). In transgenic embryos, GFP expression is transient but per-
sists for several days in immature post mitotic neurons of the
excitatory cortical lineage. By comparing the GFP+ population,
primarily immature neurons, to the GFP-population, primarily
neural precursors, up and down regulated genes in the differentiat-
ing excitatory cortical lineage were identified. Approximately half
the genome was expressed by these neurons and more than 1000
genes show expression increases≥2-fold during the first ~24–36 h
after cell cycle exit (26). Genes of interest could then be validated by
comparison to the Genepaint in situ database2. This prior study
validated, and grouped by spatial expression pattern, 317 genes
that were upregulated≥3-fold during early cortical neuron differ-
entiation. Importantly, over half of these highly upregulated genes
have been associated with neuronal disease (26).

This dataset is a valuable resource that can be queried for
genes specifically linked to neurological disorders including non-
syndromic intellectual disability (NS-ID) (30). Of 46 human NS-
ID genes identified previously (30), 43 were represented within
this dataset, i.e., represented on the mouse Affymetrix Gene 1.0
ST Array (Table 1). Of these 43, 38 are expressed above a strin-
gent threshold of RMA= 7.0, and these genes display an average
expression level of RMA= 9.5, placing them in the approximate
top third of all expressed genes in these immature neurons. At the
onset of preplate splitting (E13.5), the expressed genes display an
average increased expression of 1.6-fold in GFP+ neurons versus
GFP-precursors. Surprisingly, only 2 genes of the 38 (MAGT and
ARX) were downregulated ≥1.5-fold in differentiating neurons
(i.e., more highly expressed in neural precursors than in differ-
entiating neurons). Thus, the majority of identified NS-ID genes
are highly expressed and upregulated by differentiating CP neu-
rons during this early differentiation period, well prior to synapse
formation.

What functions might these NS-ID genes be performing during
this early period? Expression analysis identified 15 out of 38 (40%)
of these early expressed NS-ID gene products as being localized
to the nucleus with most of these genes having functions in tran-
scription, chromosomal remodeling, or RNA transport (Table 1)
(30). An additional 10 of 38 (26%) of the predicted gene prod-
ucts localize to the plasma membrane, where they perform diverse
functions as synaptic proteins, adhesion proteins, transporters,
and receptors. This group includes Cadherin15 (CDH15) and a

1http://www.gensat.org
2http://www.genepaint.org

subunit of an ionotropic glutamate receptor (GRIK2). Four out
of five NS-ID gene products that localize to the cytoplasm are
involved in the regulation of small GTPases, namely, Rho, Cdc42,
and Rab1, which coordinate cytoskeletal remodeling and vesicu-
lar transport, respectively. The five most upregulated NS-ID genes
(STXBP1, SYP, FMR2, KIRREL3, and CASK) encode proteins with
likely synaptic function. This was a surprise, since there are no
morphologically identified synapses on L6 neurons at this time
in development. While some of these early expressed mRNAs
may not encode functional proteins, it is likely that many NS-
ID genes have important roles during this very early period of
cortical development.

CELLULAR DYNAMICS DURING EARLY CORTICAL
DEVELOPMENT
This dynamic transcriptional profile may underlie the coincident
processes of cortical neuron migration and molecular differenti-
ation. Before achieving their mature form, cortical neurons are
known to transition through multiple morphological states: from
multipolar neuron to radial glial-associated migrating neuron to
post migratory differentiating neuron (31–34). Immediately after
cell cycle exit, the immature neuron adopts a multipolar morphol-
ogy and migrates slowly through intermediate zone (IZ) (33, 34)
while simultaneously initiating an axon (35, 36). The multipolar
neuron, trailing an axon, continues migration until it reaches the
SP, the layer of pioneer neurons that underlie the forming CP.
At the SP, migrating neurons change from the multipolar shape
to a bipolar shape coincident with their attachment to a radial
glial fiber (37). The neuron, now apposed to the radial glial fiber,
migrates through the developing CP in a saltatory (stepwise) fash-
ion (38). As the neuron approaches the top of the CP, the neuron
detaches from the radial glial fiber and translocates into position
underneath the MZ (future layer 1) (38) where it elaborates an
apical dendrite and becomes excitable.

