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Background: There are limited reports of the use of whole exome sequencing (WES)
as a clinical diagnostic tool. Moreover, there are no reports addressing the cost burden
associated with genetic tests performed prior to WES.

Objective: We demonstrate the performance characteristics of WES in a pediatric
setting by describing our patient cohort, calculating the diagnostic yield, and detailing the
patients for whom clinical management was altered. Moreover, we examined the potential
cost-effectiveness of WES by examining the cost burden of diagnostic workups.

Methods: To determine the clinical utility of our hospital’s clinical WES, we performed
a retrospective review of the first 40 cases. We utilized dual bioinformatics analyses
pipelines based on commercially available software and in-house tools.

Results: Of the first 40 clinical cases, we identified genetic defects in 12 (30%) patients,
of which 47% of the mutations were previously unreported in the literature. Among the
12 patients with positive findings, seven have autosomal dominant disease and five have
autosomal recessive disease. Ninety percent of the cohort opted to receive secondary
findings and of those, secondary medical actionable results were returned in three cases.
Among these positive cases, there are a number of novel mutations that are being
reported here. The diagnostic workup included a significant number of genetic tests
with microarray and single-gene sequencing being the most popular tests. Significantly,
genetic diagnosis fromWES led to altered patient medical management in positive cases.

Abbreviations: ACMG, American College of Medical Genetics; CAP, College of American Pathologists; CASAVA, consensus
assessment of sequence and variation; IRB, Institutional Review Board; MODY, maturity onset diabetes of the young; VUCS,
variant of unknown clinical significance; WES, whole exome sequencing.
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Conclusion: We demonstrate the clinical utility of WES by establishing the clinical
diagnostic rate and its impact on medical management in a large pediatric center.
The cost-effectiveness of WES was demonstrated by ending the diagnostic odyssey in
positive cases. Also, in some cases it may be most cost-effective to directly performWES.
WES provides a unique glimpse into the complexity of genetic disorders.

Keywords: whole exome sequencing, next generation sequencing, diagnosis, children, clinical utility, pediatrics

Introduction

Mendelian diseases account for a significant number of pedi-
atric disorders. Recently, a systematic review of the records of
5,747 consecutive admissions in 1996 to Rainbow Babies and
Children’s Hospital (Cleveland, OH, USA) found an underly-
ing disorder with a significant genetic component in 71% of
admitted children (1). Diagnosing patients with complex phe-
notypes generally involves physical examination, detailed family
history, complementary tests such as radiography and metabo-
lite analysis, and genetic testing. A significant proportion of
patients undergo extensive genetic testing including karyotyp-
ing, array-based comparative genomic hybridization, Sanger
sequencing, and multigene next-generation sequencing panels
but still remain undiagnosed (2). Accurate diagnosis poten-
tially benefits patients and their families by altering clinical
management, predicting recurrence risks, providing progno-
sis, and ending the diagnostic odyssey that is invasive, time
consuming and costly. Clinical diagnosis is therapeutic in its
own right for the patient/family, as a result of ending the
“diagnostic odyssey” – quite apart from the tangible clinical
benefits.

The advent of next-generation sequencing technologies has
provided an opportunity to affordably screen a patient’s entire
exome to establish genetic basis of disease (3–9). The “exome”
is the component of the genome that predominantly encodes
protein; these segments are referred to as “exons” and can
include non-coding exons. The exome comprises about 1% of
the genome and is, so far, the component most likely to include
interpretable mutations that result in clinical phenotypes. Whole
exome sequencing (WES) involves determination of the DNA
sequence of most of these protein-encoding exons and may
include some DNA regions that encode RNA molecules that are
not involved in protein synthesis. The utility of WES to iden-
tify variants causative of Mendelian disorders has been clearly
demonstrated in identifying novel candidate genes for Miller syn-
drome, Fowler syndrome, Perrault Syndrome, and many other
disorders (10–17). However, the clinical utility of exome sequenc-
ing in pediatric patients needs further examination (18–22).
Herein, we report a series of our first 40 consecutive pedi-
atric cases that were referred for WES in a clinical laboratory.
We demonstrate the clinical utility of WES in a pediatric set-
ting by describing our patient cohort, calculating the diagnos-
tic yield, detailing the cases in which clinical management was
altered, and potential cost-effectiveness of WES as a single test
by examining the number and types of genetic tests that were
performed prior to WES that add to the cost of diagnostic
workups.

Patients, Materials, and Methods

Clinical Samples
Forty pediatric patients referred by medical specialists (Medical
geneticists 77%, Immunologists 15%,Cardiologists 3%, and others
3%) for exome sequencing have had the analysis and results dis-
closure completed. The patients in this cohort had diverse clinical
features and these are summarized in Table 1. Before referral,
all patients had undergone extensive diagnostic evaluations (e.g.,
aCGH microarray, targeted gene tests/panels, metabolic screen-
ing, clinical genetic evaluations, and other laboratory workup)
that did not lead to a unifying diagnosis. Consent for clinical
WES was obtained from the patients and/or their family. Internal
review board (IRB) approval was obtained at Cincinnati Children’s
Hospital Medical Center (CCHMC) for this retrospective study.

