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Peripheral blood cytopenia in children can be due to a variety of acquired or inherited
diseases. Genetic disorders affecting a single hematopoietic lineage are frequently
characterized by typical bone marrow findings, such as lack of progenitors or maturation
arrest in congenital neutropenia or a lack of megakaryocytes in congenital amegakary-
ocytic thrombocytopenia, whereas antibody-mediated diseases such as autoimmune
neutropenia are associated with a rather unremarkable bone marrow morphology. By
contrast, pancytopenia is frequently associated with a hypocellular bone marrow, and
the differential diagnosis includes acquired aplastic anemia, myelodysplastic syndrome,
inherited bone marrow failure syndromes such as Fanconi anemia and dyskeratosis
congenita, and a variety of immunological disorders including hemophagocytic lympho-
histiocytosis. Thorough bone marrow analysis is of special importance for the diagnostic
work-up of most patients. Cellularity, cellular composition, and dysplastic signs are the
cornerstones of the differential diagnosis. Pancytopenia in the presence of a normo- or
hypercellular marrow with dysplastic changes may indicate myelodysplastic syndrome.
More challenging for the hematologist is the evaluation of the hypocellular bone marrow.
Although aplastic anemia and hypocellular refractory cytopenia of childhood (RCC) can
reliably be differentiated on a morphological level, the overlapping pathophysiology
remains a significant challenge for the choice of the therapeutic strategy. Furthermore,
inherited bone marrow failure syndromes are usually associated with the morphological
picture of RCC, and the recognition of these entities is essential as they often present
a multisystem disease requiring different diagnostic and therapeutic approaches. This
paper gives an overview over the different disease entities presenting with (pan)cytopenia,
their pathophysiology, characteristic bone marrow findings, and therapeutic approaches.

Keywords: cytopenia, childhood, bone marrow failure, hypocellular bone marrow, myelodysplastic syndrome,
refractory cytopenia of childhood, severe aplastic anemia

Introduction

(Pan)cytopenia in childhood can be caused by a variety of underlying diseases, including hematolog-
ical and non-hematological entities. Overlapping phenotypes and pathophysiologies pose a major
diagnostic challenge. However, an accurate and rapid diagnosis is essential for adequate therapy
planning, surveillance, and genetic counseling. Bone marrow (BM) analysis is of special importance
for the diagnostic work-up of cytopenias affecting one or more lineages. In the following, we will
describe the individual disorders, their underlying pathophysiology and clinical characteristics, as
well as typical BM findings.
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The Hierarchy of Hematopoiesis

All peripheral blood cells originate from hematopoietic stem cells
(HSCs) that reside in fetal liver and fetal or adult BM. HSCs are
able to self-renew, which is essential for maintenance of lifelong
hematopoiesis. They do not commit directly to single lineages,
but instead differentiate into multipotent progenitors, common
lymphoid and (erythro-) myeloid progenitors, which in turn give
rise to more differentiated precursor cells. Lineage commitment
is determined by a delicate network of transcription factors and
epigenetic mechanisms that establish differentiation into the cor-
responding lineage while suppressing maturation toward other
lineages (1). The hierarchical tree of hematopoiesis is depicted in
Figure 1, but there is evidence that such a linear and rigid model is
oversimplified (2). Also, a specific HSC subset has been reported
to directly evolve into megakaryocytes, at least in the murine
system (3). Depending on the differentiation stage affected, dis-
turbances can occur in single or multiple lineages (Figure 1).

Signs and Symptoms of Cytopenia

The condition caused by low erythrocyte numbers and
hemoglobin concentration is called anemia and is clinically
characterized by paleness, weakness, and general malaise. Severe

anemia due to rapid hemoglobin drop (i.e., blood loss, hemolysis)
may lead to cardiovascular symptoms such as tachycardia and
arterial hypotension. Anemia due to bone marrow failure usually
has insidious manifestation. Reticulocytosis points toward active
red cell production while lack of reticulocytes is indicative for
insufficient erythropoiesis. Other informative parameters are
mean corpuscular volume (MCV) and HbF levels as signs of stress
hematopoiesis or low haptoglobin with increased unconjugated
bilirubin in the presence or absence of a positive antiglobulin test
indicating hemolysis (4).

Platelets are fragments of membrane and cytoplasm derived
from megakaryocytes and important for hemostasis. Thrombo-
cytopenia is characterized by cutaneous and mucosal bleeding
signs, such as epistaxis, petechia, and purpura. Platelet size and
morphology can help classifying the underlying disease. Platelets
are abnormally small in patients with Wiskott-Aldrich syndrome
(WAS) and large in patients with Bernard-Soulier syndrome or
May-Hegglin anomaly (5). Platelet size diminishes over time, and
therefore higher platelet volume may indicate the presence of less
mature platelets in cases of increased degradation (e.g., idiopathic
thrombocytopenic purpura, ITP) (6).

Lack of neutrophils, neutropenia, is characterized by an
increased susceptibility to bacterial infections. Risk of infec-
tions correlates with granulocyte counts, with severe neutropenia
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FIGURE 1 | Hierarchical tree of human hematopoiesis. Disturbances
leading to cytopenias can affect single or multiple lineages and be caused by
cell-intrinsic or extrinsic mechanisms. Intrinsic defects are caused by inherited or
acquired mutations, while extrinsic defects can be caused by autoreactive

lymphocytes. A selection of frequent pediatric disorders is shown. Labeling:
inherited defects: red; acquired mutations: green; autoimmune disorders: blue.
AIHA, autoimmune hemolytic anemia; ITP, idiopathic thrombocytopenic
purpura.

Frontiers in Pediatrics | www.frontiersin.org

July 2015 | Volume 3 | Article 64


http://www.frontiersin.org/Pediatrics
http://www.frontiersin.org
http://www.frontiersin.org/Pediatrics/archive

Erlacher and Strahm

Pancytopenia in childhood

(<500/pl) being associated with a high risk of life-threatening
infections (7). Depending on the extent of neutropenia and the
frequency of severe infections, prophylactic antibiotic treatment
and/or G-CSF application might be considered. Response to G-
CSF is indicative for the myelopoietic capacity of the BM.

