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Limited research exists regarding the most aggressive forms of hepatoblastoma. Cell 
lines of the rare subtypes of hepatoblastoma with poor prognosis are not only difficult to 
attain but also challenging to characterize histologically. A community-driven approach 
to educating parents and families, regarding the need for donated tissue, is necessary 
for scientists to have access to resources for murine models and drug discovery. Herein, 
we describe the currently available resources, existing gaps in research, and the path to 
move forward for uniform cure of hepatoblastoma.
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iNtrODUctiON

Hepatoblastoma is the most common primary liver tumor diagnosed in childhood (1), with approxi-
mately 100 cases in the U.S. annually (2). Despite a high cure rate for those children whose tumor is 
resectable, there remains a group of children for whom a cure is out of reach.

The disease predominantly occurs in young children, from birth to 5 years of age (1). The histo-
logical subtypes of hepatoblastoma are fetal, embryonal, mixed epithelial–mesenchymal, and small 
cell undifferentiated (3). However, there is currently a lack of understanding regarding the origins 
and pathophysiology of these different subtypes of hepatoblastoma.

Clinically, the empirically driven advancements in postoperative chemotherapy and surgery, 
including the multidisciplinary approach set forth through the Pretreatment Extent of Disease 
guidelines (1), has improved outcomes for hepatoblastoma. These guidelines rely on a standardized 
staging system using imaging for detecting amount of tumor involvement (4). Despite these clini-
cal advancements, the more aggressive forms of hepatoblastoma remain difficult to treat. Current 
treatments for aggressive forms of hepatoblastoma include doxorubicin, irinotecan (clinical trials), 
hepatic artery chemoembolization in addition to chemotherapy agents, as well as liver transplanta-
tion or partial resection with neoadjuvant chemotherapy (5).

Scientists and clinicians are now seeking non-chemotherapeutic treatments for patients with 
unresectable or metastatic tumor – treatments that directly target the molecular underpinnings of 
hepatoblastoma progression. For example, clinical trials regarding cixutumumab and pazopanib, 
monoclonal antibodies, and alisertib, a kinase inhibitor, have all been completed or are actively being 
investigated in phase 2 clinical trails for the treatment of refractory hepatoblastoma (6).

In order to find other targeted therapies, researchers need hepatoblastoma tissues and cell lines. 
There is an absence of diversity in hepatoblastoma cell lines for scientists and clinicians to use to 
better understand the disease. In this paper, we describe the need for more cell lines and murine 
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models to advance the discovery of therapeutic targets for the 
more aggressive subtypes of hepatoblastoma.

MetHODs

An extensive literature review of hepatoblastoma via PubMed 
was conducted to obtain information on research with 
unique hepatoblastoma cell lines and murine models. First, 
the authors found the number of distinct hepatoblastoma cell 
lines published in the literature. The search terms used were 
“‘hepatoblastoma’ [All Fields] and ‘cell line’ [MeSH Terms].” 
The search provided approximately 450 publications, all 
reviewed by the authors of this paper. Any publication that 
had a focus on hepatoblastoma was mentioned in Table  1. 
For each unique cell line, the authors attempted to find the 
primary article characterizing the cell line. Secondary pub-
lications using hepatoblastoma cell lines were also included 
in Table 1.

Manuscripts that had differing characterizations of certain cell 
lines were included in the “Unsure Hepatoblastoma” portion of 
Table 1.

Next, the authors reviewed literature via PubMed to find 
murine models of hepatoblastoma. The search terms used were 
“hepatoblastoma murine models.” This provided approximately 
50 publications that the authors reviewed. All publications 
that studied murine models of hepatoblastoma were included 
in Table  1. The models were classified as chemically induced, 
transgenic, and cell-derived xenografts. Furthermore, the xeno-
graft studies were sorted based on subcutaneous or orthotopic 
models.

Finally, the authors searched for patient-derived xenografts 
via PubMed and found no manuscript publications. The authors 
then searched the European Journal of Cancer using the term 
“hepatoblastoma xenograft” and found a published abstract using 
patient-derived xenografts, which is included in Table 1.

resULts

Data regarding histological characterization and experimental 
murine models from only a few hepatoblastoma cell lines exist. 
These cell lines tend to have a favorable histology, leading to an 
underrepresentation of the high-risk subtypes (41).

cell Lines
Fifteen hepatoblastoma cell lines are described in current lit-
erature (Table 1). Additionally, there are four cell lines that are 
potentially hepatoblastoma, but significant inconsistencies in the 
literature render the data obtained from these lines unreliable. 
Even among the confirmed hepatoblastoma cell lines, however, 
there are many documented instances in which cell lines were 
mistaken for hepatocellular carcinoma (7). A fibroblast cell line 
harvested from the liver of a Beckwith–Wiedemann syndrome 
patient with hepatoblastoma is described (Table 1).

