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Rediscovering Pertussis
Manuela Zlamy*

Department of Pediatrics, Medical University of Innsbruck, Innsbruck, Austria

Pertussis, caused by Bordetella (B.) pertussis, a Gram-negative bacterium, is a highly 
contagious airway infection. Especially in infants, pertussis remains a major health con-
cern. Acute infection with B. pertussis can cause severe illness characterized by severe 
respiratory failure, pulmonary hypertension, leucocytosis, and death. Over the past years, 
rising incidence rates of intensive care treatment in young infants were described. Due 
to several virulence factors (pertussis toxin, tracheal cytotoxin, adenylate cyclase toxin, 
filamentous hemagglutinin, and lipooligosaccharide) that promote bacterial adhesion and 
invasion, B. pertussis creates a unique niche for colonization within the human respira-
tory tract. The resulting long-term infection is mainly caused by the ability of B. pertussis 
to interfere with the host’s innate and adaptive immune system. Although pertussis is a 
vaccine-preventable disease, it has persisted in vaccinated populations. Epidemiological 
data reported a worldwide increase in pertussis incidence among children during the 
past years. Either acellular pertussis (aP) vaccines or whole-cell vaccines are worldwide 
used. Recent studies did not detect any differences according to pertussis incidence 
when comparing the different vaccines used. Most of the currently used aP vaccines 
protect against acute infections for a period of 6–8 years. The resurgence of pertussis 
may be due to the lack of herd immunity caused by missing booster immunizations 
among adolescents and adults, low vaccine coverages in some geographic areas, and 
genetic changes of different B. pertussis strains. Due to the rising incidence of pertussis, 
probable solution strategies are discussed. Cocooning strategies (vaccination of close 
contact persons) and immunizations during pregnancy appear to be an approach to 
reduce neonatal contagiousness. During the past years, studies focused on the pathway 
of the immune modulation done by B. pertussis to provide a basis for the identification 
of new therapeutic targets to enhance the host’s immune response and to probably 
modulate certain virulence factors.
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“I have a faint cold fear thrills through my veins” (1)

BORDETELLA SPP.

Bordetella (B.) pertussis is a fimbriated Gram-negative, aerobic coccobacillus. B. pertussis ranks to the 
genus Bordetella (2–5). Phylogenetic analysis revealed nine different Bordetella species. Five of them are 
known to cause respiratory tract infections in humans: B. pertussis, Bordetella parapertussis, Bordetella 
bronchiseptica, Bordetella holmesii, and Bordetella petrii (2, 3, 6). Within the species Bordetella, B. 
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TABLe 1 | Demographic data Bordetella species.

Phylogenetics Facts infections in

Genus: Bordetella Gram-negative 0.2–0.7 μm rods Humans
Sheep

Phylum Proteobacteria Birds
Highly contagious Dogs
Obligate aerobes Pigs

Human pathogen Symptoms
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lla B. pertussis Whooping cough

B. parapertussis Whooping cough

B. bronchiseptica Respiratory infection

B. holmesii Pertussis-like symtpoms or invasive 
infections (septicemia, pneumonia, 
meningitis, arthritis)

B. petrii Respiratory tract infections
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pertussis, B. bronchiseptica, and B. parapertussis are closely related 
pathogens that infect mammalians. B. bronchiseptica causes a mild 
or chronic respiratory infection in a large range of mammalian 
hosts (2, 7). In humans, it causes respiratory tract infections mostly 
in immunocompromised hosts (7, 8). Regarding B. parapertussis, 
two distinct hosts have been identified: humans (B. parapertussis 
HU) and sheep (B. parapertussis SH) (2, 9). B. holmesii is part of 
a different genetic lineage within the B. genus. B. holmesii causes 
either pertussis-like symptoms or invasive infections (e.g., sep-
ticemia, pneumonia, meningitis, arthritis, etc.) (10, 11). B. petrii 
was isolated in patients with cystic fibrosis and in come cases of  
long-lasting respiratory tract infections (Table 1) (12).

During the past years, B. pertussis, the causative agent of 
whooping cough, resurged as cause for upper airway infections 
in humans.

B. PERTUSSIS – CLiNiCAL COURSe

Infection by B. pertussis is acquired via droplet route (5, 13). 
In the susceptible child, the classical pre-vaccination textbook 
symptom trias is defined as: catarrhal stage with unspecific 
symptoms (e.g., fever, rhinitis, mild cough) which typically 
lasts for 1–2 weeks, followed by the paroxysmal stage where the 
cough evolves in the typical paroxysmal coughing spells followed 
by posttussive whooping and vomiting and duration of cough 
lasting 1–3 months. During the third stage, also known as con-
valescent stage, the intensity of coughing spells deceases during 
1–2 weeks (14). Pertussis is at least unpleasant for the patient, as 
these symptoms frequently interfere with daily activities and can 
cause significant sleep disturbances (5, 14).