In line with the many different types and developmental stages
of lymphocytes, lymphopenia can affect an entire lineage (i.e., B,
T, and/or NK cells) or individual mature cell types (e.g., regulatory
T cells). Type of lacking cells as well as abundance of other lym-
phocyte types determine the phenotype of the individual disease.
Phenotypes can be highly variable and range from (severe) com-
bined immunodeficiency to mildly increased susceptibility to spe-
cific infections. Primary immune diseases can also be associated
with immune dysregulation (8).

Neonatal cytopenias are particularly challenging due to
the extremely diverse spectrum of differential diagnoses.
Impairment of fetal erythropoiesis or thrombopoiesis due to
inherited defects or prenatal infections can result in hydrops
fetalis or perinatal hemorrhagic complications, respectively.
Ineffective fetal hematopoiesis within the BM can lead to
persistent extramedullary hematopoiesis in liver, spleen, and
occasionally in the skin (9). Affected newborns are characterized
by hepatosplenomegaly and may have skin infiltrations (so
called “blueberry muffin® babies). The latter condition is
indicative for hemolytic diseases, malignant BM infiltrations,
infantile malignant osteopetrosis, or congenital infections
(10). Neonatal erythroderma might indicate the presence of
severe immune dysregulation as seen in Omenns syndrome, a
hyperinflammatory variant of leaky SCID (11).

A detailed medical history is essential in all cases of cytopenias
and should include details of concomitant health problems, sus-
ceptibility to bleeding or infections, previous exposure to drugs
or toxins, and recent foreign travel. Family history should focus
on hematological and immune disorders, cancer susceptibility,
or unexplained infant deaths. Thorough physical examination
should include the assessment of signs of lymphoproliferation
(i.e., hepatosplenomegaly and lymphadenopathy), as well as dys-
morphic features, and stigmata, indicating the presence of a syn-
dromic disease.

Cytopenia Affecting a Single Lineage

In principle, single lineage-cytopenias may be caused by
insufficient production or premature depletion of mature cells
of the respective hematopoietic lineage. In the majority of cases,
the latter is mediated by autoreactive antibodies, resulting in
ITP, autoimmune neutropenia (AIN), or autoimmune hemolytic
anemia (AIHA), respectively (12). Frequently, autoantibodies
are formed as a reaction to infections or vaccinations due to the
so-called “molecular mimicry” between pathogen components
and blood cell antigens (13). Similarly, heparin-induced
thrombocytopenia (HIT) is caused by antibodies specific for
heparin-binding platelets (14). Generally, these disorders show
normal BM morphology or hyperactive hematopoiesis in the
corresponding lineage. Most tests for autoantibodies have a low
sensitivity and specificity, and are therefore not required for
the confirmation of the diagnosis, except for AIHA (15). Since
the BM is normal in ITP or AIN and thus has the capacity of

increased cell production if stressed, signs and symptoms are
frequently milder compared to patients with hypoproliferative
deficiencies of these cell lineages. Even in the complete absence
of peripheral granulocytes, patients rarely suffer from life-
threatening infections. In contrast to these clinically mostly
benign autoimmune disorders, AIHA, especially in childhood,
can be life-threatening because of rapid hemoglobin decline (16).

Furthermore, a premature destruction of red blood cells
may be caused by defective hemoglobin, metabolic enzymes, or
membrane components. These syndromes can be diagnosed by
hemoglobin electrophoresis, determination of enzymatic activity
or osmotic fragility tests, respectively, and will not be discussed
here in more detail. Increased destruction of platelets and the
subsequent risk of bleeding are also characteristic features of
inherited disorders, such as Wiskott—-Aldrich syndrome (WAS)
and X-linked thrombocytopenia (XLT). While platelet generation
has been shown to be unaffected in this syndrome, cytoskeletal
changes occurring in circulating platelets lead to their premature
degradation (17).

Similar to the single lineage-cytopenias caused by premature
cell loss, disorders with inadequate cell generation can affect all
individual lineages, i.e., megakaryopoiesis, erythropoiesis, and
myelopoiesis. These disorders, their pathophysiologies, diagnostic
characteristics, and symptoms are summarized in Table 1. Disor-
ders with insufficient generation of lymphocytes result in (severe)
combined or milder immunodeficiencies. Since they require dis-
tinct diagnostic approaches and therapies, these syndromes are
beyond the scope of this review and were discussed elsewhere (18).

When More Lineages are Affected

Cytopenias affecting two or three blood lineages, the latter called
pancytopenia (greek v, pan = involving all), can also be caused
by deregulation of either cell generation or degradation. As an
additional layer of classification, the disorders can be divided into
inherited or acquired BM failures. It is important to emphasize
that inherited BM failure syndromes (IBMES) as well as acquired
BM failure can present in all age groups, and that in some cases
an isolated cytopenia preceeds the development of pancytopenia.
This requires particular attention and repeated reevaluation by
the attending physician or hematologist. Isolated thrombocytope-
nia can initially be diagnosed as ITP, but additional anemia or
neutropenia over time might indicate the presence of systemic
autoimmune disorders such as systemic lupus erythematosus
(SLE). Similarly, isolated neutropenia can be considered to be
secondary to an infection, but the subsequent decrease of other
blood cells should rapidly lead to BM analysis. In the following, we
will describe the different forms of pancytopenia in more detail.

Pancytopenia as Consequence of
Autoimmunity and Immune Dysregulation

While single-line immune-mediated degradation of platelets, ery-
throcytes, or neutrophils is frequent, combinations thereof are
rare and often serious (35, 36). The combination of AIHA and
thrombocytopenia, occurring either simultaneously or sequen-
tially, is called Evans syndrome and is often a manifestation of the
autoimmune lymphoproliferative syndrome (ALPS) (37). ALPS
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TABLE 1 | Syndromes characterized by inadequate formation of mature blood cells resulting in single lineage cytopenia.