Most confirmed cell lines are of the mixed histology subtype. 
However, there are no cell lines of the small cell undifferentiated 
subtype, which carries the worst prognosis (7).

Murine Models
Only one chemically induced murine model of hepatoblastoma 
has been reported (Table 1). Although four different transgenic 
murine models are described in the literature, these murine mod-
els were not specifically developed for the purpose of modeling 
hepatoblastoma. The transgenic murine models phenotypically 
express both hepatocellular carcinoma and hepatoblastoma 
(Table 1).

Ten unique cell line-derived subcutaneous xenografts and 
three cell line-derived orthotopic murine models of human 
hepatoblastoma exist (Table  1). These models primarily utilize 
the Hep G2 and HuH6 cells lines. Twelve unique patient-derived 
xenografts exist (Table 1).

Potential Genetic targets for Aggressive 
Hepatoblastoma
Many studies have noted genetic mutations specific to histologi-
cal subtypes of hepatoblastoma (42). Hepatoblastoma cells have 
shown gain of 2q, 1q, Xp, and Xq; loss of 4q, 2q, and 1q; and 
loss of heterozygosity of insulin growth factor 2 (5). Subtypes 
with increased Notch expression are of the fetal subtype and 
tend to have a better prognosis. Those with overexpression of 
the Wingless-type MMTV Integration Site Family pathway are 
of the small cell undifferentiated subtype and carry a less favora-
ble prognosis (3). Additionally, the more aggressive forms of 
hepatoblastoma have telomerase reverse transcriptase promoter 
mutations (43). Blocking the Wingless-type MMTV Integration 
Site Family pathway using NK1R antagonists has been shown to 
slow the progression of hepatoblastoma cell growth in vitro (44). 
Hepatoblastoma cells show an increase in activity of the hedge-
hog pathway, and abnormal signaling has been linked to more 
malignant potential (45). Forkhead Box G1 is overexpressed in 
hepatoblastoma, specifically the more aggressive subtypes, when 
compared to the fetal subtype (46).

DiscUssiON

In order to find targeted therapeutic options for hepatoblastoma, 
basic science studies need to be conducted. The few cell lines 
characterized and the inconsistencies in the literature on certain 
cell lines provide a major hurdle toward this goal. In addition, the 
availably of the cell lines is limited, which explains the narrow 
spectrum of cell lines used to derive xenografts from the already 
few hepatoblastoma cell lines. Additionally, diversity of histologi-
cal subtypes is needed in order to find better treatment modalities 
for the more aggressive forms of hepatoblastoma. Interestingly, 
expression of fibroblasts enhances the growth of hepatoblastoma 
(47), which is why the hepatoblastoma-derived fibroblast cell line, 
GM08206 (Table 1), carries potential for more advanced studies. 
It is of important note that the majority of liver cells are ane-
uploid, which has been thought to protect the liver from chronic 
injury (48). Culturing surrounding normal liver tissue in addition 
to the tumor would provide insight into premalignant tissue field 
effect at the site of the tumor (46).

Certain repositories for hepatoblastoma are in the early 
stages of developing around the world, providing optimism for 
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tABLe 1 | Literature review of hepatoblastoma cell lines and mouse models.

cell lines Name/iD Public 
availability

Age Gender 
(m/f)

Year made Histological subtype Mutations Primary 
reference

secondary 
reference

true hepatoblastoma
Hep G2 ATCC 15 years m 1975 Epithelial CTNNB1; Δ116 aa, 

25–140, exon 3 and 4
(7, 8) (9)

HUH6 JCRB 12 months m 1985 Mixed; predominant 
embryonal

CTNNB1; T41A (10) (9, 11)

HepT1 (DZ25) Dr. Steven 
Warmann 
(Germany)

34 months f Embryonal, poorly 
differentiated

CTNNB1; Δ76 aa, 5–80 
exon 3

(12) (9)