Whole Exome Sequencing and Sanger
Confirmation
WES and analysis protocols were developed and validated by
the CCHMC molecular genetics laboratory of the Division of
Human Genetics. Briefly, genomic DNA samples from patients
were fragmented by sonication, ligated to Illumina multiplexing
paired-end adapters, amplified by means of a polymerase-chain
reaction and hybridized to biotin-labeled NimbleGen V3 exome
capture reagent (Roche NimbleGen). Hybridization was achieved
at 47°C for 64–72 h. After washing and reamplification, paired-
end sequencing (2× 100 bp) was performed on the Illumina
HiSeq 2500 platform to provide average sequence coverage of
more than 100×, with more than 97% of the target bases having at
least 10× coverage. Clinically relevant variants, from proband and
parental samples (whenever available), were confirmed by Sanger
sequencing.

Data Analysis and Annotation
To aid in the clinical interpretation of variants, data were anno-
tated and analyzed using two pipelines: (1) next gene pipeline
(NGP) and the (2) genome analysis toolkit (GATK)/golden helix
pipeline (GGHP). For NPG, output data from the Illumina HiSeq
2500were converted frombcl files to FastQ files using the Illumina
consensus assessment of sequence and variation (CASAVA) soft-
ware, version 1.8, and mapped to the reference haploid human-
genome sequence (hg19) with NextGene 2.3.4 using default set-
tings. Passing quality control/quality assurance (QC/QA) param-
eters included>75million reads,>100× average coverage,>95%
at 10× coverage of the target exome, and >200 million unique
molecules for each case. Variant calls, which differed from the
reference sequence was obtained with NextGene 2.3.4. NextGENe
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TABLE 1 | Patient demographic information and detailed description of presenting symptoms.

Case ID Gender Age at
presentation
(months)

Age at
testing
(months)

Race/ethnicity Primary
disease

classification

Presenting symptoms

1 Male 19 36 Caucasian/other
(Japanese)

Mitochondrial
disorders

Hypotonia, fatigue, speech apraxia, insomnia, fevers,
leukopenia, eosinophilic esophagitis, leg length
discrepancy

2 Male 6? 60 Caucasian/native
American

Neurological
disorders

Dysmorphic facial features, intellectual disability, eczema,
abnormal gait, developmental delay, lack of verbal skills,
hypotonia, seizures, epilepsy

3 Male 3 24 Other (middle
Eastern)

Immunodeficiencies Autoimmune hemolytic anemia, recurrent immune
thrombocytopenic purpura, non-specific immune
dysfunction

4 Male 12 24 Caucasian Immunodeficiencies Common variable immunodeficiency-like symptoms,
pan-hypogammaglobulinemia, alopecia universalis,
reduced memory B cells, gastroesophageal reflux disease,
left midfoot valgus

5 Male <5 108 Caucasian Mitochondrial
disorders

Hypotonia, gross motor delay, joint hypermobility, poor
growth, eosinophilic esophagitis, osteopenia, cyclic
recurrent periodic fevers

6 Male 6 72 Caucasian/native
American

Multiple congenital
anomalies

Autism, intellectual disability, speech and motor apraxia,
global developmental delay, gross and fine motor delays,
hypotonia, dysmorphic features including midface
hypoplasia, flat profile with deep set eyes, frontal bossing,
bilateral fifth finger clinodactyly and tapered fingers

7 Male Birth 12 Caucasian Immunodeficiencies
and multiple
congenital
anomalies

Immunodeficiency: multiple infections, T-B+NK+ severe
combined immunodeficiency with dermatitis and hair loss;
congenital anomalies: cervical and lumbar kyphosis,
basilar skull anomaly, short stature, bilateral microtia,
malar prominence, narrow alae nasi, cupid bow lip,
retrognathia, external ear malformation. Other features:
hearing loss, undescended testicles, thrombocytopenia

8 Female 24 24 Caucasian Immunodeficiencies Acute liver failure due to immune dysregulation of
unknown etiology; profound lymphopenia, decreased NK
cell function, hepatomegaly, elevated liver enzymes

9 Female 18 192 Caucasian Mitochondrial
disorders

Febrile and tonic/clonic seizures, intellectual disability,
developmental regression, chronic constipation, back
pain, photophobia, nosebleeds, language regression,
infrequent urination

10 Male <12 144 Caucasian/native
American

Neurological
disorders and
multiple congenital
anomalies

Hypotonia, mild intellectual disability, cerebellar
hypoplasia, ataxia, global developmental delay, exercise
intolerance

11 Female <12 132 Caucasian/native
American

Neurological
disorders

Global developmental delay, intellectual disability,
developmental regression, autism, macrocephaly,
seizures, hypomyelination

