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Children with unilateral cerebral palsy (CP) typically present with largely divergent upper 
limb sensorimotor deficits and individual differences in response to upper limb rehabilita-
tion. This review summarizes how early brain damage can cause dramatic deviations from 
the normal anatomy of sensory and motor tracts, resulting in unique “wiring patterns” of 
the sensorimotor system in CP. Based on the existing literature, we suggest that corti-
cospinal tract (CST) anatomy and integrity constrains sensorimotor function of the upper 
limb and potentially also the response to treatment. However, it is not possible to infer 
CST (re)organization from clinical presentation alone and conventional biomarkers, such 
as time of insult, location, and lesion extent seem to have limited clinical utility. Here, we 
propose a theoretical framework based on a detailed examination of the motor system 
using behavioral, neurophysiological, and magnetic resonance imaging measures, akin 
to those used to predict potential for upper limb recovery of adults after stroke. This 
theoretical framework might prove useful because it provides testable hypotheses for 
future research with the goal to develop and validate a clinical assessment flowchart to 
categorize children with unilateral CP.
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GeneraL introdUCtion

With a prevalence of 1 in 500 newborns, cerebral palsy (CP) is the leading cause of childhood physi-
cal disability (1). This review focuses on upper limb function in children with unilateral CP, which 
accounts for 38% of the CP group (2). These children typically present with delays in sensorimotor 
development and in the acquisition of gross and fine motor upper limb skills. Irrespective of the 
severity of the brain lesion, they experience lifelong disabilities that put a high emotional and 
financial burden on families, caretakers, and society (3, 4). To maximize the child’s functional 
potential and subsequent independence in life, adequate treatment planning is essential. However, 
treatment optimization is challenged by the large heterogeneity in the clinical presentation of chil-
dren with unilateral CP. Despite the rapid increase of evidence-based therapy management, large 
variability in treatment response persists; Novak et al. (5) recently showed that 70% of the available 
interventions for children with CP have highly variable efficacy and the existing clinical assessments 
and outcome measurements fail to accurately predict treatment response (5). A stratified therapy 
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approach could further optimize treatment planning, thereby 
increasing the odds that a child reaches its maximal functional 
potential within the constraints imposed by the structural dam-
age of the brain. The strategic and economic significance of the 
identification of subgroups or strata of patients based on clinical 
biomarkers has been clearly demonstrated in other areas, such as 
oncology (6, 7). Exploring the clinical merit of such an approach 
in CP seems warranted.

The first step toward stratification is the identification of 
clinically relevant biomarkers. Literature has indicated that the 
clinical assessment of sensorimotor function alone is not enough 
but may be complemented with information about neural, 
structural and functional integrity. The heterogeneous nature 
of brain lesions underlying CP might constitute a crucial factor 
in explaining treatment response variability. Brain lesions range 
from relatively localized damage to the motor pathways (often 
seen when lesions occur after 24 weeks of gestation), to severe 
malformations typically seen when the incident occurs during 
the first months of pregnancy. Structural MRI has been used 
to derive neural biomarkers such as lesion location and extent, 
often combined with the time-point of the insult (8). However, 
gross anatomy or timing of the lesion remains only a moderate 
predictor of a child’s sensorimotor function (9, 10), even when 
applied at the group level. This raises the question why simple 
markers describing lesion anatomy are relatively uninformative 
in children with CP. Part of the answer is that the brain is still 
highly plastic in the early stages of development, undergoing vast 
time-dependent maturational changes, making specific parts of 
the brain particularly vulnerable to injury (11). Following injury 
at this phase of development, plasticity permits alterations from 
the pre-programmed pathway of brain organization (12, 13). As a 
result, the final “wiring” of the sensorimotor system might deviate 
from that expected, a phenomenon that is unique to unilateral CP. 
If the pattern and extent of “re-wiring” can be identified, it may 
offer clinical utility.