HepT3 (tumor D204) 9 months m Fetal and embryonal CTNNB1; T41A (9) (13)

Hep293TT 5 years f Mixed; predominant 
embryonal

CTNNB1; Δ117aa (14)

HepT8 (15)

HepT4 (15)

HepT5 (tumor D717) Epithelial CTNNB1; Δ76 amino 
acids, exon 3

(15)

HepT2 (tumor D166) 48 months m Epithelial CTNNB1 (15)

HepU1 53 months m Fetal and embryonal (16)

HepU2 58 months m Fetal and embryonal (16)

OHR 4 months m Anaplastic (no alpha 
fetal protein)

TP53; R281H (17) (18)

USM 11 months f (18)

HB1 6 months m Mixed fetal and 
mesenchymal

(19)

c-HB3 1 years m 1979 Well-differentiated fetal (20)

Unsure hepatoblastoma

SMMC7721 (21)

Hep 3b (8) (22)

HUH-7 (23) (11)

WRL-68 (24, 25)

COG-H-430 
(unpublished)

COG Unpublished

Hepatoblastoma-derived fibroblasts

GM08206 
(unpublished)

Coriell 
Institute

7 months m Fibroblast Unpublished

Mouse models Metastatic  
(y/n)

comments

chemically induced

B6C3F1; 
diethylnitrosamine 
(DEN) and sodium 
phenobarbital (PB)

Embryonal or small 
cell type

62% hepatoblastoma 
penetrance; HCA and 
HCC occurred in 54%

(26)

transgenic

Cited1-CreERTM-
GFP; Ctnnb1þ/ex3(fl)

8 weeks y Embryonal 
undifferentiated, pure 
fetal hepatoblastomas

38% hepatoblastoma 
penetrance; HCC 
occurred as well

(27)

ApoE-LIN28B 6 months Fetal and 
cholangioblastic 
pattern

100 hepatoblastoma 
penetrance; HCC 
occurred as well

(28)

LAP-MYC Mixed embryonal and 
fetal, predominant 
embryonal

(28)

Alb-MYC Mixed embryonal and 
fetal, predominant 
embryonal

(28)

cell line-derived xenografts

subcutaneous

Nu/nu Balb/c mice 
w/2 × 107 HuH6 cells

Mixed; predominant 
embryonal

(29–31)
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cell lines Name/iD Public 
availability

Age Gender 
(m/f)

Year made Histological subtype Mutations Primary 
reference

secondary 
reference

NMRI-Foxn1nu 
w/2–3 × 106 HuH6 
cells

f Paravertebral areas (32)

NOD/LtSz-scid 
IL2Rγnull 2 × 106 
HuH6 cells

Paravertebral areas (33)

Athymic nude mice 
w/1 × 107 HepG2 
cells

f Left flank (34)

NOD/SCID 
immunodeficient 
w/5 × 105 HuH6 cells

m (35)

NOD/SCIDw/1 × 105 
HepG2 cells

14 days (36)

Nude mice w/USM 
cells

(18)

Atyhmic nude mice 
w/2 × 106 HepG2 
cells

3 weeks m Left thigh (37)

Nude mice (BALB/c, 
nu/nu) w/2 mm HB3 
tissue cubes

14.5 days f Well differentiated fetal Back (20)

NOD/LtSz-scid 
IL2Rγnull mice 
w/2 × 106 HUH6 
cells

4 weeks Paravertebral areas (38)

Orthotopic

NOD/LtSz-scid 
IL2Rγnull w/1 × 106 
HuH6 cells

5 weeks n 83% hepatoblastoma 
penetrance – injected 
intrasplenically, no tumor 
growth via intravenous 
or intraperitoneal 
injection

(13)

NOD/LtSz-scid 
IL2Rγnull w/1 × 106 
HepT1 cells

5 weeks n 50% hepatoblastoma 
penetrance – injected 
intrasplenically, no tumor 
growth via intravenous 
or intraperitoneal 
injection

(13)

NOD.Cg-Prkdcscid-
IL2rgtmWjl/Sz 
w/1 × 106 HuH6 cells

4 weeks y Embryonal 82% 
penetrance – injected 
intrasplenically

(39)

Patient-derived xenografts

HB-213 XenTech 19 months f y (40)

HB-214 XenTech 30 months f y Small cell 
undifferentiated

(40)

HB-217 XenTech 24 months m n (40)

HB-229 XenTech 54 months m y (40)