Disease/ Mutated Pathogenesis Extrahematological Hematopoietic Bone marrow Therapeutic Reference
syndrome gene features phenotype morphology options
Severe congenital ELANE, HAX1, Differentiation block, Depending on Severe Maturation arrest G-CSF, antibiotic (19-21)
neutropenia (SCN) GFI1, G6PC3, myelocyte apoptosis  disease (GBPC3: neutropenia, risk of  at promyelocyte prophylaxis,
p14, and others heart/uro-genital/ leukemia stage HSCT, leukemia
facial anomalies) surveillance
Cyclic neutropenia  ELANE Cyclic increase in None Cyclic neutropenia,  Intermittendly G-CSF (22)
myelocyte apoptosis normal blood in similarities to SCN
intervals
Glycogen storage Glucose-6- Impaired glucose Hypoglycemia, Neutropenia, Normal G-CSF (23)
disease type 1b phosphate formation from increased hepatic granulocyte
translocase glycogen and renal glycogen dysfunction
storage
Shwachman SBDS Ribosome assembly Exocrine pancreatic ~ Neutropenia, Maturation arrest G-CSF, HSCT (24)
Diamond and function and insufficiency, pancytopenia of myelopoiesis,
syndrome (SDS) many other cellular skeletal (25%), risk of hypocellular bone
functions abnormalities, leukemia marrow
growth retardation
Congenital CDANT, Ineffective Iron overload Anemia Dyserythropoetic RBC (25)
dyserythropoietic SEC23B, erythropoiesis maturation of transfusions,
anemia (CDA) KIF23, KLFT1, erythroblast chelation therapy
and others
Diamond-Blackfan  Ribosomal Ribosomopathy Thumb Macrocytic Paucity of Steroids, RBC (26)
anemia (DBA) genes (RPS19, malformations and anemia, variable erythroid transfusions,
RPL5, RPL11, craniofacial neutrophils, and precursors chelation
RPL35A, and abnormalities platelet numbers, therapy, HSCT
others) risk of leukemia
Thalassaemia Globin genes Unbalanced Bone deformities, Anemia due to Hyperplastic RBC 27)
major (HBAT, HBA2, synthesis of globins iron overload ineffective erythropoiesis, transfusions,
HBB) hematopoiesis and  apoptosis of chelation
hemolysis, erythroid therapy, HSCT
extramedullar precursors
hematopoiesis
Pure red cell Unknown Unknown None Anemia Absence of Transfusions, (28)
aplasia (PRCA) (autoimmune?) erythroblasts immunosuppres-
(maturation arrest)  sion
Anemia of renal None Insufficient Depending on Normocytic Uncharacteristic Erythropoietin (29)
failure erythropoietin underlying disease anemia findings substitution
production
Anemia of chronic None Hyperinflammation, Depending on Normo- to Uncharacteristic Treatment of (80)
inflammation hepcidin underlying disease microcytic anemia findings underlying
deregulation disease
Congenital MPL Megakaryopoiesis None Thrombocytopenia,  Near-absence of Transfusions, 31)
amegakaryocytic unresponsive to pancytopenia, risk megakaryocytes HSCT
thrombocytopenia thrombopoietin of leukemia
(CAMT)
Thrombocytopenia Chr. 1g21.1 Insufficient Absence of radius Thrombocytopenia,  Decreased or Transfusions, (32)
with absent radius  deletion megakaryopoiesis (thumb present), risk of leukemia absent, small HSCT
(TAR) (RBMB8A?) (unknown cause) cardiovascular and megakaryocytes
gastrointestinal with vacuolization
malformations
Familial platelet Runx1 Defective expression  None Mild Normal or Transfusions, (33)
disorder (FPD) of RUNX1 targets thrombocytopenia,  dysplastic signs HSCT, leukemia
(e.g9., MPL) high risk of surveillance
MDS/leukemia
Bernhard-Soulier GP1BA, Defective platelet None Thrombocytopenia,  Increased Transfusions (34)
syndrome GP1BB formation, reduced increased platelet megakaryopoiesis
platelet lifespan size
May-Hegglin MYH9 Defective Sensineural Mild Inclusion bodies Symptomatic 5)
anomaly megakaryocyte deafness, cataract, thrombocytopenia,  in neutrophils treatment
maturation nephritis increased platelet

size

ALL, acute lymphoblastic leukemia; AML, acute myeloid leukemia; G-CSF, granulocyte colony-stimulating factor; HSCT, hematopoietic stem cell transplantation; MDS, myelodysplastic
syndrome; MPN, myeloproliferative neoplasia; RBC, red blood cells.
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is caused by germline or somatic mutations in FAS, FASL, or
CASP10, resulting in insufficient apoptosis of activated autore-
active lymphocytes via the extrinsic pathway (38, 39). Rarely,
ALPS can be caused by RAS mutations resulting in defective
intrinsic apoptosis of lymphocytes (40). Concomitant lympho-
proliferation is characteristic for ALPS. Similarly, cytopenias can
occur in acquired, multifactorial autoimmune syndromes such as
SLE or the primary antiphospholipid syndrome (36). Germline
syndromes characterized by autoimmunity are the IPEX (immun-
odysregulation polyendocrinopathy enteropathy X-linked) syn-
drome caused by lack of regulatory T cells and the APECED
(autoimmune polyendocrinopathy-candidiasis-ectodermal dys-
trophy) syndrome caused by insufficient induction of central
(thymic) tolerance (41, 42). Other primary immunodeficiencies
frequently leading to autoimmune cytopenia are leaky SCID,
WAS, hyper-IgM syndrome, and common variable immunod-
eficiency (CVID) (36). Indicative of the presence of such syn-
dromes are lymphoproliferation, autoantibodies, oligoclonal T
cells, increased complement consumption, and signs of autoim-
munity or autoinflammation affecting other organs (i.e., dermati-
tis, glomerulonephritis, and inflammatory bowel disease). Bone
marrow findings are usually not characteristic and merely indicate
increased cellular turnover.