12 Male 2 1 Other (Nepalese) Multiple congenital
anomalies

Chronic hepatitis, jaundice, cirrhosis, hepatomegaly, end
stage liver disease, global developmental delay,
hypotonia, failure to thrive, midface hypoplasia, narrow
palate, postural kyphosis, mild left ventricular dilation, mild
left ventricular trabeculation

13 Female 1 168 Caucasian Immunodeficiencies Atypical common variable immunodeficiency, absent B
cells, lymphohematopoietic disorder,
hypogammaglobulinemia, chronic lymphocytic hepatitis,
recurrent sinopulmonary infections, granulomatous
hepatitis causing cirrhosis, portal hypertension

14 Female 6 36 Caucasian Neurological
disorders

Infantile onset dopa-responsive dystonia, gross and fine
motor delay, swallowing difficulty

15 Male 6 60 Caucasian/native
American

Neurological
disorders

Epilepsy, visual impairment, global developmental delay,
hypotonia, failure to thrive, clinodactyly, intellectual
disability

(Continued)

Frontiers in Pediatrics | www.frontiersin.org August 2015 | Volume 3 | Article 673

http://www.frontiersin.org/Pediatrics
http://www.frontiersin.org
http://www.frontiersin.org/Pediatrics/archive


Valencia et al. Utility of clinical exome sequencing

TABLE 1 | Continued

Case ID Gender Age at
presentation
(months)

Age at
testing
(months)

Race/ethnicity Primary
disease

classification

Presenting symptoms

16 Male Not available,
adopted

384 Caucasian Multiple congenital
anomalies

Progressive optic atrophy, ataxia, moderate sensorineural
hearing loss, muscle weakness, vertigo, erythrocytosis,
horizontal nystagmus

17 Male 6 24 Caucasian/
Ashkenazi Jewish

Neurological
disorders

Infantile dystonia, hypertonicity, gross motor delay

18 Male 1.5 72 Caucasian Immunodeficiencies Duodenal web, esophageal strictures, intestinal
dysmotility, autoamputation, toe necrosis, acrocyanosis,
vasculitis, arteritis, necrosis, dysphagia, infections

19 Male Birth 84 Caucasian Multiple congenital
anomalies

Joint laxity, hypotonia, exercise intolerance, arthralgias,
excessive bruising, fatigue, immune dysregulation, chirari
malformation, developmental regression

20 Male <24 156 Caucasian Multiple congenital
anomalies

Microcephaly, apraxia, cognitive impairment, poor weight
gain, dysmorphic facial features

21 Male <24 96 Caucasian Multiple congenital
anomalies

Syndromic heart anomaly: mitral valve stenosis,
hypoplastic aortic arch, left ventricular non-compaction,
dysmorphic facial features, short stature, developmental
delay

22 Female <7? 168 Caucasian Immunodeficiencies Combined immune deficiency of undetermined genetic
etiology, recurrent EBV infection, bone marrow transplant,
Grave’s disease, cataracts, ptosis and choroidal nevus

23 Male 1 24 Caucasian Immunodeficiencies
and multiple
congenital
anomalies

Hypogammaglobulinemia, recurrent infections, recurrent
fevers, fine motor and speech delay, feeding problems,
hypotonia, macrocephaly, prominent forehead, deep set
eyes, thin upper lip, long fingers and toes, and persistent
fetal fingerpads

24 Female Birth 60 Caucasian Neurological
disorders

Severe hypotonia, absent swallow, developmental delay,
muscle pain, fatigue, ptosis, heat intolerance, hearing loss,
hypersecretions, low set ears, and a high arched palate

25 Female Infant 204 Caucasian Multiple congenital
anomalies

Leukoencephalopathy, global developmental delay,
hypotonia, ataxia, cryptogenic partial complex epilepsy,
dysphagia, seizures, flattened midface, prognathism,
bilaterally cupped ears with simplified anti-helix

26 Male Birth 48 Caucasian Multiple congenital
anomalies

Skeletal dysplasia with mild metaphyseal flaring, very short
long bones with micromelia, bell-shaped thorax, bowing of
the tibias, and platyspondyly with secondary lordosis,
scoliosis, kyphosis

27 Female 2 24 Caucasian Neurological
disorders

Global developmental delay, hypotonia, infantile onset of
seizures, progressive microcephaly, feeding difficulties,
gastroesophageal reflux disease, diarrhea, constipation

28 Female 36 36 Caucasian Immunodeficiencies Hemophagocytic lymphohistiocytosis, abnormal
degranulation of NK cells

29 Male Birth 96 Caucasian Multiple congenital
anomalies

Encephalopathy, expressive language delay, intellectual
disability, and motor impairment, Pierre Robin sequence,
hypotonia, undescended testes and dysmorphic facial
features

30 Female Birth 36 Caucasian Neurological
disorders

Agenesis of corpus callosum, polymicrogyria, gray matter
heterotropia

31 Male Birth 72 Caucasian Mitochondrial
disorders

Exercise intolerance, fatigue, hypotonia, ventricular septal
defect, patent foramen ovale, eosinophilic esophagitis,
severe global developmental delay, difficulty feeding,
abdominal pain, heat intolerance, bone lesion in femur,
absent speech, intellectual disability, autism, poor
balance, hypermobility