HB-232 XenTech 6 months m n (40)

HB-233 XenTech 16 months m n Small cell 
undifferentiated

(40)

HB-236 XenTech 8 months f n (40)

HB-238 XenTech 110 months f n (40)

HB-239 XenTech 113 months m n Small cell 
undifferentiated

(40)

HB-243 XenTech 52 months m n (40)

HB-244 XenTech 114 months m n (40)

HB-252 XenTech 14 months f n (40)
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FiGUre 1 | roadmap to finding a cure for hepatoblastoma.
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advancements in basic science research, and potentially leading 
to clinical trials for hepatoblastoma. The Children’s Oncology 
Group developed a Rare Tumor Committee that has lead to 
promising clinical trials for rare pediatric cancer (49), including 
a current clinical trial involving combination chemotherapy 
for different stages of hepatoblastoma. Although histological 
analysis is not used in the staging process, this trial presents 
the opportunity to provide awareness of hepatoblastoma and 
an opportunity to increase tissue donation. Currently, the 
Children’s Oncology group has one hepatoblastoma cell line 
(COG-H-430), not available on the open distribution list, but 
can be obtained with a materials transfer agreement (personal 
communication).

In addition to the Children’s Oncology Group, the Japanese 
Collection of Research Biosources hosts a cell bank that provided 
the cell lines for the majority of hepatoblastoma manuscripts in 
the literature review (9). However, currently only HUH6 is avail-
able for public distribution. Many published hepatoblastoma 
cell lines found in the literature review were not within the last 
decade, which could explain the difficulty in obtaining certain 
cell lines today.

Most importantly, many international groups, such as 
Childhood Liver Tumors Strategy Group and the Society for 
Pediatric Oncology and Hematology, have collaborated with 
Children’s Oncology Group and the Japanese Collection of 
Research Biosources, which initially led to the Pretreatment Extent 
of Disease guidelines (50). It is this type of collaboration that can 
result in an increase in cell lines and tissue-banking repositories. 
One example is the Childhood Liver Tumors Strategy Group, 
which runs a tissue bank for childhood liver tumors (51).

Recently, further collaboration has allowed for the Children’s 
Hepatic tumors International Collaboration, to obtain data on 
1,605 hepatoblastoma patients, aimed at creating a database to 
identify prognostic factors for this rare pediatric cancer (52). One 
limitation to the database, mentioned by the authors, was the 
exclusion of histology due to the lack of international consensus 
in characterizing subtypes (52).

As more interaction among family members is made, newer 
registries, in addition to those previously mentioned, will 
continue to grow. The Macy Easom Foundation has committed 
to funding development of the Hepatoblastoma Registry, as 
well as the expense of administration, data compilation, and 
analysis (18).

Despite the current development of repositories, an increase in 
cell lines and murine models available for research purposes can-
not progress unless methods are in place to increase awareness 
for tissue donation in hepatoblastoma. Both parents and treating 
physicians must be made aware of the need for hepatoblastoma 
tissue and the opportunity to support research via autopsy tissue 
donations. The decision, whether to make an autopsy tissue dona-
tion, is difficult, intensely personal, and unique for each family. 
The authors recognize the delicate balance between making 
parents aware of the need and opportunity while taking care to 
respect every family’s response and perspective.

A parent who wishes to arrange for an autopsy donation should 
not be burdened with making the arrangements. With parents’ 

consent, volunteers and professionals must be in place to make 
the necessary contacts and establish logistics of the donation. 
These arrangements may include contacting the treating physi-
cian, speaking with the local pathologist who will perform the 
autopsy, connecting the researcher who will receive the donated 
tissue with the pathologist, and arranging for transport of the 
body from the child’s home to the hospital (and return to the 
funeral home).

Grassroots communication and interaction among family 
members, caregivers, and others affected by a particular diagnosis 
has significantly influenced progress in some areas of pediatric 
cancer research. As an example, interaction among families 
affected by diffuse intrinsic pontine glioma (DIPG) in an online 
discussion group is considered by some to be the first step in rais-
ing a tide turning awareness in that community. The result was 
a promising therapeutic drug, panobinostat, for treatment (53).

In summary, the greatest potential for the development of 
targeted therapy for aggressive forms of hepatoblastoma will 
come when scientists have access to hepatoblastoma cells lines 
and tissues with histological subtype diversity (Figure 1).
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