In the first part of the review, we provide a concise overview 
of typical and disrupted neural development of the human 
brain and summarize the available knowledge related to how 
brain damage impacts on sensorimotor function in unilateral 
CP. In the second part of this review, we propose the work-
ing hypothesis that the initial brain damage and concurrent 
structural reorganization of the sensorimotor system (and most 
notably the corticospinal tract, CST) form a primary source of 
variability among children with unilateral CP, and constrain the 
maximal functional potential a child can theoretically reach. 
Since two children can present with similar sensorimotor 
function yet differ largely regarding the underlying anatomical 
substrate, we propose a systematic evaluation of the CST to 
infer the wiring pattern at the level of the individual child with 
unilateral CP. With this review, we intend to generate testable 
hypotheses to identify biomarkers that go beyond the traditional 
clinical assessments and that allow categorizing children based 
on their CST wiring pattern. Such categorization might prove 
useful in a clinical context and in the long run, these insights 
will further advance research in the field of therapy stratification 
in unilateral CP.

anatoMiCaL patHWays For Upper 
LiMB MoVeMents

Voluntary upper limb movements originate primarily from the 
contralateral motor cortex, which receives input from frontal 
and parietal areas that play an important role in higher-order 
sensorimotor processing. The motor cortex is divided into the 
primary motor cortex (M1), premotor cortex (PM), cingulate 
motor area (CMA), and supplementary motor area (SMA) (14). 
These areas are densely interconnected within one hemisphere 
via association tracts, and connect with homologous areas of the 
opposite hemisphere via commissural tracts. The CST constitutes 
the major motor output pathway. It is formed by large pyramidal 
neurons from M1, which converge with fibers from SMA, PM, 
the somatosensory cortex, and the posterior parietal cortex. The 
CST passes through the corona radiate, the posterior limb of the 
internal capsule, and the cerebral peduncles, and crosses at the 
level of the pyramidal decussation into the lateral spinal cord. 
A small portion (10%) of the CST also descends anteriorly into 
the ipsilateral spinal cord. These uncrossed anterior projections 
are thought to primarily innervate proximal and axial muscles, 
rather than distal forearm and hand muscles (15, 16). However, 
the exact functional role of the uncrossed anterior projections 
remains unclear (17, 18).

The afferent cortical input needed for the accurate execution 
of movements, i.e., the sensory information, is ensured via the 
thalamocortical radiations into the motor areas and the primary 
and secondary sensory areas (19). An overview of relevant tracts 
and structures related to upper limb sensorimotor function is 
provided in Figure 1.

Lesion types and “re-WirinG” oF 
MaJor traCts FoLLoWinG earLy 
Brain daMaGe

Malformations (Week 0–24)
In the first 24  weeks of gestation the brain undergoes major 
morphological changes, such as the formation of the cerebral 
hemispheres, the folding of the cortex, and the shaping of the 
ventricular system (11). Lesions occurring before week 24 there-
fore typically result in malformations (Figure 2A), such as a lack 
of gyri or sulci development or an excessive number of small gyri, 
unusually thick convolutions, or a disorganization of the cerebral 
cortex (e.g., schizencephaly). These lesions occur in <10% of the 
children with unilateral CP (8, 9).

periventricular White Matter Lesions 
(Week 24–34)
During week 24–34, brain maturation is predominantly char-
acterized by white matter tract development. Association tracts 
(cortical–cortical connections) and afferent/efferent projec-
tion tracts (connecting the cortex with subcortical nuclei, the 
cerebellum, and the spinal cord) arise from the neurepithelium 
surrounding the lateral ventricles. Importantly, each hemisphere 
initially develops bilateral crossed and uncrossed descending 

http://www.frontiersin.org/Pediatrics/archive
http://www.frontiersin.org/Pediatrics
http://www.frontiersin.org


FiGUre 1 | structural connectivity of the sensorimotor system. Schematic overview of relevant tracts and structures (adopted from Ref. 20).
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efferent projections that form the CST. During typical develop-
ment, the ipsilateral uncrossed projections (CSTipsi) gradually 
weaken and the contralateral crossed projections (CSTcontra) 
strengthen. This process, known as competitive withdrawal, 
occurs at the termination point of corticospinal neurons within 
the spinal cord (21), resulting in predominantly contralateral 
control of the upper limb.