32 Male <5 14 Caucasian/native
American

Mitochondrial
disorders

Muscle weakness, hypotonia, gastrointestinal dysmotility,
gastroesophageal reflux disease, dysphagia, ataxia,
epilepsy, autonomic dysfunction, malrotation of small
intestine, developmental delay

(Continued)
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TABLE 1 | Continued

Case ID Gender Age at
presentation
(months)

Age at
testing
(months)

Race/ethnicity Primary
disease

classification

Presenting symptoms

33 Male <6 168 Caucasian/other
(Chinese/Indian/
New Zealander)

Neurological
disorders

Fatigue, lactic acidosis, cryptogenic infantile spasms,
hypotonia, developmental delay

34 Female Birth 60 Caucasian Neurological
disorders and
multiple congenital
anomalies

Mild developmental delay, intractable epilepsy, isolated
cataplexy, hypopigmented linear nevi, streaky
hypopigmentation on right leg, hypoplastic tissue on right
toe, and hand, dysmorphic facial features, shortened right
ulna with congenital radial head dislocation

35 Male <24 96 Caucasian Mitochondrial
disorders

Fatigue, dysmotility, lower extremity spasticity, delayed
milestones, acute liver failure, eosinophilic esophagitis,
dysruptive behavior disorder, obstructive sleep apnea

36 Female 3 12 Caucasian/other
(Filipino, Puerto
Rican, Chinese)

Multiple congenital
anomalies

Global developmental delays, hypotonia, brachycephaly,
upslanting palpebral fissures, broad angulated thumbs,
bulbous great toes, clinodactyly

37 Male Birth 12 Other (Mexican) Multiple congenital
anomalies

Bilateral hearing loss with enlarged vestibular aqueducts;
developmental delay, hypotonia

38 Male 66 72 Caucasian Endocrinology Atypical type 1 diabetes (lack of ketones), cataract,
hepatomegaly

39 Male Birth 156 Caucasian Multiple congenital
anomalies

Microcephaly, bilateral congenital chorioretinal colobomas,
vision loss of left eye, depression, anxiety disorder,
intellectual disability

40 Male <24 60 Caucasian/native
American

Neurological
disorders and
multiple congenital
anomalies

Seizures, intermittent weakness, megalocornea, leg
movements, poor gross and fine motor skills

? means the age is not certain.

genotyping settings were as follows: non-synonymous variants are
generated for CDS± 20 bp and heterozygous, homozygous and
wildtype calls had allele percentages of >20 and <80%, >80 and
<20%, respectively. Alamut HT 1.1.8 was used for variant anno-
tation. In-house developed scripts were applied for variant prior-
itization based on phenotype-genotype correlation (Phenomizer
and Pheno2Gene, a CCHMC-developed tool), presence in the
literature, inheritance modeling, frequency in exome sequencing
project (ESP) and exome aggregation consortium (ExAC) pop-
ulation databases (<1%, unless literature reported with a higher
frequency or other lines of evidence supported pathogenicity of
variants), mutation type, in silico predictions (POLYPHEN, SIFT,
and Grantham Scale), and presence of the variant in functional
domains. Variants were excluded from the analysis if they had a
coverage of<10×.

For GGHP, reads generated by the sequencer were aligned
to the human genome with BWA 0.5.9. Then, the aligned reads
were checked for quality (QC/QA parameters). Upon passing,
the aligned data were preprocessed to reduce sequencing biases
using Picard 1.5.3 and GATK Appistry 2013.2. The data were
compared to the reference sequence, along with standard control
samples and other samples in the batch in order to generate a
final list of variants for the exome test using with GATK 7.7.4. The
output variant calls were in the standardVCF format. The variants
were called with GATK using the following commands: -T Uni-
fied Genotyper-dcov 1000-stand_call_conf 30.0-stand_emit_conf
30.0 –min_base_quality_score 20 -ADepthOf Coverage -A Indel
Type -A QualByDepth -A ReadPosRankSumTest -A FisherStrand

-AMappingQualityRankSumTest -l INFO -glm. The VCF file was
analyzed using Golden Helix Software (ver. 7.7.4) as previously
reported (23). Briefly, quality filtering to exclude variants was
based on alternative allele ratio, genotype quality score value (GQ
<20 excluded), and read depth (depth <15× excluded). Genetic
filters included keeping variants that had a <1% allele frequency
and fit Mendelian inheritance models.