The sequence of morphological changes is less understood dur-
ing the earlier period of preplate splitting. Two models have been
proposed to account for the appearance of L6 neurons within the
preplate. The first model posits direct somal translocation of the
immature neuron from the VZ into the preplate (38, 39). This
translocation involves the rapid movement of the nucleus into the
leading process of the neuron and is thought to occur indepen-
dent of radial glial guidance or attachment (38). Thus, as more
L6 neurons translocate into the preplate, the preplate is split into
the MZ and SP. This model, however, appears inconsistent with
prior histological observations using electron microscopy (7, 40)
and the Golgi stain method (7, 40), or with more recent observa-
tions made from the Eomes:eGFP embryonic cortex (10). In these
animals, GFP expressing neurons of the excitatory lineage were
found intermixed with Calretinin expressing preplate neurons,
prior to preplate splitting (Figures 1A–C). Furthermore, below
this mixture of preplate and L6 neurons lies a thick IZ composed
of multipolar neurons that do not show translocating morphology
(i.e., highly elongated in the radial direction). Thus, the GFP+ cells
that are poised to enter the developing CP are not translocating
from the VZ. Instead, preplate splitting appears to be initiated by
polarized dendritic growth of L6 neurons and the concurrent coa-
lescing of these L6 neurons into an organized and recognizable CP.
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Table 1 | List of non-syndromic intellectual disability (NS-ID) genes expressed in immature excitatory neurons.

Gene Affymetrix ID Non-syndromic/

syndromic

Gene name Gene function Protein

localization

E13.5

GFP−

precursor

RMA

E13.5

GFP+

neuron

RMA

E14.5

GFP+

neuron

RMA

E13.5

RMA

fold-up

E14.5

RMA

fold-up

ACSL4 10607089 NS Acyl-CoA synthetase long-chain

family member 4

Fatty acid metabolism Mito 8.3 8.5 8.0 1.2 0.8

AFF2/FMR2 10599927 NS Fragile X mental retardation 2 DNA binding protein/activator of

transcription?

Nuc 8.0 9.9 9.7 3.7 3.2

AGTR2 10599001 NS/S Angiotensin II receptor, type 2 G-protein-coupled

receptor/programed cell death

PM 5.4 5.3 5.5 0.9 1.0

AP1S2 10603051 NS/S Adaptor-related protein

complex 1 sigma 2 subunit

Clathrin recruitment and

sorting/synaptic vesicles

Golgi 8.8 9.3 9.2 1.4 1.3

ARHGEF6 10604713 NS Rac/Cdc42 guanine nucleotide

exchange factor 6

GEF for Rac and Cdc42 Cyto 6.1 4.5 4.7 0.3 0.4

ARX 10600755 NS/S Aristaless related homeobox Transcriptional regulation during

development

Nuc 9.8 7.2 7.4 0.2 0.2

ATRX 10606263 NS/S Transcriptional regulator ATRX Chromatin remodeling Nuc 10.2 10.5 10.4 1.2 1.2

BRWD3 10606393 NS/S Bromo domain and WD repeat

protein 3

JAK/STAT signaling in

drosophila/chromatin modifier?

Nuc 8.7 9.3 9.0 1.5 1.2

CASK 10603708 NS/S Calcium/calmodulin-dependent

serine kinase

Kinase and scaffolding at

synapses/MAGUK family protein

Syn, PM, Nuc,

Cyto

10.3 11.5 11.4 2.2 2.2

CC2D1A 10580100 NS Coiled-coil and C2 domain

containing 1A

Transcriptional regulator/NF-κB

pathway activator

Nuc, Cyto 7.6 7.9 7.9 1.2 1.2

CDH15 10576175 NS/S Cadherin 15 Intercellular adhesion protein PM 7.1 7.0 7.1 0.9 1.0

CRBN 10546775 NS Cereblon Expression of potassium channels PM, Cyto 9.4 10.0 9.8 1.5 1.3

DLG3 10601062 NS Synapse-associated protein 102 Post-synaptic density

scaffold/MAGUK family protein

Syn, PM, ER,

Cyto

8.9 9.5 9.5 1.5 1.5

DOCK8 10462140 Dedicator of cytokinesis 8 GEF?/F-actin organization PM, Cyto, Nuc 6.1 6.1 6.1 1.0 1.0

FGD1 10602401 NS/S Faciogenital dysplasia protein GEF for Cdc42 Cyto 9.3 9.1 9.2 0.9 0.9

FTSJ1 10603508 NS FtsJ homolog 1 rRNA processing Nuc 9.8 9.9 9.7 1.1 0.9

(Continued)
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Table 1 | Continued