White matter tract development is accompanied by a local 
increase in blood flow around the lateral ventricles. Hence, insults 
occurring between week 24 and 34 most frequently result in 
periventricular white matter lesions (Figure 2B), which account 
for around half of the children with unilateral CP (8, 9). The CST 
has already reached the cervical cord by 24 weeks of gestation (22), 
and lesions that occur during this period frequently damage the 
CST and the internal capsule (23), resulting in reduced integrity 
of the motor tract and the posterior/reticular limb of the internal 
capsule (24), for review see Ref. (25). These lesions also compro-
mise the typical competitive withdrawal process of the CST (26), 
thereby causing a unique “re-wiring” within the sensorimotor 
system in unilateral CP: the existing uncrossed projections from 
the non-lesioned hemisphere (CSTipsi) gain control of the affected 
hand (13), and are strengthened during further development 
and environmental interactions. Conversely, the weaker crossed 
projections (CSTcontra) from the lesioned hemisphere withdraw, at 
least partly (12, 26). Eventually, the non-lesioned hemisphere can 
become equipped with fast-conducting uncrossed projections to 
the affected upper limb (21, 23, 27). Importantly, this “re-wiring” 
pattern is influenced by lesion extent, whereby only larger lesions 
seem to cause a “shift” of the CST toward the non-lesioned hemi-
sphere (23, 27) (Figure 2E). However, the functional relevance of 

ipsilateral control of the affected hand in children with unilateral 
CP compared to typically developing children remains ambigu-
ous, as there are currently no known associations between neu-
rophysiological lateralization indices and upper limb function.

Cortical synapses of the afferent thalamocortical radiations are 
formed later than the CST (28), such that afferent tracts are much 
less affected than efferent tracts. Nonetheless, reduced integrity 
of the posterior thalamocortical radiations has been reported in 
children with periventricular lesions (29, 30). Thalamocortical 
radiations also follow a different pattern of reorganization, 
whereby the sensory afferents seem to bypass even larger lesions 
to reach the contralateral cortex (13, 31, 32) (Figure 2E). Although 
the general wiring pattern is preserved for the afferent pathways, 
and sensory input of each hand is connected to the contralateral 
cortex, there might be profound reorganization within the pri-
mary sensory cortex of the lesioned hemisphere (27).

Cortical-subcortical Lesions (Week 34–38, 
and Up to 28 days after Birth)
Week 34–38 of gestation is characterized by further maturation of 
the tracts (synaptic production and myelination) (33), causing a vast 
improvement of fetal movement quality, alertness, and visual func-
tion (34). This maturation coincides with a migration of the area of 
blood flow toward the cortical and subcortical areas. Consequently, 
lesions occurring after 34  weeks of gestation or around birth 
typically affect cortical or subcortical gray matter of the central and 
parasagittal areas (Figure 2C) (8, 35). These cortical–subcortical 
“infarct-like” lesions occur in 20–30% of the children with unilat-
eral CP (8, 9) and often do not extend so far medially as to also affect 
the periventricular white matter (26). As a consequence, crossed 

http://www.frontiersin.org/Pediatrics/archive
http://www.frontiersin.org/Pediatrics
http://www.frontiersin.org


FiGUre 2 | schematic overview of cerebral development and structures more vulnerable to damage depending on the stage of brain maturation and 
possible reorganization of the motor and sensory system, based on time-point of occurrence and lesion extent. (a) Malformations, caused by an insult 
in the first 24 weeks of gestation (schizencephaly); (B) periventricular lesions, which typically occur around week 24–34 of gestation, and affect the corticospinal 
tract (CST); (C) cortical–subcortical lesions, which typically occur after 34 weeks of gestation and primarily affect the motor and/or sensory cortex; (d) postnatally 
acquired lesions, which occur after 28 days after birth until age 2 years; (e) different types of motor reorganization are typically seen following periventricular lesions 
(CST, black), whereby the reorganization pattern depends on the extent of the lesion. The general pattern of the sensory pathways is preserved (thalamocortical 
radiations, blue); (F) crossed CST projections from the lesioned hemisphere are at least partially intact following cortical–subcortical or postnatally acquired lesions.
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CST projections from the lesioned hemisphere are usually at least 
partially intact and “re-wiring” to the non-lesioned sensorimotor 
areas is less frequently seen (26, 31, 32) (Figure 2F).

postnatally acquired Lesions  
(Up to age 2 years)
The first 2 years of life are a highly dynamic period and perhaps the 
most critical phase of postnatal brain development, characterized 
by structural brain growth and a rapid development of a whole 
range of cognitive and motor functions (36). Lesions occurring 
between 28  days after birth and before the age of 2  years are 
categorized as postnatally acquired and represent around 15% 
of the lesions in children with unilateral CP (9). Postnatally 
acquired lesions entail a variety of affected structures, whereby 
cortical damage in the area of the cerebral medial artery and deep 
gray matter structures is most prevalent (Figure 2D) (9). Sensory 
reorganization toward the non-lesioned hemisphere has not yet 
been described in these children (31) (Figure 2F).

