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Pediatric lung diseases remain a costly worldwide health burden. For many children with
end-stage lung disease, lung transplantation remains the only therapeutic option. Due to
the limited number of lungs available for transplantation, alternatives to lung transplant are
desperately needed. Recently, major improvements in tissue engineering have resulted
in newer technology and methodology to develop viable bioengineered lungs. These
include critical advances in lung cell biology, stem cell biology, lung extracellular matrix,
microfabrication techniques, and orthotopic transplantation of bioartificial lungs. The goal
of this short review is to engage the reader’s interest with regard to these emerging
concepts and to stimulate their interest to learn more. We review the existing state
of the art of lung tissue engineering, and point to emerging paradigms and platforms
in the field. Finally, we summarize the challenges and unmet needs that remain to be
overcome.
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Introduction

The Study of Lung Disease Continues to be Transformed by Biotechnology
and Bioengineering
The lung is a highly complex organ that accomplishes a great variety of physiological tasks. For
many chronic parenchymal and vascular lung diseases, lung transplantation, first performed in 1963
(1), becomes the last treatment option (2). Despite the progressive increase in the number of lung
transplants, the number of lungs suitable for transplantation has decreased (2, 3). Mirroring this,
lung transplantation for pediatric lung diseases, especially cystic fibrosis and idiopathic pulmonary
hypertension, is a viable therapeutic option (4). Since the first pediatric lung transplant in 1987, the
number of lung transplants performed in children is around 100 per year (5). This small number does
not reflect a small clinical need, but rather is an indication of the complexities of lung transplant such
as special surgical challenges related to size matching, availability of suitable donor lungs, medical
center expertise, and immune system issues (6, 7). Realization of the dream of bioengineering lungs
suitable for transplant in children would potentially overcome most, if not all, of these collective
barriers. New tissue and cell-based techniques to study the lung, combined with the incorporation

Abbreviations: ECM, extracellular matrix.
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of bioengineering approaches, have the potential to increase our
understanding of its complex biology, improve current therapies
to obviate the need for transplant, and possibly increase the num-
ber of lungs available for transplant. Herein, we provide a short
review of newer technologies and paradigms driving this exciting
endeavor, with the goal to stimulate the reader toward further
in-depth reading on the subject.

Emerging Paradigms

In recent years, a number of research themes have emerged with
regard to chronic lung disease. For example, the details of how the
type of lung injury affects the downstream disease pathogenesis
aremuchmore concrete. The ability to replicate the aspects of lung
pathology as close to the human condition as possible obviously
relies on a deep understanding of the disease process. Pulmonary
hypertension (8), lung cancer (9), chronic obstructive pulmonary
disease (10), acute respiratory distress (11), and interstitial lung
disease (12) are lung disorders that have beenmodeled extensively
using in vivo systems, and some have utilized sophisticated in vitro
systems [well-summarized inRef. (13)]. Again, the extent towhich
any of these in vitro systems faithfully recapitulates the aspects of
human lung disease (especially in children), or the pathobiology
of animal models of lung disease, depends largely on the nature of
the injury: infection (lipopolysaccharide), physical injury (hemo-
dynamic), chemical injury (bleomycin), and hypersensitivity reac-
tions (ovalbumin) have all been investigated (13).

In addition to the nature of the lung injury, the roles of lung
endogenous and exogenous stem cells in disease processes are
being increasingly investigated using in vitro lung modeling sys-
tems. In a recent review (14), Weiss summarized the proceedings
from the 2011 Vermont Stem Cell Conference, and the reader is
urged to consult this review for a glossary of stem cell terminology.
The lung appears to be populated with endogenous stem and
progenitor cells, from the trachea to the distal airways and alveoli.
With regard to the lung vasculature, the precise identity and
tissue location(s) of putative endogenous lung vascular stem cells
have remained elusive. However, endothelial progenitor cells
(circulating bone marrow-derived), fibrocytes, and mesenchymal
stem cells have all been identified as having immunomodulatory
and/or tissue remodeling properties in certain contexts in both
the airways and the pulmonary vasculature (15). As the human
lung is comprised of over 40 cell types (15), it is critically
important to understand how the lung utilizes endogenous and
non-lung stem or progenitor cells to maintain homeostasis and
respond appropriately to injury. Indeed, the steady-state lung is
extraordinarily quiescent with respect to cell proliferation, and
much of what we appreciate about lung stem or progenitor cells
derives from animal models of lung injury (16). Deriving stem
and progenitor cells for the purpose of lung-directed therapies
seems a much closer reality with the advent of strategies to
differentiate embryonic stem cells and inducible pluripotent stem
cells into functional lung cell lineages (17, 18).