Data Interpretation and Reporting
Common and unique variants from both analysis pipelines that
remained after filtering were further classified as deleterious
mutations, variants of unknown clinical significance (VUCS), or
benign variants in the context of their relatedness to the patient’s
phenotype, and pathogenic mutations on the American College
of Medical Genetics (ACMG) gene list were classified as med-
ically actionable secondary findings. Stringent conditions were
employed to identify causative mutations. Specifically, we fol-
lowed the ACMG guidelines to denote deleterious mutations and
binned them into the ACMGcategory 1 (previously reported to be
deleterious) or category 2 (predicted to be deleterious) (24). Pre-
viously reported or predicted to be deleterious mutations in genes
associated with the patient’s phenotypes were prioritized. Each
causative mutation was scrutinized by thorough literature review
and database searches. Moreover, the pathogenicity of novel and
rare variants was assessed by in silico prediction programs. Addi-
tionally, patterns of familial segregation were examined for cor-
relation. Moreover, pathogenic variants were identified based on
the ACMG secondary finding recommendations (if the family
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chose to receive this information) (25). At the final stage, clin-
ical exome sequencing data interpretation was performed by a
team represented by clinical molecular and medical geneticists,
pediatric subspecialists, and genetic counselors. The criteria for
a full or partial molecular diagnosis were defined as follows: (1)
Full molecular diagnosis – Gene variant(s) that is classified as
likely pathogenic or pathogenic explains most or all of the clinical
features of the patient. (2) Partial molecular diagnosis – Gene
variant(s) that is classified as likely pathogenic or pathogenic
explains one or several of the clinical features of the patient.

Results

Cohort Description
Of the 40 patients, 30, 17, 22, and 25% were patients with primary
phenotypes related to multiple congenital anomalies, immunod-
eficiency, neurological, and mitochondrial disorders, respectively
(Table 1;Figure 1, Primary indication). Thirteen percent had clin-
ical features of more than two of the broad aforementioned cate-
gories. All patients were under 17 years of age at the time of exome
analysis (average age 83.2months) and much younger at the time
of clinical presentation (average age 5.3months) (Table 1).

Exome Sequencing
As quality control/quality assurance parameters we measured the
average coverage, percentage at 10× and 20× per family (Table
S1 in Supplementary Material). The typically QC/QA acceptable
average coverage was>100× and>95% at 10×.Themean average
coverage for the cohort was 125.76×. In addition, the mean per-
centage coverage at 10× and 20× was 96.85 and 95.40%, respec-
tively. There were several exceptions to the 100× average cover-
age, namely cases 82, 80, 36, and 38, and after several attempts

the average coverage was lower, but other QC/QA parameters
including the 95% at 10× were all met. Thus, in rare occasions,
exceptions may be made if the sample is limiting, DNA qual-
ity is less than optimal, several attempts are made to meet all
parameters, or if most of the other QC/QA parameters were met.

On average 32,171 single-nucleotide variants (pre-filtering) and
small insertion and deletion, changes were identified in each
patient’s exome by comparison with the current reference h19
haploid human genome sequence (Table S1 in Supplementary
Material). On average 2031 (post-filtering) of potential clinically
useful variants were kept after filters were applied (Table S1 in
Supplementary Material). This number has continued to decrease
by the utilization of internal normal controls and for current cases
it is ~500 variants. Typically, three to eight variants were submitted
for Sanger sequencing for each proband and family member(s).
More than 84% of the variants selected for potential reporting
were confirmed by means of Sanger sequencing. The remaining
16% were proven to be false positives due to unequal allele frac-
tions, poor mapping scores, sequence homology, and insertion
and deletion erroneous calls. Within the false positive variants,
significant proportions were deletions (16%) and insertions (12%)
and the remaining were single nucleotide variants (72%).

Diagnoses Using Exome Data
Of the 40 probands, 12 carried 18 mutant alleles at 15 differ-
ent chromosomal loci that satisfied criteria for a full or partial
molecular diagnosis (Table 2). The overall rate of a positivemolec-
ular diagnosis was 30% (Figure 1, Yield). This group included
seven patients with autosomal dominant disease and five with
autosomal recessive disease (Figure 1, Inheritance). A diverse
group of disorders were represented in the positive patients
(Table 2), including primary immunodeficiency, Ehlers–Danlos

FIGURE 1 | Descriptive statistics of the patient cohort and the positive exome cases.
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syndrome and multiple congenital anomalies, such as Otofacio-
cervical syndrome, Acromesomelic dysplasiaMaroteaux type, and
Bainbridge-Ropers syndrome.

A full range of mutation types were observed in this cohort:
three frameshift, two in-frame, two nonsense, two splicing,
and eight missense mutations (Table 2). Missense (50%) and
frameshift (19%) mutations made up the highest percentages of
changes (Figure 1, Mutation type). The majority of these muta-
tions were inherited (58%); however, a significant percentage of de
novomutations, defined as mutations present in the proband and
not in the parents, were observed (29%) (Figure 1, Segregation).
Moreover, 47%of themutationswere previously unreported in the
peer-reviewed literature and variant databases (Figure 1, Litera-
ture). A total of seven patients had autosomal dominant disorders;
of which, three were novel variants that had not been described in
the peer-reviewed literature. For the five patients with autosomal
recessive disease, parental studies indicated that four had inherited
mutant alleles from each carrier parent. The remaining patient,
for whom parental samples were not available, was found to have
mutations in trans by allele-specific PCR.