earLy Brain daMaGe and Upper 
LiMB deFiCits

At a general level, the severity of upper limb sensorimotor deficits 
in unilateral CP depends on the time of the insult, as well as on 

the location and extent of the lesion (8, 35, 37, 38). For example, 
periventricular lesions that occur between week 24 and 34 on 
average lead to fewer motor and tactile deficits and better arm and 
hand function than cortical–subcortical lesions that occurred 
after 34  weeks or around birth, or than postnatally acquired 
lesions (9, 26, 31, 39). However, if the early lesion is large and 
causes substantial “re-wiring” such that the affected upper limb 
receives input from the non-lesioned ipsilateral hemisphere, this 
results in poorer performance compared to children with perive-
ntricular lesions with contralateral control of the affected upper 
limb (26, 31). Additionally, the structural integrity of the CST and 
thalamocortical radiations might further modulate the extent of 
upper limb deficits (40, 41). Lastly, basal ganglia/thalamus dam-
age often results in poor upper limb sensorimotor function, reach 
and grasp abilities, and bimanual hand use, irrespective of the 
timing of the brain lesion and potential reorganization (9, 10, 39, 
42).

Upper limb motor deficits typically include muscle weakness, 
spasticity, dystonia, and muscle shortening (43). More than 
75% of children with unilateral CP also experience deficits in 
exteroception, proprioception, two-point discrimination, and/or 
stereognosis (44). Together, these sensorimotor deficits compro-
mise the acquisition of gross and fine motor skills, resulting in less 
(effective) use of the affected hand in unimanual and bimanual 
activities (43). Adequate treatment selection and planning are 
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FiGUre 3 | individual treatment responses following a constraint-
induced movement therapy (CiMt) program, as measured with the 
assisting hand assessment (aHa, bimanual hand use). Vast inter-
individual variation in treatment response is seen following CIMT (1 h/day, 
5 days/week for a period of 10 weeks in children age 4–12 years). Changes 
in AHA score of 5 or more units surpass the smallest detectable difference 
(personal communication with Klingels based on study results published in 
Ref. 46).
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important to maximize a child’s upper limb functional abilities. 
However, there is a lack of strong evidence in favor of any par-
ticular upper limb therapy approach in children with unilateral 
CP (45). This is likely due to the heterogeneous nature of lesions 
in these children and the highly variable treatment response 
at the level of the individual child compared to group averages 
(Klingels, personal communication), as illustrated in Figure 3.

Together, these results have led to a general consensus within 
the CP community that biomarker-based treatment planning 
offers a new opportunity to further advance upper limb func-
tional outcome. However, it remains unclear what biomarkers 
are clinically relevant and how they can be combined to guide 
therapy decisions. Recent research has suggested that neural 
biomarkers related to the specific wiring pattern of the CST may 
become predictive for treatment outcome (47, 48). This supports 
our working hypothesis that the initial brain damage and concur-
rent structural reorganization of the sensorimotor system form a 
major source of variability among children with unilateral CP. In 
the next paragraph, we propose an approach of how to infer the 
CST wiring pattern and connectivity strength at the level of the 
individual child with unilateral CP.

proBinG tHe Cst

The CST wiring pattern is usually not immediately apparent from 
how the child presents clinically, and children with unilateral CP 
might have similar upper limb sensorimotor deficits, despite 
a different underlying CST wiring pattern. Additionally, CST 

wiring might also aid in further explaining the heterogeneity in 
upper limb outcome within the group of children with unilateral 
CP. Two questions might be of relevance for clinical decision-
making: first, does the affected hand receive significant input 
from the non-lesioned hemisphere via uncrossed CSTipsi fibers 
or from the lesioned hemisphere (CSTcontra)? Second, can further 
important information be derived from estimating the “connec-
tivity strength” of the CST in the lesioned hemisphere, i.e., its 
quality or structural integrity?

Here, we present a theoretical framework, integrating behav-
ioral, neurophysiological, and medical imaging measures to allow 
a systematic evaluation of CST wiring and connectivity strength. 
The proposed flowchart is purely hypothetical at this point but 
provides a series of testable ideas on how the individual CST 
wiring pattern of a child with unilateral CP can be inferred from 
different measurements. It is important to note, however, that 
the development of a clinically applicable assessment flowchart 
requires direct validation in children with unilateral CP, which 
will be the focus of future research.