Immune dysregulation is also the cause of pancytopenia in
patients with hemophagocytic lymphohistiocytosis (HLH). This
life-threatening syndrome is characterized by impaired pathogen
elimination, hyperinflammation, and hystiocytic and lymphoid
tissue infiltration. It can occur as familial disease (FHL with
PRFI1, UNC13D, STX11, or STXBP2 mutations), in syndromes
characterized by additional albinism (i.e., Griscelli syndrome type
II, Hermansky-Pudlak syndrome type II, and Chediak-Higashi
syndrome) and secondary to infection, rheumatic, or neoplastic
disorders. Secondary HLH is also known as macrophage activa-
tion syndrome (MAS). Deregulation of T and NK cell cytotoxi-
city and/or lysosomal trafficking are underlying mechanisms of
HLH (43). Pancytopenia is not mediated by autoantibodies but
instead by macrophage hyperactivation, resulting in hemophago-
cytosis and cytokine-mediated marrow suppression. Accordingly,
hemophagocytosis in BM is one of the diagnostic criteria, next to
hypertriglyceridemia, hypofibrinogenemia, and increased levels
of ferritin and soluble IL2 receptor. Degranulation and cytotox-
icity assays as well as genetic analysis confirm the diagnosis (44).

Extrinsic Conditions Associated with
Impaired Hematopoiesis

Certain extrinsic, environmental conditions can interfere
significantly with blood formation, either pre- or postnatally. The
most frequent causes of impaired hematopoiesis are infections.
Congenital TORCH infections (i.e,, toxoplasmosis, rubella,
cytomegalovirus, herpes simplex, and others) often result in
decreased maturation of megakaryocytes and platelet formation,
in combination with increased immune-mediated platelet
destruction (45, 46). Parvovirus B19 infections lead to apoptosis
and cell cycle arrest in infected fetal erythroblasts, thereby
resulting in fetal anemia and hydrops (47). Also postnatally,
parvovirus B19 can transiently affect erythroid progenitors.
While healthy children are only mildly affected, children with

hemolytic anemia and immunocompromised patients might
develop aplastic crisis and persistent anemia, respectively
(48). Many other viral infections are associated with transient
hematopoietic depression of one or more lineages. Important
infections to be considered in the differential diagnosis of
peripheral cytopenias are hepatitis C, HIV (in children nowadays
mostly due to vertical transmission), and Helicobacter pylori, all
causing thrombocytopenia and some of them anemia. Visceral
leishmaniasis, in contrast, results in an HLH-like disorder with
massive phagocytosis of blood components (49, 50).

Other causes of suppressed hematopoiesis are nutritional defi-
ciencies observed in anorexia nervosa or B12, folate, and iron defi-
ciency. While mild deficiencies frequently cause anemia, severe
lack of essential food components can result in complete BM
failure and immunodeficiency (51-53).

Finally, hematopoiesis can be restricted by pathological
microenvironmental conditions. In Gaucher disease, BM
dysfunction is caused by accumulation of glucocerebrosides in
macrophages and results in (pan)cytopenia (54). By contrast,
osteopetrosis is caused by reduced bone resorption leading to
bone sclerosis and, among other symptoms, restriction of the
medullar cavity. This results in BM failure and compensatory
extramedullary hematopoiesis. Different disease subtypes have
been reported, with infantile malignant osteopetrosis being the
most severe form (55).

Inherited Intrinsic Defects of
Hematopoiesis

Various inborn genetic defects result in hematopoietic failure,
and most of them are not restricted to hematopoiesis but also
affect different organ systems. Traditionally, Fanconi anemia
(FA), dyskeratosis congenita (DC), congenital amegakaryocytic
thrombocytopenia (CAMT), thrombocytopenia with absent radii
(TAR), Diamond Blackfan anemia (DBA), Shwachman Diamond
syndrome (SDS), and severe congenital neutropenia (SCN) have
been subsumed as inherited BM failure syndromes (IBMFS).
BM failure can occur at different ages and has highly variable
presentations. Disease kinetics and degree of severity depend on
the underlying gene mutation and presumably on concomitant
polymorphisms and environmental influences, such as life style,
infections, and exposition to toxins (56). Underlying pathogenetic
mechanisms are heterogeneous and comprise metabolic dysfunc-
tion, inhibition of differentiation, ribosomal dysfunction, DNA
repair deficiency, and telomere maintenance.

In DBA, SDS, SCN, CAMT, and TAR, primarily one
hematopoietic lineage is affected. These syndromes, their
underlying pathogenesis, and phenotype, as well as characteristic
BM findings are summarized in Table 1. However, it has to be
kept in mind that patients with CAMT or SDS frequently show a
progress from isolated thrombocytopenia or neutropenia, respec-
tively, to complete BM failure (31). In DBA, erythropoiesis is
primarily affected but full BM failure also occurs at low frequency
(26, 56). Ribosomal dysfunction has been shown to induce
excessive TP53 activation leading to apoptosis and being most
harmful to highly proliferating erythroid progenitor cells (24, 26).

In the following, we will focus on syndromes affecting more
than one hematopoietic lineage and frequently resulting in severe
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BM failure and pancytopenia. One of the most severe forms of
hematopoietic failure is reticular dysgenesis, a rare, autosomal-
recessive syndrome. Erythro- and megakaryopoiesis have been
described to be unaffected in some patients, but newborns present
with complete absence of neutrophils and early onset SCID. Due
to the lack of both innate and adaptive immune functions, retic-
ular dysgenesis is rapidly fatal unless hematopoietic stem cell
transplantation (HSCT) is performed. Mutations in the AK2 gene
have been identified to be causative for some cases, but most
remain unsolved (57, 58).