In reality, B. pertussis is a chameleon. Infection by B. pertussis 
nowadays often causes unspecific mild symptoms, such as rhinitis 
and unspecific mild cough often not leading to a physician visit 
(5). Even asymptomatic infections can occur in children and 
adults with strong residual immunity (13, 15). Life-threatening 
disease manifestation is often seen in newborns and young 
infants. Newborns and young infants often first present with 
apnea or respiratory distress syndromes (5, 13, 16). In <20%, 
fever is detected (5). The first presentation of an acute infection 
is affected by several parameters: patient age, previous exposure 

(vaccination or prior infection), first-line antibiotic administra-
tion, concomitant infections with other agents, and the presence 
of cross-reacting antibodies (13, 16–19).

After introduction of routine vaccination in young infants, 
pertussis incidence first decreased. However, B. pertussis nowa-
days accounts for a significant morbidity and mortality world-
wide. Increasing incidence resulted from an increased awareness 
of the reservoir of B. pertussis infections in adolescents and adults 
(20–22).

Type and frequency of complications depend on host-specific 
age and immunity. They most commonly present as bronchoalve-
olar pneumonia (any age) or apnea (newborns and young infants) 
and more rarely as respiratory distress syndrome, seizures, and 
other signs of encephalopathy (2, 5).

B. PERTUSSIS – UNDeReSTiMATeD  
CASeS?

Since the introduction of a worldwide available vaccination in 
the 1950s, a significant reduction in mortality rates was detected 
worldwide (2, 20–22). However, pertussis still poses a significant 
health burden. The worldwide estimated immunization coverage 
among infants receiving three doses of the diphtheria, tetanus, 
and pertussis vaccine (DTP3) increased still till 2012 and 
reaches about 86% of the population in 2014 (23, 24). Data on 
booster vaccinations are missing. Thus, the number of world-
wide recognized cases of pertussis was stable, many regions 
reporteted a resurgence (13, 21, 23, 24). In countries with high 
vaccination coverage, pertussis experiences a second springtide 
among adolescents and adults (13, 22, 24–29). Several studies in 
adults revealed prolonged cough illness as a result of an infec-
tion by B. pertussis (13, 24–29). The United States (US) and the 
United Kingdom have seen a rise in B. pertussis cases during 
the past years (23, 29). The rising incidence in B. pertussis cases 
may be influenced by an either too low vaccination coverage 
especially booster vaccination coverage, or the possibility of a 
vaccination-breaktrough infection (29–32). During the past 
decades, improved surveillance and diagnostics has led to an 
increased incidence worldwide. However, in the US, a steady rise 
of reported pertussis cases was detected over the last 30 years 
(29, 30). In 2010 and 2012, pertussis outbreaks were reported in 
California and Washington with case counts similar to the 1940s 
(30). An increase across all ages also in infants less than 1 year of 
age has been reported in the US (33).

Recent studies tried to elucidate possible explanations for the 
increase of disease burden (29–32, 34–36): (1) the evolution of B. 
pertussis to escape vaccine antigens; (2) low vaccination or wild-
type infection rates; (3) a changed efficacy of vaccine protection 
due to the use of the acellular vaccine or even a lower vaccine 
efficacy; and (4) an increase of reporting systems and surveillance 
analysis.

B. PERTUSSIS – DiAGNOSTiCS

For accurate diagnosis of infection due to B. pertussis, different 
diagnostic procedures are available: direct fluorescent-antibody 
assay (DFA), culture, PCR, and serodiagnostic.
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FiGURe 1 | Schematic figure of B. pertussis and its virulence factors. 
Notation: PT, pertussis toxin; TCT, trachel cytotoxin; ACT, adenylate cyclase 
toxin; TTSS, type III secretion system; LPS, lipopolysaccharide; FHA, 
filamentous hemagglutinin; PRN, pertactin.