A simple behavioral measure to probe CST wiring could 
be the occurrence of mirror movements (MM). MM refer to 
involuntary movements of one hand that mirror the intentional 
movement of the contralateral hand (49, 50). MM are part of the 
physiological motor pattern in typically developing children up 
to age 10 years and increase with increasing task complexity (51). 
The relationship between age and the occurrence of MM is less 
straightforward in unilateral CP, i.e., MM are driven by different 
phenomena in the affected and non-affected hand (52). Moreover, 
it also appears that highly repetitive and simple motor tasks are 
more appropriate to assess the occurrence of pathological mirror 
movements (52). MM in the affected hand (i.e., mirroring inten-
tional movements of the non-affected hand) have been proposed 
to be indicative for one motor cortex controlling both hands, i.e., 
ipsilateral or bilateral “re-wiring” of the CST (26). MM in the 
non-affected hand seem more related to sensorimotor impair-
ment of the affected hand rather than to the CST wiring pattern 
(50, 53). We propose the assessment of MM in the affected hand as 
a non-invasive, low-risk clinical biomarker to probe CST wiring 
and categorize children with unilateral CP (Figure 4). However, 
adequate interpretation of the frequency and magnitude of MM 
would benefit from further standardization of the assessment 
in terms of task complexity (51), but also through the use of a 
quantitative method based on, e.g., grip force measurements.

The sensorimotor system can also be assessed using single-
pulse TMS over the hand area of the motor cortex in the lesioned 
and non-lesioned hemisphere to elicit MEPs in the affected hand 
(54). Absence of a descending CST projection from one hemi-
sphere is assumed when even high stimulation intensities fail to 
elicit early MEP responses in the affected hand (23). Based on 
this neurophysiological biomarker, children with unilateral CP 
can be further categorized based on whether MEPs in the affected 
hand are elicited from the lesioned hemisphere only (contralat-
eral wiring), from the non-lesioned hemisphere only (pure 
ipsilateral wiring), or from both hemispheres (bilateral wiring), 
as illustrated in Figure 4. Single-pulse TMS has been shown to be 
safe and well tolerated in children, i.e., the occurrence of seizures 
has not been reported, despite the growing variety of childhood 
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FiGUre 4 | Categorization based on a stepwise evaluation of Cst wiring pattern and structural integrity in unilateral Cp. First, if MM are present at the 
affected hand, this suggests some ipsilateral control of the affected hand. Further investigation with TMS will help to identify whether children have a bilateral or a 
unique unilateral control of the affected hand. Children with a pure ipsilateral wiring pattern form a first category in this scheme. For those children with bilateral 
control of the affected hand, DWI allows to determine the structural integrity of the lesioned CSTcontra. Here, a further categorization entails those with good structural 
integrity vs. poor structural integrity (i.e., affected hand predominantly controlled via the lesioned CSTcontra or via the non-lesioned CSTipsi, respectively). In children 
with unilateral CP who do not present with MM in the affected hand, TMS will confirm the contralateral control via the lesioned CTScontra. Here, DWI can again be 
used to further categorize children into those with good vs. poor structural integrity of the lesioned CSTcontra. CST, corticospinal tract; MM, mirror movements; TMS, 
transcranial magnetic stimulation; DWI, diffusion-weighted imaging; ipsi, ipsilateral hemisphere with respect to the affected hand; contra, contralateral hemisphere 
with respect to the affected hand; na, not applicable.
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neurological conditions being studied (55, 56 and for review see 
Ref. 57). However, while single-pulse TMS is put forward as a 
viable technology to increase our understanding of disorders of 
the developing brain, the application of this technique requires 
specialized training and should only be delivered by expert asses-
sors within a child-friendly environment. One must note that 
children under age 10 years have a higher (resting and active) 
motor threshold compared to adults, which only decreases to 
adult levels by mid-adolescence (56, 58). Although eliciting an 
MEP in a relaxed muscle in children younger than 6 years might 
not be possible, even at maximum stimulator output (59), MEPs 
can certainly be elicited when the target muscle is active (21). 
On the other hand, TMS might be most informative in older 
children and certainly biomarker research might benefit most 
from focusing on older children and adolescents. In children 
with unilateral CP, the CST is not expected to reorganize after age 
2 years (21), and thus information obtained from older children 
is still expected to generalize to the larger group of children with 
unilateral CP.