Gene Affymetrix ID Non-syndromic/

syndromic

Gene name Gene function Protein

localization

E13.5

GFP−

precursor

RMA

E13.5

GFP+

neuron

RMA

E14.5

GFP+

neuron

RMA

E13.5

RMA

fold-up

E14.5

RMA

fold-up

GDI1 10600390 NS GDP dissociation inhibitor 1 Inhibitor of Rab GTPases Cyto 11.7 12.8 12.5 2.2 1.8

GRIK2 10368999 NS Glutamate receptor,

ionotropic„ kainate 2

Subunit of glutamate receptor

(kainate)

PM, Syn 9.7 10.2 9.2 1.4 0.7

HUWE1 10602501 NS/S HECT, UBA, and WWE domain

containing 1

Ubiquitin E3 ligase/protein

ubiquitination

Nuc, Cyto 10.5 10.5 10.6 1.0 1.0

IL1RAPL1 NA NS Interleukin 1 receptor

accessory protein-like 1

Vesicle release/dendrite

differentiation

PM NA

JARID1C/

KDM5C

10602644 NS Jumonji, AT rich interactive

domain 1C

Transcriptional regulation/chromatin

remodeling

Nuc 9.9 9.8 10.0 0.9 1.1

KIRREL3 10584165 NS/S Kin of IRRE like 3 Synaptogenesis? PM, Cyto, EC 7.5 8.9 9.3 2.5 3.3

MAGT1 10606301 NS Magnesium transporter 1 Mg2+ uptake/N-glycosylation ER 10.4 8.5 8.2 0.3 0.2

MBD5 10471967 NS/S Methyl-CpG binding domain

protein 5

Transcriptional regulation? Nuc 7.8 8.5 8.5 1.6 1.6

MECP2 10605247 NS/S Methyl-CpG binding protein 2 Transcriptional regulation Nuc 8.8 9.0 9.1 1.1 1.2

NLGN4X 10601152 NS X-linked neuroligin 4 Synaptic adhesion protein PM, Syn 9.5 9.9 9.8 1.3 1.2

OPHN1 10605884 NS/S Oligophrenin 1 Rho-GTPase activating protein Cyto 8.2 9.3 9.3 2.2 2.1

PAK3 10602198 NS p21-activated kinase 3 Effector of Rho-GTPases Cyto 9.9 10.1 9.9 1.1 1.0

PQBP1 10603373 NS/S Polyglutamine binding protein 1 Transcriptional regulation Nuc, Cyto 10.9 11.3 10.8 1.3 1.0

PRSS12 10495854 NS Neurotrypsin Synaptic protease/cleaves

agrin/synaptic plasticity

EC 6.9 7.3 7.1 1.3 1.2

PTCHD1 10607486 NS Patched domain 1 Hedgehog receptor? PM 6.4 6.5 6.4 1.1 0.9

RPS6KA3 10602772 NS/S Ribosomal protein S6 kinase,

90kDa, polypeptide 3

Ras/Map/ERK regulation Cyto 9.8 9.8 9.6 1.0 0.9

SHANK2 10559343 NS SH3 and multiple ankyrin

repeat domains 2

Scaffolding and cell adhesion

protein/synaptic plasticity

Cyto, Syn 7.1 7.7 7.9 1.5 1.7

(Continued)
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Table 1 | Continued

Gene Affymetrix ID Non-syndromic/

syndromic

Gene name Gene function Protein

localization

E13.5

GFP−

precursor

RMA

E13.5

GFP+

neuron

RMA

E14.5

GFP+

neuron

RMA

E13.5

RMA

fold-up

E14.5

RMA

fold-up

SHROOM4 10598240 NS/S Shroom family member 4 Cytoskeletal architecture Cyto 6.2 5.7 5.8 0.7 0.8

SLC6A8 10600210 NS Solute carrier family 6

member 8

Creatine transporter PM 8.4 8.3 8.5 0.9 1.1

STXBP1 10481711 NS Syntaxin-binding protein 1 Synaptic vesicle docking and

fusion/neurotransmission

PM, Syn, Cyto 8.6 10.8 10.9 4.6 5.0

SYNGAP1 10443091 NS Synaptic Ras GTPase activating

protein 1

NMDA receptor

complex/Ras/Map/ERK regulation

PM, Syn 9.6 10.2 10.7 1.6 2.1

SYP 10598359 NS/S Synaptophysin Synaptic vesicle protein Syn 8.8 10.9 10.6 4.2 3.5

TSPAN7 10598626 NS/S Tetraspanin 7 Synapse maturation? PM, Syn 11.9 11.7 11.2 0.8 0.6