The most frequent syndromes characterized by severe BM
failure are FA and DC. In FA, mutations are found in 15 dif-
ferent genes (FANCA, FANCC, FANCG, FANCD?2, and others),
all involved in DNA damage repair, particularly in resolution
of DNA interstrand cross-links during replication. Patients may
present with congenital abnormalities, such as short stature,
microphthalmia, thumb and radius deformities, café-au-lait spots
and heart, renal and genitourinary malformations. Hematopoi-
etic failure often emerges in childhood or adolescence, and most
patients are only diagnosed with FA at the onset of pancytope-
nia (59). When treated with mitomycin C, FA cells accumulate
chromosomal breaks and undergo G2 arrest, which is used as
a diagnostic test (60). DC is a disease caused by mutations in
genes affecting telomere elongation and maintenance (DKCI,
TERC, TERT, TINF2, and others). Although the disease was
first characterized by its mucocutaneous symptoms (i.e., skin
pigmentation, nail dystrophy, and mucosal leukoplakia), it is
now known that the development of BM failure may preceed
the mucocutaneous manifestations. Age of onset and disease
phenotype are highly variable and at least partially depend on
characteristic mutations (61). By contrast, the diagnostic work-
up invariably reveals very short telomeres at time of presen-
tation. Unresolved DNA damage and critically short telomeres
induce DNA damage checkpoint activation in FA and DC cells,
respectively, with TP53 being a critical mediator (62). As a con-
sequence, cells stop proliferation, and senescence or apoptosis
are induced. Together, these pathways confer protection from
malignant transformation but at the same time they contribute
to BM failure and pancytopenia. As a consequence, FA and DC
cells have a high selective pressure to inactivate the DNA damage

checkpoint, as reflected by their high propensity to develop sec-
ondary MDS and AML (Tables 2 and 3) (63). The highest risk is
observed in FA patients where accumulation of DNA damage and
unresolved chromosomal aberrations rapidly lead to malignant
transformation (64).

Other genetic diseases associated with pancytopenia are Seckel
and Pearson syndromes. Seckel syndrome represents a DNA
damage repair deficiency characterized by BM failure, dwarfism,
microcephaly, mental retardation, and skeletal malformations.
Among others, ATR mutations have been identified to be respon-
sible for this rare syndrome (107). Pearson syndrome is caused
by loss of mitochondrial DNA and thus one of the so called
mitochondriopathies. Next to failure to thrive, exocrine pancreatic
dysfunction, and susceptibility to metabolic imbalance, patients
frequently suffer from anemia, thrombocytopenia, and/or neu-
tropenia. BM analysis typically shows sideroblastic anemia and
vacuolization of hematopoietic precursor cells (108).

It is hardly surprising that DNA damage deficiencies, telom-
eropathies, ribosomopathies, or mitochondriopathies do not only
disturb hematopoiesis but also affect developmental programs and
adult tissues. Many of the syndromes described here are addition-
ally characterized by an increased susceptibility to malignancies,
including hematological malignancies and solid tumors (Table 2)
(65-71). It is obvious that both, the multisystemic nature of dis-
ease and the tumor susceptibility, have to be taken into account
during patient care and therapy planning. It is therefore of great
importance to recognize the underlying cause of BM failure even
in patients with mild or no extrahematological symptoms (56,
109). Pitfalls and diagnostic approaches especially in disorders
with hypocellular BM are discussed below.

Acquired Disorders of Hematopoiesis

Myelodysplastic Syndrome

Myelodysplastic syndrome (MDS) is a clonal disorder origi-
nating from a hematopoietic stem/progenitor cell that suppos-
edly has acquired driver mutations. Due to deregulation of dif-
ferentiation and increased susceptibility to apoptosis, MDS is
characterized by ineffective hematopoiesis in one or more lin-
eages. BM analysis shows characteristic dysplastic cells, such

TABLE 2 | Susceptibility to malignancies in inherited bone marrow failure syndromes (7, 65-71).

Inherited bone marrow failure syndrome

Reported malignancies

Fanconi anemia (FA)

Myelodysplastic syndromes, acute myeloid and lymphatic leukemia, head and neck squamous cell

carcinoma, vulva, esophageal, breast and skin carcinoma, brain tumors, basal cell carcinoma

Dyskeratosis congenita (DC)

Myelodysplastic syndromes, acute myeloid leukemia, non-Hodgkin lymphoma, head and neck

sguamous cell carcinoma, cervix carcinoma, basal cell carcinoma

Diamond-Blackfan anemia (DBA)

Myelodysplastic syndromes, acute myeloid leukemia, colon and lung carcinoma, basal cell

carcinoma, osteogenic sarcoma, female genital cancers

Shwachman-Diamond syndrome (SDS)
Cartilage-hair hypoplasia (CHH)

Myelodysplastic syndromes, acute myeloid leukemia, pancreatic ductal adenocarcinoma (n = 1)

Non-Hodgkin lymphoma, Hodgkin lymphoma, chronic lymphatic leukemia, squamous cell

carcinoma, basal cell carcinoma

Thrombocytopenia absent radius syndrome (TAR)
Congenital amegakaryocytic thrombocytopenia (CAMT)
Severe congenital neutropenia (SCN)

Familial platelet disorder (FPD)

Acute myeloid leukemia

Acute myeloid leukemia, acute lymphoblastic leukemia

Myelodysplastic syndromes, acute myeloid leukemia

Myelodysplastic syndromes, acute myeloid leukemia, myeloproliferative neoplasms, acute T

lymphoblastic leukemia
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TABLE 3 | The different pathophysiological mechanisms and their relative contributions to inherited bone marrow failure syndromes, severe aplastic
anemia, and myelodysplastic syndromes.

Pathophysiological

Inherited bone marrow

Myelodysplastic syndromes (MDS)

Severe aplastic anemia (SAA)

mechanism failure syndromes (IBMFS)

Inherited — Causative for all forms of iIBMFS Familial cases are caused by RUNXT or — No evidence
cell-intrinsic — TP53 activation in FA, DC, and DBA cells GATA2 mutations leading to deregulation of

defects results in cell cycle inhibition, the stem and progenitor cell function (74, 75)

Acquisition of
driver
mutations

Autoimmunity

Inflammatory
signaling

Deregulation of
the stem cell
niche

senescence, and apoptosis meant to
protect from malignant transformation
but at the same time contributing to BM
failure and pancytopenia (72, 73)

Secondary evolution to MDS and/or
AML (65)

Transformation driven by cumulative
injury of proliferating cell (e.g.,
accumulation of DNA damage or
chromosomal instability) (64)
Compensatory proliferation and selective
pressure in pancytopenic patients
contribute to transformation (64)

No contribution reported (83)

Inflammation and infectious diseases are
thought to accelerate BM failure.
Repeated interferon stimulation induces
BM failure in a Fanconi mouse model (96)
Cytokines induce proliferation and
subsequent exhaustion of stem cells.
Cycling stem cells get more susceptible
toward apoptosis (96, 97)