There is an increasing awareness that cells themselves (“seeds”)
represent only a portion of what makes up the collective iden-
tity of a tissue. Indeed, the functions of the extracellular matrix
(ECM, “soil”) with respect to control of lung homeostasis and
its impact on both endogenous and non-lung resident cells in

terms of their positional and morphogenetic guidance cues are
coming into sharper focus. For example, seedingof fibroblasts onto
decellularized fibrotic lung results in differentiation into myofi-
broblasts compared to seedingondecellularizedcontrol lungs (19).
Thus, the biochemical composition and the architecture of the
ECM combine to provide cellular cues important for phenotypic
designation, localization/addressing, and function (20). In 2008,
a decellularized trachea re-seeded with primary autologous cells
was transplanted to replace a small length of airway and did not
require immunosuppression to remain patent (21). Numerous
approaches todecellularize rodent, pig, andhuman lungs, aswell as
the informationgleaned regarding the impactofECMcomponents
on the performance of the resulting scaffolds have been extensively
reviewed (15, 22, 23). Collectively, these data point to the over-
all feasibility of using decellularized lungs as scaffolds for tissue
engineering. This could be especially important in children, given
the range of lung sizes required to treat the pediatric transplant
patient. These studies also have highlighted the importance of
increasing our understanding of how decellularization procedures
impact the lung in terms of biomechanics, ECM composition and
architecture, as well as its ability to facilitate cell seeding (22).

Emerging Platforms

Tissue engineering is a multidisciplinary process by which life
sciences, materials science, and engineering principles can be
married together with transplant science to achieve the goal of
restoring organ and/or tissue function (24). When considering
engineering any part of the lung, most approaches involve either
cell therapy or utilize cell-matrix constructs (23). A smaller num-
ber of studies have focused on the development and testing of
tissue-engineered scaffolds and/or cell culture devices. Regardless
of approach, considerationmust be given to the cell types involved
(stem cells, sources of cells, etc.), the nature of the scaffolding,
and the means by which the cell-matrix construct is sustained
[summarized nicely in Ref. (23)]. The size of the model system
(diffusion distances for gas exchange), as well as themethods used
to evaluate and validate its performance, is additional critical con-
siderations (13). Figure 1 summarizes the large variety of scien-
tific disciplines that converge on the path toward bioengineering
a lung.

Lung Scaffolds
It is generally accepted that decellularized lung scaffolds likely pro-
vide more appropriate organotypic and inductive signals by virtue
of the ECM architecture (15). The methodology of decellulariza-
tion (25), the amount of residual cellular or biochemical (DNA,
detergent) material in the scaffold (26, 27), and the nature of
the residual ECM proteins and proteoglycans (and their regional
differences in the lung) (28, 29) are all important questions under
intense investigation. With regard to the developing lung of a
child, theremay be age-specific cues in the ECM that are presently
unappreciated. In addition, the use of cadaveric lungs as poten-
tial scaffolds, as well as the possibility of using animal-derived
scaffolds (pig, sheep) is all avenues of active investigation. Several
methods of decellularizing the lung are widely used, originating
from some of the earliest efforts to decellularize rat lung (30).
Regardless of technique or solution used, the goal is to remove as
much cellularmaterial and debris as possible, whilemaintaining as
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FIGURE 1 | Challenges in bioengineering lungs to treat pediatric lung disease. Ideally, lung scaffolds of appropriate size, architecture, and complexity are
prepared and then seeded with cells and/or matrix. In each stage of development, assessments of function, safety, mechanics, and efficacy each contribute to an
iterative process of refinement.