Variants of unknown clinical significance were found in a num-
ber of patients (Table 3). These variants were placed on this table
because of pathogenicity prediction inconsistency, higher minor
allele frequency, and/orminimal published literature information;
however, these genes/variants may explain part of the phenotype.
For example, case 6 had two POLR3B variants classified as VUCS.
c.1958A>T is a rare variant with frequencies less than 1% in ESP
and ExAC. On the other hand, c.2218A>G is a variant with a
higher frequency, but the predictions are inconsistent with one
being probably damaging. Interestingly, both variants supported
a compound heterozygous model and the gene is associated with
the phenotype described for this patient. Similarly, cases 21,
34, 37, and 39 had higher variant frequencies, but with other
lines of evidence that supported their pathogenicity such as a
second allele in a compound heterozygous model, predictions
that were deleterious and phenotype consistency. Importantly,
these cases illustrate the complexity of variant interpretation and
that frequency is only one of the variables used to bin them
into pathogenicity categories. For cases 11 and 16, in addition
to pathogenic variants, compound heterozygous variants clas-
sified as VUCS were found in genes which may contribute to
the complex phenotypes in these patients. Only VUCSs were
observed in cases 1, 2, 3, 6, 21, 23, and 24. These variants may
be reclassified in the future once these genes/variants are better
understood.

Altered Management of Patients
In positive cases, WES results led to a change in the medi-
cal management of the patients (Table 2). Willig et al. defined
medical management in a broader sense, namely, usefulness of
genomic sequencing, return of results before discharge or death,
genetic or reproductive counseling change, subspecialty consult
initiation, medication change, procedure change, diet change,
palliative care initiation, imaging change, and patient transfer to
different facility, in a study aiming to identify Mendelian dis-
orders in critically ill infants (45). For example, patient 38 was

a six-year-old male with insulin-dependent diabetes, cataracts,
and hyperglycemia, who did not fit the classic patterns of type 1
diabetes mellitus, maturity onset diabetes of the young (MODY),
non-ketotic hyperosmolar syndrome, or neonatal diabetes. Upon
exome sequencing, he was found to be heterozygous for a de novo
missense mutation in the insulin gene (INS) which is associated
with permanent neonatal diabetes mellitus or type 1b diabetes
mellitus. Identifying the exact genetic cause of a patient’s diabetes
is important as it directs future monitoring and treatment. Testing
for monogenic diabetes is important and should be considered in
any pediatric patient with antibody negative diabetes. In mono-
genic diabetes (GCK mutations excluded), monitoring for long-
term complications such as retinopathy, neuropathy, and protein-
uria should be considered at diagnosis given the long prodrome
of unrecognized hyperglycemia. As science advances, patient 38
may be an ideal candidate for beta cell transplantation as the
risk for islet cell antibody-mediated attack would be negligible. In
addition to changing imaging and/or medication and initiation
of subspecialty consults, a broader meaning of altered manage-
ment was used in other exome positive cases which included
receiving genetic counseling and ending the diagnostic odyssey
(Table 2).

Secondary Findings
In addition to the diagnostic findings, 36 of 40 patients chose
to receive secondary finding results. Three of the 36 patients
had reported medically actionable secondary findings in a total
of three genes (Table 2; Figure 1). Genes MYL2, FBN1, and
BRCA2 were among the medically actionable genes recently
recommended for reporting by the ACMG (25). For example,
Patient 23 was 2 years old at the time of testing. He presented
with hypogammaglobulinemia, recurrent infections, fine motor
and speech delay, and feeding problems. Dysmorphic features
included macrocephaly, prominent forehead, deep set eyes, thin
upper lip, long digits, and persistent fetal finger pads. Although
WES did not identify the cause of the primary clinical features,
it importantly identified a de novo FBN1 mutation which gave
the patient a secondary genetic diagnosis of Marfan syndrome.
Upon the time of results return, he had developed hypermobil-
ity, gait abnormality, and abnormal posture. He was referred for
cardiologic and ophthalmologic evaluations and for subsequent
management for Marfan syndrome.

Cost Analysis
To address the cost of genetic testing prior to WES and conse-
quently the potential cost-effectiveness of WES as a single test,
we examined the number and type of genetic tests performed
in our cohort prior to WES (Figure 2). Strikingly, there were
19 (48%) patients who had at least four genetic tests prior to
WES (Figure 2A). From these 19 patients, three patients had a
large number of genetic tests (>10 tests). The mean genetic test
number for the cohort was ~4. Interestingly, microarray (63%)
and single gene sequencing (63%) tests were the most frequently
performed in this cohort, followed by karyotype and multi-gene
panel sequencing. Therefore, the cost of genetic testing before
WES is significant.
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FIGURE 2 | Genetic testing cost analysis of cohort prior to whole
exome sequencing. (A) Number of genetic tests performed before whole
exome sequencing per patient. (B) Types of genetic tests completed in the
cohort prior to whole exome sequencing.