There is evidence that the function of the
stem cell niche is compromised because
of the underlying genetic mutation (102,
103)

However, allogeneic stem cell
transplantation can correct all
hematological symptoms indicating a
minor contribution to disease by the
microenvironment

No inherited mutations are known for sporadic
cases

Driving force for MDS development and
evolution to AML

Typical driver mutations conferring clonal
advantages affect the ASXL7, EXH2, IDHT,
IDH2, KRAS, NRAS, and TET2 genes (76)
Such mutations can result in clonal
hematopoiesis even before overt MDS and
AML occurs (77)

Also, familial MDS forms require second hits
(e.g., monosomy 7 in patients with GATA2
mutation or loss of heterozygosity in patients
with RUNXT mutations) (78, 79)

Clonal T cells were found in MDS patients.
Conflicting results indicate that they are either
derived from the MDS clone or have been
induced by antigenic mutations in MDS cells
(84, 85)

Approximately 10% of MDS patients have
autoimmune-inflammatory manifestations, but
the pathophysiological relationship between
MDS and autoimmunity remains unclear (86)
Some patients show hematological recovery
upon immunosuppressive therapy (87)

Overproduction of cytokines (i.e., TNFa. and
IFNY) by the stem cell niche contributes to
apoptosis of MDS cells (98)

Microenvironmental deregulation contributes
to pathogenesis (98, 104)

In animal models, niche alterations can be
sufficient to induce MDS (i.e., by Dicer
mutations) (105)

Clonal hematopoiesis remodels the niche: in
MDS xenograft models, healthy mesenchymal
stromal cells cotransplanted with MDS cells
adopt molecular features observed in
mesenchymal stromal cells derived from MDS
patients (106)

Secondary evolution to MDS

Critical drivers of clonal evolution are
compensatory proliferation in the
hypocellular marrow and immune

escape (64)

Characteristic clonal findings: PNH clones
with PIGA mutations, deletion of (antigenic)
HLA alleles by loss of the chromosomal
arm 6p or typical MDS mutations (ASXL7,
DNMT3A, TET2, and others) (80-82)

Primary event for SAA

Mediated mainly by CD8+ cytotoxic T and
Th1 cells that are recruited to the

BM (88, 89)

Association with certain HLA alleles (90, 91)
Autoantibodies have been identified but
their significance remains unclear (92, 93)
Patients show a good response to
immunosuppressive therapy (94, 95)

Th1-shifted cytokine secretion with (i.e.,
IFNYy, TNFo, and IL-2) contributes to
disease pathogenesis by suppressing
hematopoiesis (99-101)

There is evidence that the stem cell niche
might contribute to T cell activation; the
results however are conflicting (88)

AML, acute myeloid leukemia; BM, bone marrow; DBA, Diamond Blackfan anemia; DC, dyskeratosis congenita; FA, Fanconi anemia; PNH, paroxysmal nocturnal hemoglobinuria; SDS,
Shwachman Diamond syndrome.

as micromegakaryocytes, binucleated erythroid precursors, and
hypo- or hypersegmented neutrophils. MDS has a high propensity
to further progress to more advanced disease, including MDS-
related acute myeloid leukemia (MDR-AML). This evolution is
caused by additional subclonal driver mutations that have been
acquired in a stepwise manner and result in further increase in
proliferation and impairment of differentiation (110).

In general, MDS is a disease of old age, with an incidence of 50
cases per 100,000 persons aged over 70 years. As shown recently,
even healthy, aged individuals frequently have clonal expansion
of hematopoietic cells harboring driver mutations (i.e., DNMT3A,
JAK2, TET2, and others), although they do not (yet) suffer from
overt MDS or leukemia (77). Risk of MDS is further increased

in people exposed to chemo- or radiotherapy earlier in life with
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a life-time risk of 2-10% after treatment with alkylating agents,
topoisomerase II inhibitors, or ionizing irradiation (111).

By contrast, childhood MDS is rare, and differs from adult MDS
in several aspects. For this reason, the WHO 2008 classification
incorporated a classification specific for childhood MDS allowing
unambiguous classification of most patients (112). Depending on
the number of blasts in peripheral blood (PB) and BM, childhood
MDS is classified as refractory cytopenia of childhood (RCC;
PB blasts <2%, BM blasts <5%), refractory anemia with excess
blasts (RAEB; PB blasts 2-10%, and/or BM blasts 5-19%), RAEB
in transformation (RAEB-T; PB and/or BM blasts 20-29%), and
MDR-AML (>30% BM blasts) (113). The most common sub-
type is RCC (50%). While adult MDS patients usually present
with isolated anemia (“refractory anemia”), affected children fre-
quently present with thrombocytopenia (<150,000/ul; 75%), neu-
tropenia (<1,000/ul; 50%), and/or anemia (Hb <10 g/dl; 50%).
HbF and MCV are frequently elevated (114). In >80% of all
RCC cases, BM analysis reveals a marked decrease of cellularity.
The remaining 20% of patients with RCC have a normo- or
hypercellular BM (114).

Common cytogenetic abnormalities of childhood MDS are
monosomy 7 (approximately 30%) and trisomy 8. Loss of chro-
mosome 5q, frequently seen in adults, is only rarely found in
children. A structurally complex karyotype (>3 chromosomal
aberrations including at least one structural aberration) is rare
but invariably associated with poor prognosis (115-117). Chro-
mosomal aberrations do not represent initiating events but indi-
cate disease progression. Along this line, karyotypic evolution
is usually accompanied by progression to more advanced MDS
forms. The incidence of cytogenetic abnormalities is lowest in
RCC with hypocellular BM. Patients with RCC and monosomy
7 are at high risk of progression with a cumulative incidence of
80% at 6 years from diagnosis and a median time to progression of
1.9 years (118). By contrast, RCC patients with a normal karyotype
or trisomy 8 may have stable disease for many years. Patients with
advanced MDS are at risk for further disease progression and
have an indication for early HSCT (114). In infants, monosomy
7 or del(7q) has also been reported to disappear spontaneously,
however, only in rare cases (119).