Lastly, in case of contralateral or bilateral “re-wiring,” we 
hypothesize that the structural integrity of the lesioned CSTcontra 
will provide further insights that might aid clinical decisions. 
Structural imaging techniques, particularly diffusion MRI and 
fiber tracking, might be promising imaging biomarkers to assess 
the contralateral input to the control of the affected hand. This 
will allow quantifying CST asymmetry between the lesioned 
and the non-lesioned hemisphere, using measures of fractional 
anisotropy or fiber count either at the level of the posterior limb 
of the internal capsule or cerebral peduncles (for review see Ref. 
25). Increased asymmetry between both hemispheres has been 
related to more severe upper limb deficits in unilateral CP (good 
vs. poor contralateral wiring) and might help distinguishing 
predominant ipsilateral vs. predominant contralateral control of 

the affected hand in those children with a bilateral wiring pattern 
(Figure 4). While diffusion imaging provides detailed anatomi-
cal information that cannot be accessed with any other currently 
available imaging method, this technique also implies specific 
expertise to ensure an adequate and proper interpretation of the 
diffusion images (for review see Ref. 60). Moreover, given the 
length and noisiness of diffusion imaging acquisition protocols, 
it might not always be feasible in younger children. Future 
research will have to clarify whether or not the implementation 
of any diffusion-weighted imaging protocol in clinical practice is 
truly beneficial.

At present, it is speculative whether the biomarkers proposed 
here can be used to infer the underlying CST “(re-)wiring” pattern 
and structural integrity for individual children with unilateral CP. 
However, the utility of several of the suggested biomarkers has 
been demonstrated previously (see next paragraph). The pro-
posed theoretical scheme generates five categories and concurrent 
hypotheses that can be tested empirically in future studies. Note, 
however, that the scheme as depicted here is only an example of 
what such an assessment flowchart might look like and awaits vali-
dation in children with unilateral CP. In the long run, this might 
pave the road for future studies investigating whether treatment 
allocation based on biomarkers characterizing the neuroanatomy 
of the individual child’s CST is feasible and advantageous com-
pared to traditional approaches (see also Ref. 48).

eXperiMentaL eVidenCe sUpportinG 
tHe CateGoriZation Based on 
tHe Cst

The five categories described in Figure 4 are based on knowledge 
about typical brain development, combined with empirical data 
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from children with unilateral CP (23, 26, 31, 61). Here, we evalu-
ate this categorization against existing evidence, based on clinical, 
(neuro)physiological, or medical imaging parameters. Any future 
flowchart developed on the basis of the presented hypothesis and 
concurrent new clinical evidence could benefit from the theoreti-
cal framework proposed here. However, the current depiction is 
only an example of what such an assessment flowchart might look 
like.

The first premise of our categorization relates to the wiring 
pattern of the CST, i.e., is the affected hand mainly controlled via 
the contralateral lesioned hemisphere or via the ipsilateral non-
lesioned hemisphere? While the occurrence of ipsilateral control 
of the affected hand has not yet been systematically assessed, it is 
estimated to occur in 30–60% of the children with unilateral CP 
(23, 62, 63), and many children present with a mixed response pat-
tern (23, 31, 63). Ipsilateral “re-wiring” ensures the development 
of (some) upper limb skills despite severe CST damage (23, 26), 
though it is an insufficient substitute for the typical contralateral 
control (17) and (near) normal hand function is only seen when 
the affected hand is controlled via the CSTcontra of the lesioned 
hemisphere (23, 26, 31). No or minimal MM of the affected hand 
(23), as well as the absence of ipsilateral control of the affected 
hand based on TMS (23, 64, 65) have been put forward as predic-
tors of better upper limb function in children with unilateral CP.

However, whether or not ipsilateral “re-wiring” forms the basis 
for differential treatment responses remains a topic of debate (66). 
While some authors have suggested that children with unilateral 
CP with pure ipsilateral control are poor responders to intensive 
unimanual training (61, 67), others could not confirm these 
findings (68). These discrepancies reflect an on-going debate of 
how to determine the optimal therapy for the individual child 
with CP (48, 66). Additionally, the impact of the wiring pattern 
with respect to therapy outcome following different programs, 
i.e., bimanual training vs. intensive unimanual training, has not 
yet been systematically investigated.