TRAPPC9 NA NS NIK- and IKKB-binding protein Neuronal NF-κB signaling/vesicular

transport

Golgi, ER, Cyto NA

TUSC3 10571371 NS Tumor suppressor candidate 3 Mg2+ uptake/oligosaccharide

transferase/N-glycosylation

ER 9.3 10.2 10.2 1.8 1.8

UPF3B 10604078 NS/S UPF3 regulator of nonsense

transcripts homolog B

mRNA nuclear export and

surveillance

Nuc, Cyto 7.9 8.1 8.0 1.1 1.1

ZNF41/

zfp27 56%

NA NS Zinc finger protein 41 Putative repressor of transcription Nuc NA

ZNF674/

zfp182 56%

10603881 NS Zinc finger protein 674 Putative repressor of transcription Nuc 6.9 7.5 7.2 1.5 1.2

ZNF711/

zfp711 98%

10601492 NS Zinc finger protein 711 Activator of transcription? Nuc 8.6 9.7 9.4 2.1 1.7

ZNF81/

zfp160

47.4%

10442172 NS Zinc finger protein 81 Repressor of transcription? Nuc 8.3 8.9 8.6 1.5 1.2

A dataset of genes expressed by immature mouse cortical neurons at E13.5 and E14.5 (26) was queried for the expression of human NS-ID orthologs identified in (30). The expression values are reported as RMA

(robust multichip average) as a log2 scale (e.g., RMA 9.0 is twofold higher than RMA 8.0).The fold-up values are derived from comparing the expression of the gene in the GFP+ neuronal population to the expression

of the gene in GFP-neural precursors. Highlighted rows identify genes that are either not represented in the mouse data set (NA) or are expressed at levels below threshold (RMA=7.0). Mouse zinc finger protein

(Zfp) orthologs are listed with their percent amino acid identity to the corresponding human zinc finger protein (ZNF). The human NS-ID table is modified from Kaufman et al. (30) with permission.

EC, extracellular; ER, endoplasmic reticulum; Golgi, Golgi apparatus; Syn, synapse; PM, plasma membrane; Nuc, nucleus; Mito, mitochondria.
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Olson Early cortical development and neurological disease

FIGURE 1 | Cellular events that contribute to cortical layer 6 formation
and preplate splitting. (A) Distribution of Calretinin immunopositive
preplate neurons prior to (left), during (middle), and after (right) preplate
splitting. (B) A single confocal slice through the Eomes:eGFP cortex at the
same regions as in (A), showing the distribution of GFP+ excitatory cortical
neurons (green) and Calretinin+ preplate neurons (red) and Hoechst+ nuclei
(blue). (C) Model of the corresponding cellular rearrangements during the

mixed preplate stage, where L6 neurons are intermingled with preplate
neurons, the preplate splitting stage, where L6 neurons become radially
oriented and coalesce into a recognizable cellular layer and the cortical
plate stage, where migrating neurons enter the CP on radial glial fibers.
Abbreviations: marginal zone (MZ), preplate (PP), cortical plate (CP),
subplate (SP), intermediate zone (IZ), ventricular zone (VZ). Scale bar is
25 µm in (A,B).

The calcium-binding protein Calretinin is a marker for subsets of
both MZ and SP neurons during early rodent cortical development
(41, 42) and therefore the separation of preplate Calretinin+ cells
into the MZ and SP groups is a hallmark of preplate splitting. In
this model, Calretinin+MZ neurons stay in place and Calretinin+

SP neurons either actively migrate away (43) from or are passively
displaced by the coalescing L6 neurons. Thus, the initial phase of
preplate splitting is driven by active reorganization of these L6
neurons, rather than their translocation. Future imaging studies
should help resolve these two models. In both models, however,
the period of preplate splitting represents a period of dynamic
cellular transformations.

DISRUPTIONS OF EARLY CORTICAL DEVELOPMENT
Disruptions of preplate splitting either by toxin or mutation (44)
are associated with serious neurological disability including men-
tal retardation, epilepsy (45), and possibly autism (46). Prenatal
exposure to alcohol is a leading cause of mental retardation and

intellectual disability (47, 48). The CDC estimates that 0.2–1.5 per
1000 live births are children with fetal alcohol syndrome (FAS),
a syndrome defined by mental dysfunction (49). The cognitive
deficits caused by prenatal exposure to EtOH are likely reflected
in the specific functional and structural abnormalities found in
brains of alcohol-exposed children (50, 51).