much biochemical and architectural character as possible. The use
of perfusion-decellularization (31), as ameans to achieve this goal,
has gained prominence in recent years. Detergent-based solutions,
such as sodium deoxycholate, sodium dodecyl sulfate, triton x-
100, and CHAPS, can be perfused into cannulated airways and
blood vessels of the lung (25). Depending on the detergents used,
the duration of the procedure, and the choice of perfusion route(s),
lung cells are effectively removedwithminimal compromise to the
vessels, airways, and lung interstitium [tabulated nicely byWagner
et al. (15)]. Due to the wide variety of approaches used, there is
considerable variability in the results reported and difficulty in
reproducibility and consistency of findings in the literature. Thus,
direct comparison of results is problematic (32). In addition to
the decellularization protocols themselves, methods of assessing
the extent of decellularization also vary substantially. At present,
there is no consensus regarding acceptable levels of residual cel-
lular material, often measured by DNA content (33). Further-
more, depending on method, the ECM is altered to a greater or
lesser extent during decellularization procedures as evidenced by
variable collagen, elastin, and proteoglycan staining (34) and by
changes in stiffness (35). Curiously, despite differences in ECM
content and character, decellularized lung scaffolds all seem to
accommodate reseeding with cells (36). Future studies will need
to rigorously standardize decellularization techniques to move
beyond methodologies based primarily on anecdotal experience.

Fabricated Devices
In addition to scaffold derived from in vivo sources, alternative
platforms are continuously being developed. Significant chal-
lenges in design arise owing to the complexity of the lung archi-
tecture as well as the high dynamic range of functions that lung
tissue accomplishes. A bioengineered lung would need to provide
surface area for gas exchange over a thin non-porous but gas
permeable membrane. To supply blood and oxygen to such an
interface and to match ventilation with perfusion would require
an evenmore highly complex device. Microfabrication techniques
have been used to produce “organs on a chip” (37), including the
lung. By layering a group of individual vascular networks with

gas exchange compartments composed of polydimethylsiloxane
(PDMS), a large surface area to volume ratio can be achieved
(38). PDMS is an ideal material for this application given its non-
porosity to water-based fluids, its permeability to gases, and its
capacity to be 3-D printed and formed into microscale structures
(39). Extracorporeal lung assist devices utilize such technology
to provide oxygenator support for cardiac surgery and as lung
assist devices for preterm infants with respiratory failure (40).
In one study, a variety of blood flow rates and layering designs
were tested and the resulting hydraulic resistances, oxygen transfer
rates, and shear forces were calculated (38). Although scaling up
to physiologically relevant sizes is accompanied by technological
barriers (38), these devices have demonstrated proof of princi-
ple with regard to studying the alveolar-capillary unit (41), gas
exchange (42), the effect of mechanical stretch during breathing
cycles (43), and vascular networks (44, 45). Scaling up of such
devices into more durable and portable designs would poten-
tially provide continuous gas exchange support. Such biologi-
cally inspired technologies will undoubtedly continue to yield key
insights into the structural and mechanical aspects of lung biol-
ogy that influence interstitial fluid flow, immune-cell trafficking,
and repair processes in response to injury such as edema (46).
However, fabricated devices for lung oxygenation would need to
fulfill several additional design criteria that are largely obviated by
use of decellularized/recellularized lungs: (1) provide appropriate
surface area-volume ratios, (2) conduct blood to gas exchange
interfaces while avoiding thrombus, inappropriate shear force, (3)
operate using room air without a pump, (4) work with the right
ventricular output without need for external blood pump (47).