The second premise is that if a child has a typical contralateral 
wiring pattern (i.e., the paretic hand is controlled via crossing 
fibers from the lesioned hemisphere only) or a bilateral wiring 
pattern (i.e., the affected hand is controlled by both hemi-
spheres), the integrity of the lesioned CSTcontra determines upper 
limb functional abilities. The structural integrity of descending 
motor pathways, based on, e.g., diffusion MRI measures of 
fractional anisotropy or fiber count of the CSTcontra from the 
lesioned hemisphere to the affected hand, has been reported to 
predict good motor outcome (47, 69–73). We further hypoth-
esize that those children with bilateral control of the affected 
hand and good structural integrity of the lesioned CSTcontra will 
have  better abilities to develop fine upper limb motor skills. 
Lastly, CST integrity has been reported to impact on treatment 
response, as demonstrated in children with acquired brain 
injuries. In this group of children, good structural integrity 
of the lesioned CST (measured at the level of the PLIC using 
DWI) was predictive for better functional gains following 
constraint-induced movement therapy (CIMT) (74). These 
results might be extrapolated to children with unilateral CP in 
case the affected hand is mainly controlled via the contralateral 
lesioned hemisphere.

Overall, the proposed categorization of children with uni-
lateral CP based on their underlying CST wiring and structural 
integrity seems to be consistent with previous findings that 
demonstrated the link between clinical outcome measurements 
and (neuro)physiological, as well as brain MRI parameters at the 
group level (9, 26, 39). We specifically focus on the CST, given 
that it predominates skilled voluntary upper limb movements in 
humans and plays a crucial role in upper limb functional outcome 
as demonstrated in adult stroke (75, 76). However, inferring 
whether children exhibit predominantly ipsilateral vs. con-
tralateral control of the affected hand is not easy and MM of the 
affected hand, as proposed in the current review, might only be a 
first indication of “ipsilateral or bilateral re-wiring” (26). Further 
research combining the systematic assessment of MM and TMS 
is an absolute necessity to further clarify the relationship between 
both measurements. Importantly, additional decision parameters 
with respect to upper limb functional outcome in children with 
unilateral CP might include (1) functional and structural con-
nectivity patterns between sensory and motor areas, including 
the thalamocortical radiations (29, 40, 41); (2) functional and 
structural connectivity patterns between hemispheres (64); (3) 
underlying sensorimotor deficits, such as distal muscle weak-
ness, spasticity, or impaired stereognosis (44); and (4) cognitive 
abilities and age (46). The importance of these measures and their 
integration into the proposed assessment to further optimize the 
categorization remain as future challenges. Lastly, given that the 
brain lesions occur while the nervous system is still developing, 
structural and functional connectivity may also be expected 
to change due to maturation and necessitate an age-corrected 
approach. If categorizing children with unilateral CP based on 
their CST wiring and structural integrity allows explaining the 
variability in treatment response, this may offer a real advantage 
with respect to individualized treatment planning and may even 
allow a stratified therapy approach in the future.

sUMMary and ConCLUsion

Children with CP present with a striking heterogeneity in senso-
rimotor dysfunctions, which has triggered an increasing interest 
to optimize therapy in light of the specific requirements of the 
individual child, while keeping in mind that resources available 
for care and therapy are limited. Here, we advocate the idea that 
the individual “re-wiring” pattern and structural integrity of the 
CST might provide important information to further explain 
upper limb function and treatment outcome in children with 
unilateral CP and that CST functionality can be inferred from 
a systematic evaluation, which combines behavioral, neuro-
physiological, and medical imaging biomarkers. During the last 
decades, a large repertoire of neurophysiological and imaging 
techniques have been developed, but more research is required 
to identify which techniques are best suited to derive clinically 
relevant neural biomarkers. We provide a theoretical framework 
with a series of testable hypothesis for biomarker research and 
categorization in unilateral CP. Note that this framework has no 
immediate clinical application but presents a series of anatomi-
cally motivated ideas, which need to be tested and validated in 
future research in children with unilateral CP.
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Lastly, we also indicate knowledge gaps regarding the avail-
ability of validated behavioral, neurophysiological, and medical 
imaging parameters, which can be used to further investigate 
the interaction between the CST wiring pattern, CST integ-
rity, and upper limb sensorimotor outcome in unilateral CP. 
Characterizing whether the sensorimotor wiring pattern 
imposes a hard constraint on the maximum sensorimotor 
abilities a child can reach and/or on the response to treatment 

might pave the road for an evidence-based stratified therapy 
approach in CP.
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