Discussion

On applying WES to the diagnoses of 40 unselected consecutive
patients, we observed anoverallmolecular diagnostic yield of 30%,
which is slightly higher than the positive rates of reported clinical
exome tests of ~25% (Figure 1) (18, 19). This may be the result
of different categories of presentation, sample bias, sample size,
employment of a dual analysis pipeline, and phenotyping. The
inclusion of dual analysis pipelines (NGP and GGHP) allowed the
test to be more sensitive and in some cases showed that variants
not captured by one pipeline were indeed detected by the other.
Alternatively, because patients withmultiple congenital anomalies
had the highest diagnostic yield of any group (50%) (Figure 1;
Table 2), referring physicians may have selected patients most
likely to have a genetic etiology based on striking phenotypic
attributes. Moreover,WES provided a diagnosis to 17% of patients
with both neurological disorders and immunodeficiencies. About
8% of patients had both multiple congenital anomalies and either
immunodeficiency or neurological disorders. Our results suggest
that these three groups of patients are good candidates for testing
with WES.

The utility of WES is higher than karyotype analysis (5–15%),
chromosomal microarray analysis (15–20%), and may be compa-
rable to disease-specific gene panels (46–48). The diagnostic yield
of single gene tests vary from 0 to 64% depending on phenotype
specificity and availability of complementary diagnostic tests (49).
Similarly, previous studies that have employed next-generation

sequencing approaches have shown varying positive rates. NGS
panel positive rates for muscular dystrophy, sporadic intellectual
disability, severe intellectual disability, immunodeficiencies, and
retinitis pigmentosa have been reported to be 41, 31, 13, 15, and
82%, respectively (19, 49, 50). Thus, the WES positive rate is
comparable to many other genetic tests that are considered part
of the routine diagnostic workup.

Time-consuming, extensive and costly clinical diagnostic
workups were performed before ordering the clinical WES test.
This workup included a significant number of genetic tests
(Figure 2). In fact, there were 19 (48%) patients who had at
least four genetic tests prior to WES (Figure 2A) and microarray
and single gene sequencing were the most frequently performed
genetic tests (Figure 2B). These data demonstrated that costly
genetic testing was performed prior to WES and in that in some
cases (>10 genetic tests) the combination of genetic tests was even
more expensive than WES itself. One explanation for this is that
older technologies were employed in the diagnostic workup of
some of these patients because those were the only tests available
at that time. The cost of reaching a diagnosis became astronom-
ical when the clinical work of non-genetic testing was added to
the entire diagnostic testing equation. For example, patient 29
had chromosome andmicroarray analyses,mitochondrial studies,
very long chain fatty acid study, brain MRI, spine MRI, muscle
biopsy, and an EEG. He had consultations with a myriad of spe-
cialists including geneticists, ENT, orthopedics, and neurologists.
This patient has a mutation in ASXL3, which is associated with
the newly recognized Bainbridge-Ropers syndrome that would
not have been identified by conventional genetic testing because
it was not available at the time of diagnosis. Currently, one clinical
laboratory started offering this gene as a clinical test in the United
States in March of 2015. In some instances, WES may be the most
cost-effectiveway to reach a diagnosis and guide appropriateman-
agement by significantly reducing the time to diagnosis and cost
of testing, if it is implemented at an earlier time in the diagnostic
workup of complex genetic cases. To improve clinical and cost
outcomes more broadly, diagnostic algorithms that include WES
testing need to be created and implemented in the near future.

WES testing is more comprehensive than other single gene
and panel tests, but it is laborious and therefore uses expensive
human resources. However, it is difficult to quantify these costs
because analysis pipelines are constantly evolving and making the
process faster by utilizing a growing powerful internal and public
control datasets as an example. Caution should be taken when
interpreting cost analysis numbers because exome sequencing and
its complementary analysis is likely to continue to decrease in
the near future, perhaps with the introduction of new sequenc-
ing technologies and clever algorithms that will find candidate
variants quickly.

Even though microarrays, karyotyping, FISH, and methylation
are non-sequencing assays, they were included in the cost anal-
ysis because there are known examples of overlapping clinical
features caused by sequence mutations found by WES or other
mutation types detected by the aforementioned techniques. The
typical indications for microarray deletion/duplication analysis
(SNP microarray) include developmental delay, intellectual dis-
ability, congenital anomalies, and dysmorphic features. These
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clinical characteristics were observed in several of our WES cases
and microarray testing was pertinent and ruled out large dele-
tion/duplication events and thus WES was the next step of the
diagnostic workup because there are single gene mutations that
are responsible for similar clinical characteristics (Table 1). In
addition, another potential use of SNP microarray analysis is to
identify loss of heterozygosity (LOH) regions in consanguineous
cases. This information in conjunction with WES testing may
aid in identifying the regions to be examined for homozygous
variants. However, this information is not crucial because WES
analysis includes a homozygous genotyping model and would
identify candidate homozygous variants. Choosing to do other
genetic testing prior toWES analysis and any other genetic testing
permutations depend on specific clinical scenarios, thus, inclusion
or exclusion of non-sequencing tests in cost analyses must be
taken with caution.