Validation and Evaluation of Performance
Equally as important as the design of new methods and devices
is the need to validate their performance. Determination of
the mechanical properties of bioengineered scaffolds and the
regions of the lung they are intended to mimic using atomic
force microscopy (AFM) (29, 35, 48) and microstretching tech-
niques (49) will continue to be critical to moving forward (20).
Indeed, comparative measurement of the mechanical properties
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of diseased tissues compared to controls is becoming increasingly
important and informative. AFM is a technique that can be used to
assess mechanical properties of microscale regions of lung tissue.
A small tip mounted on a cantilever spring and connected to a
piezoelectric positioner, laser and position-sensitive detector is
applied over a surface, akin to a phonograph needle moving over
a vinyl record. The vertical motion of the tip can be measured as
force and magnitude as the tip is moved over the surface of the
lung. The resulting force–motion data at each location, combined
with the extent of the tissue deformation at the probe tip can be
used to calculate the elastic modulus (from the slope of stress-
strain curves). AFM data derived from bleomycin-induced pul-
monary fibrosis in decellularized mouse lungs indicated a twofold
increase in stiffness compared to controls but with widespread
inhomogeneity (48). Although AFM is powerful for measuring
material stiffness of lung tissue, it requires unique expertise, is
not suitable for whole lung analyses, and is not a high-throughput
technique. Estimations of mechanical properties of lung such as
stiffness can be inferred by techniques that combine stretching
lung tissuewithmicroscopic examination of cells andmatrix com-
ponents (49). By examination of how matrix components such as
collagen and elastin fibrils orient during stretch, the mechanical
properties of lung tissue can be estimated. The aspect ratios of
cells in the lung region being stretched can also be informative
of tissue mechanical properties (50). Regardless of the techniques
used to measure or estimate the mechanical properties of intact
and decellularized normal and diseased lungs, further refinement
of both design and data validation will be increasingly informed
by mathematical modeling (51–53).

Collectively, the evaluation of the engineered tissue will require
rigorous assessment of the function of cells and the scaffold as a
system (13). The reader is directed to two excellent reviews that
summarize our current knowledge of tissue-engineered models
of normal and diseased lung (13, 54). In addition to function,
the safety (tolerance, immunogenicity, etc.) of implanted bioengi-
neered lungs requires careful evaluation.

Conclusion: Challenges and Unmet Needs

The need to better treat end-stage of both adult and pediatric
lung disease using newer methods and twenty-first-century tech-
nology cannot be overstated. In the United States, ~30 million
people live with end-stage lung disease (55), for which lung trans-
plantation often is the only effective treatment option. However,

less than ~2,000 lung transplants are performed annually (55).
The situation for children with end-stage lung disease, especially
cystic fibrosis and idiopathic pulmonary artery hypertension, is
evenmore complex (5). Recent efforts to transplant bioengineered
lungs into animal models have met with tantalizing success (55,
56), but currently are not yet translatable to the clinic and no
studies have yet focused on a pediatric setting. In thismini-review,
we have focused on the lung, but regardless of the organ, the over-
arching goals for bioengineering are essentially the same and have
been reviewed (22, 25). The obvious challenges to successful opti-
mization of lung physiology such as gas exchange, nervous system
innervation, ventilation-perfusion matching, and air conduction
from trachea to alveolar spaces represent a huge dynamic range
of physiologic and morphologic complexity. The lungs in a devel-
oping child represent additional challenges. As new technologies
and approaches emerge, the bottlenecks of reproducibility and
high throughput will need to be overcome. Further barriers to
progress related to implantation of recellularized scaffold (57) and
the potential for untoward immunogenicity (58, 59) are daunting.
Finally, improving the reproducibility of the methodologies to
generate decellularized scaffolds, as well as reducing intra-assay
and inter-assay variability is important and worthy goals. Over
the past 20 years, The National Institutes of Health, the National
Science Foundation (NSF), and private foundations have dramat-
ically increased funding for tissue engineering (search of NSF
website, April 2015; http://www.nsf.gov/pubs/2004/nsf0450/inst_
supp.htm). In parallel, there has been significant growth (~three-
fold from 2008 to 2011) in sales generated by tissue engineering
and stem cell industries, estimated in 2011 to be $3.5 billion annu-
ally (60). Such dynamic economic forces will undoubtedly help
the field overcome many of the daunting obstacles and deliver on
past speculations made as far back as 1998: “In the next 10 years,
a veritable body shop of spare parts will wend its way from labs to
patients.” (61). Indeed, bioengineering the lung holds the promise
to profoundly change the lives of children with intractable lung
disease, from basic science, to increased efficacy of drug screens
and their targets, to successful implantation of replacement lung
tissue.
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