3

Zlamy Rediscovering Pertussis

Frontiers in Pediatrics | www.frontiersin.org June 2016 | Volume 4 | Article 52

Direct fluorescent-antibody assay is performed using 
 nasopharyngeal swabs of patients. Via microscopy fluorescent 
antibodies directed against B. pertussis are visualized. Due to 
the low sensitivity and specificity of this assay, DFA diagnosis 
always needs a second method for proof (22, 37) Culture is the 
gold standard for pertussis diagnosis. Despite its low sensitiv-
ity compared to PCR, it is still used (22, 37). Nasopharyngeal 
samples obtained by deep aspiration or swabs can be used (22, 
37–39). Collection of oral fluids is less stressful for the patient, but 
it should not be used for culturing due to the probable contami-
nation with resident oral pathogens (22). In ace of culturing B. 
pertussis, addition of cephalexin to the medium is recommended 
to inhibit growth of contaminant bacteria (22). Agar plates are 
incubated at 35–37°C in a high-humidity environment with 
low levels of carbon dioxide for up to 12 days to reach optimal 
sensitivity (22). After growth on the agar plate, bordetellae can 
be further characterized by biochemical reactions, agglutination 
with specific sera or PCR (22, 37). During the past years, PCR 
assays have become a well-established method for the detection 
of bordetellae (22, 37, 40–42). Dry swabs can be used for PCR 
(22, 42, 43).

Serodiagnosis is often used to confirm the clinical diagnosis 
of pertussis. Early serodiagnostic methods required a signifi-
cant (greater than fourfold) increase of titers in serum samples 
2–4 weeks after the first diagnosis (22). Nowadays, enzyme-linked 
immunosorbent assays (ELISA) are used to differentiate IgM, 
IgA, and IgG antibodies against pertussis. ELISAs use specific 
cut-off values for detection of pertussis (22, 37, 43).

Taken together, the optimal diagnostic method always depends 
on the age of the patient, the stage of disease, and the primary 
vaccination status of the patient.

B. PERTUSSIS – viRULeNCe FACTORS

The primary side of infection with B. pertussis is the respiratory 
tract. Infection is initiated via contact of respiratory droplets 
from an infected individual (2, 3, 5, 13, 20–22). After inhalation, 
B. pertussis enters the upper respiratory tract and adheres to the 
epithelia of the nasopharynx and the trachea (2, 3, 5, 13, 14). 
After attachment, B. pertussis produces a cascade of virulence 
factors: adhesins, immune-modulators, and toxins. The interac-
tion and teamwork of these factors prevents B. pertussis from a 
rapid clearance and enable its dissemination to the lower areas 
of the respiratory tract (2, 3, 5, 13, 14). B. pertussis produces a 
number of toxins: pertussis toxin (PT), tracheal cytotoxin (TCT), 
adenylate cyclase toxin (ACT), heat-labile toxin, type III secre-
tion system (TTSS), and endotoxin or lipopolysaccharide (LPS). 
Further on receptor-binding, virulence factors, such as filamen-
tous hemagglutinin (FHA) and pertactin (PRN), are expressed. 
To complete the wall of protection B. pertussis is protected by 
fimbriae, which act as antigenic targets for antibodies and T cells 
(Figure 1) (3, 5, 14).

Pertussis toxin is one of the dangerous players of B. pertussis. 
It promotes system effects, such as lymphocytosis and hista-
mine sensitization, and promotes T-cell response by bystander 
antigens. After primary adherence by fimbriae, PT facilitates 
FHA-mediated adhesion to macrophages (44–46). FHA has been 

shown to have an immunosuppressive function during infection 
(3, 47). PT consists of different subunits that contribute to the 
immunomodulatory effects, which either suppress or promote 
the hosts immune response (3, 46, 48, 49). PT inhibits phagocy-
tosis by antigen-presenting cells (APC), antigen processing and 
presentation, and trafficking of APC to lymph nodes (3, 46, 48, 
49). TCT acts as an activator of the immune deficiency pathway 
(3). ACT plays several roles in the invasion of the human body by 
B. pertussis. It binds to the complement receptor 3 and intoxicates 
complement receptor 3-negative cells. ATC induces apoptosis 
and cell cycle arrest and inhibits phagocytosis, chemotaxis, and 
superoxide generation. Furthermore, it modulates APCs and 
induces a T-cell response (50–52). ACT suppresses the secretion 
of proinflammatory cytokines (IL-12p70) and tumor necrosis 
factor alpha (TNF-alpha) (53–55). FHA is the main agent for 
the adhesion of B. pertussis to the mucosal surface of respiratory 
tract. It promotes bacterial adherence to ciliated respiratory 
epithelial cells and promotes phagocytosis by macrophages and 
polymorphonuclear leukocytes (3, 56–60). TTSS stimulates 
innate and adaptive immune response (3). LPS is one of the main 
components for colonization survival. LPS acts pyrogenic, toxic, 
and can activate proinflammatory cytokine production (61, 62). 
PRN is an auto-transporter protein of the outer membrane that 
enables the adherence of B. pertussis to monocytes and epithelial 
cells (3, 63). LPS and TCT have been shown to induce NOS and 
NO and to inhibit DNA synthesis in epithelial cells (64) TCT and 
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PT have been shown to inhibit the immune cell trafficking within 
the respiratory tract (2).