Interestingly, 33% of our 12 patients with positive results were
based on disease–gene discoveries made within the past 2 years
(Table 2). Specifically, four patients, including those with muta-
tions in NFKB2, PAX1, CTPS1, and ASXL3, would not have
received a specific clinical diagnose if their exome data had
been analyzed earlier than 2 years ago, prior to published works
describing the gene–disease associations (31, 51–54). During this
explosion of genomic data, it is likely that we will see the literature
and databases populated with more cases that will aid in the
interpretation of clinical exome data. There is also the possibility
of an evolving phenotype that might at some point alter or add
to the diagnosis in some patients (19). This new information
may aid in the interpretation of VUCS variant calls (Table 3).
However, in other cases extensive future research, which includes
RNA-expression studies, needs to be performed to clarify the
significance of VUCS variants.

Variants in multiple genes with described clinical pheno-
types were identified in several patients. In a patient with com-
mon variable immunodeficiency (CVID)-like symptoms, Lind-
sley et al. addressed the functional consequences of muta-
tions in NFKB2 [c.2598_2599insT (p.A867fs)] and TNFRSF13B
[c.706G>T (p.E236*)] (Tables 2 and 3) (26). They reported
the comprehensive immune evaluation of patient 4 and pro-
vide evidence that aberrant NFKB2 signaling not only causes
humoral immune deficiency, but also interferes with the TCR-
mediated proliferation of T cells. These observations expand
the known phenotype associated with NFKB2 mutations. Unex-
pectedly, Western blot analysis of lysate from fresh, unstimu-
lated PBMCs from the patient and father revealed a normal
TNFRSF13B full-length protein. Yang et al. described multiple
“hits” in four patients in their initial report and in a recent larger
study, consisting of a cohort of 2000 consecutive exome cases, the
same group reported a 4.6%positive rate for patients withmultiple
affected genes (19, 20). For atypical phenotypes, WES can expand
the differential to include conditions that would otherwise not be
considered. Additionally, WES is bound to expand the phenotype
spectrum by the characterization of more complex and atypical
cases.

The medical management of patients was altered after obtain-
ing a positive exome test. Willig et al. have defined medical
management in a broader sense in a study aiming to identify

Mendelian disorders in critically ill infants (45). The definition of
medical management includes usefulness of genomic sequencing,
return of results before discharge or death, genetic or reproductive
counseling change, subspecialty consult initiation, medication
change, procedure change, diet change, palliative care initiation,
imaging change, and patient transfer to different facility. From the
traditional definition of medical management perspective, iden-
tifying the exact genetic cause of a patient 38’s antibody negative
diabetes was important to direct futuremonitoring and treatment.
Monitoring retinopathy, neuropathy, and proteinuria were con-
sidered at diagnosis (Table 2). Similarly, WES allowed change
of management for patient 23 by being referred for cardiologic
and ophthalmologic evaluations after the secondary finding of
Marfan syndrome. In the broader sense of medical management,
positive WES results altered the management of corresponding
patients because they received genetic counseling, ended the diag-
nostic odyssey, changed imaging and/or medication, and initiated
subspecialty consults to mention a few points.

Negative results for cases in which a diagnosis was not reached
may be due to the lack of understanding of the exome, technical
limitations, and patient selection bias. There are a large number of
coding genes that have not been associated with human diseases
and much needed genetic and functional studies should be done
to elucidate their function. It is possible that some of these genes
of unknown clinical significance (GUCS) may help explain the
clinical features in several of our negative cases in the future. Thus,
it is important to perform re-analysis on exome data annually
to interrogate for newly discovered genes with human disease
associations. Moreover, mutations may be located in non-coding
regions, such as regulatory or deep intronic regions, that cannot
be detected by WES. Moreover, mutations may be located in low
coverage coding regions. Due toWES being a hybridization-based
assay, the presence of multiple pseudogenes, homologous regions,
or repetitive regions poses a technical challenge that obscures the
presence of variants (55). In addition, large deletion/duplication
mutations, complex rearrangements, trinucleotide repeats, and
imprinting changes may be missed by WES and may represent a
significant portion ofmutations in the negative cases. It is possible
that the clinical presentations of some of the patients could be
explained by polygenic effects (complex disease) or a non-genetic
etiology.

In conclusion, the use ofWES to analyze 40 consecutive clinical
cases yielded a diagnosis in 30% of these cases, which demon-
strates the utility of this technology as a diagnostic test for pedi-
atric patients with a wide variety of disease presentations. Positive
WES results allowed clinicians to complete the genetic workup,
end the diagnostic odyssey and provide appropriate medical man-
agement and more informative genetic counseling to families.
Importantly, a number of novelmutations are being reported here.
The cost-effectiveness of WES testing is evident by the reduction
of time to diagnosis and cost of other testing and in some cases
WES may be warranted as a first-tier test. Although there are
technical challenges with NGS, WES provides a unique glimpse
into the complexity of genetic disorders as well as the challenges
in diagnosing them. However, healthcare system integration and
routine adoption of WES need more careful consideration and
future research.
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