EtOH exposure is known to impact neuronal plasticity and
these disruptions range from the short term (e.g., memory deficits
caused by binge drinking) (52–54) to long term [e.g., disrup-
tion in memory and cognition associated with alcoholism (55)]
to permanent [e.g., structural changes and intellectual disability
associated with FASD (56, 57)] or chronic alcoholism (58). The
disruptions caused by ethanol exposure vary with time period
of exposure (59, 60). This differential sensitivity to ethanol may
reflect the major underlying cellular processes occurring at the
time of exposure (61).

Although EtOH exposure strongly promotes apoptosis during
the synaptic formation period (62), EtOH can also target multiple
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Olson Early cortical development and neurological disease

events prior to synapse formation including neurogenesis, neu-
ronal migration (63), axonal outgrowth (64, 65), and dendritic
development (66–68). These biologically important processes can
be assayed using early embryonic cortical explants. At this time,
the cortex is small, composed of relatively few cell types and have
few synapses. Nevertheless, these explants captures critical organ-
otypic interactions including signals derived from other neurons
as well as non-neuronal elements including radial glia (69, 70),
blood vessels (71), meninges (72), and associated extracellular
matrix (14). This organotypic environment provides the multi-
ple substrates and signals that allow cortical neurons to mature
through intermediate stages and to finally adopt appropriate form
and function. Understanding how EtOH disrupts these signaling
systems may be required for a fuller picture of the etiology FASD
and the development of NS-ID.

WHOLE HEMISPHERE EXPLANTS
A whole hemisphere explant procedure that permits 2 days of
organotypic growth and encompasses the period of preplate split-
ting has been valuable in understanding the cellular transfor-
mations of preplate splitting (10, 73). In this procedure, entire
embryonic cortices are isolated with the meninges intact and are
then cultured on collagen filters as is done with slice explants (74,
75). Keeping the meninges intact helps preserve the organization
of the basal lamina, the radial glial endfeet as well as the pioneer
neurons that are found in the MZ. Disruptions of the meninges
during development, through mutation (76, 77) or injury (78) can
cause focal heterotopia and disrupt underlying cortical layering.
Therefore, keeping the meninges as intact as possible is desirable
and allows for continuous growth and lamination of the CP dur-
ing the in vitro period. The CP is organized and shows appropriate
expression of the transcription factors Tbr1 and Ctip2. Simi-
larly, the radial glial network is intact evidenced by appropriate
expression of the intermediate filament protein Nestin (73).

Using the whole hemisphere explant model, it was found that
cellular orientation and apical dendritic growth was disrupted by
single dose ethanol exposure, with an increase in primary dendrite
number detected within 4 h of exposure (67). This dendritic alter-
ation was accompanied by a morphological compaction of the
Golgi apparatus, a key support organelle for the growing dendrite
(79), as well as a slower reduction in cytoskeletal F-actin and the
microtubule associated protein MAP2 content (67). These disrup-
tions are remarkably similar to, but less severe than, disruptions
caused by disruption of the Reelin-signaling pathway (80). Reelin
is a large glycoprotein that is secreted by Cajal–Retzius cells in
the MZ, during the period of preplate splitting (14, 81). Without
Reelin, the preplate fails to split (9, 74, 75) and the subsequently
generated cortical layers pile up underneath L6 leading to an inver-
sion of cortical layering (20). In human beings, Reelin deficiency
leads to mild epilepsy and severe mental retardation (45). At the
cellular level in Reelin-deficient (reeler) cortical explants, neu-
rons were tangentially oriented rather than radially oriented. The
dendritic arbor was simplified and these neurons displayed more
primary processes and a compact Golgi apparatus (10, 80). In
addition dendritic expression of F-actin and MAP2 was reduced in
reeler mutants compared to wild-type controls (10). Thus, studies
using early cortical explants are showing a potential convergence

of cellular phenotypes underlying two etiologically distinct forms
of intellectual disability.

CONCLUSION
Early cortical development is a period of remarkable dynamism
with large scale changes in the pattern of gene expression, signifi-
cant tissue growth and a surprising amount of neuronal differen-
tiation. Disruption of early cortical development by exposure to
toxin (e.g., EtOH) or mutation (e.g., Reln) can lead to intellectual
disability. Explant models of early cortical development provide a
bridge between dissociated culture studies and in vivo studies. The
relatively small size and simple cellular composition allow for the
study of disease relevant biology in the absence of synapses and
functional circuits.
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