Next to sporadic cases, MDS can arise secondary to inherited or
acquired BM disorders or in the context of chemo/radiotherapy.
Importantly, all IBMFS described above have a risk to trans-
form into secondary MDS, as described above in more detail for
FA and DC (Table 2) (64). Lifetime risk of IBMFS patients is
highly variable and ranges from very high in patients with FA
(40-50% by the age of 40years) to very low in DBA patients
(65). Patients with other inherited syndromes might develop MDS
directly without hypocellular prophase (120). GATA2 haploin-
sufficiency is the most frequent reason for such familiar MDS.
Patients show variable disease complexes with extrahematological
symptoms, such as lymphedema and deafness, and 40% develop
MDS during adolescence and early adulthood. Preceding hema-
tological and immunological symptoms are heterogeneous and
include monocytopenia, mild neutropenia, and DC, B and/or NK
cell deficiency. Depending on the predominant symptoms, the
syndrome was named DCML (dendritic cell, monocyte, B and NK
lymphoid) deficiency, Emberger syndrome, or MonoMAC (121).
Similarly, patients with heterozygous germline RUNXI mutation

have a high propensity to develop MDS (20-50%). Since precedent
hematological symptoms are limited to qualitative and quantita-
tive platelet defects, the syndrome is called familial platelet dis-
order (FPD) (33). It is not yet fully understood, why patients with
RUNX1 and GATA2 mutations are at such high risk for MDS (120).

Severe aplastic anemia

While MDS is an intrinsic disorder of hematopoiesis, severe
aplastic anemia (SAA) is an autoimmune process. In contrast to
autoimmune cytopenias affecting mature blood cells, immature
and multipotent cells are targeted in SAA resulting in the severe
phenotype characterized by pancytopenia and BM aplasia (88,
94). Evidence for the immune pathophysiology of the disease
was first derived from clinical observations such as the response
to immunosuppressive therapy (IST) or successful autologous
recovery after failed allogeneic HSCT (122, 123). Since then,
much effort has been invested in characterization of the immune
phenotype, and certain HLA alleles have been associated with
an increased risk (90, 91). Autoantibodies against different anti-
gens (e.g., antimoesin or kinectin) have been detected in SAA
patients but their significance remains unknown (92, 93). Detailed
analysis of the T cell compartment revealed a recruitment of
activated T cells to the BM (124) and oligoclonality in some cases
(125-128). CD8+ cells isolated from SAA patients were able to
suppress colony formation in vitro (129). Thl-shifted cytokine
secretion with elevated IFNY, TNFo,, and IL-2 levels is thought to
contribute to disease pathogenesis by suppressing hematopoiesis
(89, 99-101).

Although SAA is primarily immune-mediated, acquisition of
somatic mutations and clonal hematopoiesis seem to be relevant
phenomena. Clonal evolution is thought to be driven mainly
by two mechanisms: (i) proliferative pressure to compensate for
hematopoietic failure, and (ii) immune escape.

Best described is the presence of a so-called paroxysmal noc-
turnal hemoglobinuria (PNH) clone in patients with SAA. In
PNH, the clonal cell population harbors a mutation in the PIGA
gene and thus lacks cell surface proteins linked to a glycosylphos-
phatidylinositol anchor. In clinically manifest PNH, this leads
to complement-mediated hemolysis and the risk of thrombosis
(80). It is possible that PIGA mutations occur to escape autoim-
munity directed against glycosylphosphatidylinositol-bound anti-
gens. Alternatively, the clone might exist a priori and be positively
selected when other hematopoietic cells are hit by autoreactive T
cells in SAA. Also, copy number-neutral loss of heterozygosity of
chromosome 6p is observed disproportionately frequent in SAA
patients (81). This is thought to be a mechanism of immune-
escape by deletion of antigenic HLA alleles. Finally, SAA patients
have been shown to carry somatic mutations similar to those
mutated in MDS (i.e., ASXL1, DNMT3A, TET2, and others),
indicating transformation into secondary MDS (82, 130).

B-cell precursor acute lymphoblastic leukemia
About 2% of patients with B-cell precursor acute lymphoblastic
leukemia (ALL) present with pancytopenia and hypocellular BM.
Usually, this prophase is transient and goes into spontaneous
remission before ALL emerges with a latency of up to 9 months.
Hematopoietic cells in the aplastic phase have been shown to carry
the same gene mutations as the leukemic blasts (131, 132).
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Inherited Bone Marrow Failure, MDS, and
SAA: the Diagnostic Challenge of a
Hypocellular Marrow

One of the major challenges in pediatric hematology is the correct
diagnosis of patients with pancytopenia and hypocellular BM.
Once infections and other more frequent conditions resulting in
a transient suppression of hematopoieisis have been excluded,
the main differential diagnosis includes SAA, hypoplastic MDS,
and IBMES, such as FA and DC. Careful diagnostic work-up
and accurate distinction of these entities are mandatory because
they require different strategies for therapy, surveillance, and
counseling. In particular, IBMFS have to be excluded since they
often present as multisystem and tumor-susceptibility syndromes
with limited tolerance to various therapies (56, 64, 109). The
diagnostic challenge is not only due to similar clinical presentation
but also caused by a relevant overlap in the underlying pathophys-
iology. Table 3 shows different pathophysiological mechanisms
contributing to IBMFS, MDS-RCC, and SAA to variable degrees.
Further problems for the diagnostic work-up are scarce cell num-
bers isolated from hypocellular BM and lack of discriminating
functional tests.

Knowing these hurdles, the following diagnostic criteria and
workflow should be followed:

(i) BM analysis: next to aspiration cytology, histological analy-
sis of a trephine biopsy should be performed. RCC and SAA
can be reliably differentiated in trephine biopsies (114, 133)
and the respective criteria, as defined in the WHO classifi-
cation 2008, are depicted in Table 4 (82, 113). Additionally,
cytogenetic analysis with metaphase cytogenetics and FISH
should be performed. Chromosomal aberrations indicate
the presence of MDS. However, >60% of all RCC cases have
a normal karyotype (114). Next generation sequencing will
be helpful to detect clonal driver mutations indicative for
MDS-RCC, but this method is still expensive and reserved
for research questions.

(ii) Exclusion of IBMFS: IBMFS and RCC frequently have over-
lapping morphological features. Thus, careful past medi-
cal and family history, as well as physical examination, is
required to exclude presence of a multisystem disease. FA

and DC should be excluded by mitomycin C stimulation and
telomere measurements, respectively. Genetic testing can
confirm the suspected diagnosis, but gene mutations cannot
be detected in all cases. In case of the diagnosis of a defined
IBMFS or a presentation that is highly suspicious for an
inherited disorder, possible related stem cell donors should
be carefully evaluated for signs and symptoms of the respec-
tive disease. Patients with strong evidence of multisystem
disease but without genetic diagnosis might benefit from
functional tests such as chromosomal breakage, cell cycle
arrest, ribosomal profiling, or others. However, such tests
might be technically challenging and difficult to interpret
and thus are not part of standard diagnostic work-up.

Since disorders of hypocellular BM are rare, diagnostic work-
up should be performed by experienced hematologists and
hematopathologists, and patients should be treated after consul-
tation with reference centers. This ensures best care for affected
patients and their families and prevents underdiagnosis of RCC
and telomeropathies in SAA cohorts (109, 134-136).

It is also important to repeatedly reevaluate patients with
IBMES and SAA, since both disorders are at risk to progress into
secondary MDS. Secondary MDS can be diagnosed by an increase
in blast cells or BM cellularity, despite persistent pancytopenia,
and by acquisition of chromosomal aberrations.

Therapeutic Approaches and Limitations

Treatment of (pan)cytopenia is based on a few symptomatic or
curative therapeutic options. Symptomatic treatment includes the
transfusion of blood products, such as red blood cells and platelets,
and prevention or treatment of infections with antimicrobial
drugs, and if indicated immunoglobulin substitutions. Granulo-
cyte or T cell transfusions are technically feasible but restricted to
very few life-threatening situations. Hematopoietic growth factors
may be used to stimulate hematopoiesis and overcome reduced
blood cell production. G-CSF is the therapy of choice for patients
with SCN and has changed the fate of majority of children with
this serious condition (19, 137). Today, allogeneic HSCT is limited
to patients who do not respond to G-CSF or develop MDS (138).
Although the situation is less clear, selected patients with SDS
might benefit from G-CSF in case of severe neutropenia (66).

TABLE 4 | Morphological criteria for severe aplastic anemia and myelodysplastic syndromes, type refractory cytopenia of childhood (EWOG-MDS 2008)

(13, 82, 113).

Myelodysplastic syndrome, type refractory cytopenia of childhood (MDS-RCC)

Severe aplastic anemia (SAA)

Erythropoiesis
mitoses

Granulopoiesis Marked decrease, left shift

Megakaryopoiesis Marked decrease or absence
Micromegakaryocytes (to be detected by immunohistochemistry)
Lymphocytes Lymphocytes and plasma cells might be increased
CD34 cells No increase
Others Mast cells might be increased

Adipocytic bone marrow

Patchy distribution, increased numbers of proerythroblasts (left shift), increased numbers of

Lacking or single small focus with <10 cells, full
maturation

Lacking or marked decrease, very few small foci
with maturation

Lacking or very few, no micromegakaryocytes or
other dysplastic megakaryocytes

May be increased focally or dispersed
No increase

After initation of immunosuppressive therapy:
similar to MDS-RCC

No increase in reticulin fibers (difference to adult MDS patients)

Frontiers in Pediatrics | www.frontiersin.org

July 2015 | Volume 3 | Article 64


http://www.frontiersin.org/Pediatrics
http://www.frontiersin.org
http://www.frontiersin.org/Pediatrics/archive

Erlacher and Strahm

Pancytopenia in childhood

The thrombopoietin analog eltrombopag has been successfully
used in chronic ITP (139) and surprisingly induced multilineage
responses in an early study in patients with refractory SAA (140).
Other, less specific stimulants of hematopoiesis are the steroid
prednisolone or the androgens, danazol and oxymetholone, used
for DBA or DC, FA, and SAA patients, respectively (26, 141-144).

Some of the disorders described in this review require
immune-modulatory or suppressive therapies. These include high
dose-immunoglobulins, anti-thymocyte globulin (ATG), steroids,
cyclosporine, mycophenolic acid, and others. Detailed treatment
schedules for ITP, ATHA, ALPS, SLE, HLH, and others are beyond
the scope of this review and described elsewhere.

Immunosuppressive therapy traditionally has been the ther-
apy of choice for patients with SAA with no matched related
donor (94, 145). The best established regimen consists of ATG
in combination with cyclosporine A (95). In 2011, a random-
ized trial demonstrated that the source of ATG (horse vs rabbit)
is relevant and the treatment with ATG derived from horses
is more effective compared to products derived from rabbits
(146). These results have subsequently been confirmed in mul-
tiple observational studies (147, 148). Using the combination of
horse ATG and cyclosporine, the response rate is approximately
60-70% with a risk of relapse or clonal evolution of 10-30 or
10-20%, respectively (145). Attempts to improve efficacy were
based on additional treatment with sirolimus, mycophenoalte
mofetil, or danazol, and did not result in significant improve-
ments. Also, the addition of G-CSF did not result in better
response rates or improved survival, and therefore is not gen-
erally recommended. Based on the observation that autoim-
munity contributes to the pathophysiology of MDS (Table 3)
and that adult patients with hypoplastic MDS have success-
fully been treated with IST (149), selected pediatric patients
with hypocellular RCC have successfully been treated with
IST (87, 150, 151).

Hematopoietic stem cell transplantation is a curative treat-
ment for patients with SAA and MDS, and the hematolog-
ical manifestation of IBMFS. Patients with SAA traditionally
were transplanted following a conditioning regimen consisting
of cyclophosphamide/ATG in the presence of a matched sib-
ling donor with excellent results (152). Based on less favorable
results, HSCT from an unrelated donor was only performed in
patients with non-response to IST, relapse, or clonal evolution.
Lately, the results of HSCT from unrelated donors have improved
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