B. PERTUSSIS – iMMUNe MODULATiON?

After early studies on B. pertussis-induced immune reactions 
in  humans, studies in mouse completed the experimental 
settings (65–69).

The ciliated epithelium of the respiratory tract ensures that 
pathogens are cleared mechanically (2). Successful infection 
of the host, therefore, depends on the ability of B. pertussis to 
produce a number of adhesins and toxins, which alter immune 
response of the host (3). After binding to the cilia of the respira-
tory tract, macrophages and immature dendritic cells (DCs) are 
the first cells responding to the invador (3, 70, 71) In addition, 
many toxins and virulence factors of B. pertussis promote bacte-
rial survival in the host by remodulating the immune system. 
FHA induces proinflammatory interleukin(IL)-6 and IL-10 and 
supresses IL-12 production (2, 72). The generation of IL-10-
producing regulatory T cells (Treg cells) suppresses interferon 
(IFN)-gamma production and inhibits the generation and 
function of Th1 effector cells (2, 72). PT promotes immunosup-
pression via activation of T-cell receptor-associated signaling 
molecules in lymphocytes (3). A recent study even implicates 
that PT can either work pro- or anti-inflammatory depending 
on single versus repetitive exposure of the host, which might 
be linked to enhanced severity of autoimmune diseases (73). In 
synergy with IL-10, ACT leads to the development of Treg cells, 
which delays the clearance of B. pertussis (53–55). Taken together 
all this cellular and humoral alterations, B. pertussis acts as a very 
potent immune modulator.

Murine infection models showed rapid cell recruitment to 
the lungs (74). After the initial influx of DCs and macrophages, 
neutrophils, natural killer (NK) cells, and T cells follow the pro-
inflammatory signals (75, 76).

In infants with confirmed pneumonia due to B. pertussis 
infection, bordetellae have been found in pulmonary alveolar 
macrophages (71). B. pertussis can replicate in macrophages and, 
therefore, evade destruction (3, 70). As a consequence, depletion 
of resident macrophages enhances infection (70). Controversely, 
former studies revealed that macrophages can harbor B. pertussis 
intracellularly and then be activated by IFN-gamma and IL-17 
to kill the intracellular B. pertussis particles (77, 78). The second 
first-line immune cells activated are DCs. DCs present antigens 
to T cells and stimulate innate cytokines that promote further 
differentiation of naive T cells. After recognition of B. pertussis, 
proinflammatory signals (Il-12, IFN-gamma) trigger activation 
of T-cell response (79). In human DC cells, infection by B. pertus-
sis enhances IL-1 and IL-23 production, which is required for 
maturation of Th17 cells (80).

In mouse models, neutrophils, which help to kill phagocytosed 
bacteria, infiltrate the lungs in around day 5 after infection (3, 81). 
Due to its unique structure, B. pertussis can survive in neutro-
phils that undergo lysosomal maturation (58). During the early 
time of infection, PT delays the early infiltration of neutrophils 
(82) and ACT inhibits neutrophil functions like phagocytosis, 
superoxide generation, and chemotaxis (83). Another early player 

of the defense against B. pertussis is NK cells. NK cells produce 
IFN-gamma in response to infection and lead to a Th1-guided 
immune response (76, 84).

In a second defense line of the human body, proteins are 
secreted by the mucosa of the airways and by innate immune 
cells: lysozyme, lactoferrin, and secretory leukoproteinase 
inhibitor, and antimicrobial peptides (AMPs), e.g., cathelicidin 
(LL-37) and defensins (85, 86). B. pertussis fights against these 
agents by blocking certain molecules. For example, TTSS inhibits 
the expression of defensins and, therefore, promotes survial of B. 
pertussis. Consequentely, B. pertussis is enabled to colonize the 
lower airways (87). B. pertussis also has mechanisms protecting 
more or less against another soluble factor of the innate immune 
system: the complement. Susceptibility to complement remains 
highly variable (88).

On the cellular level, certain players are involved. Recent 
studies detected that cellular components of the immune system 
are needed to effectively clear a primary infection by B. pertussis. 
CD4− T cells, Treg, and Th17 cells seem to play a crucial role 
in the pathogenesis of pertussis (89, 90). Early work focusing 
on the T-cell immune system evaluated that PT, FHA, and 
PRN stimulate CD4+ T cells in children with whooping cough 
(65–67). In vitro proliferation of T cells negatively correlates with 
clinical symptoms of pertussis (68). In murine models, high levels 
of CD25−Foxp3+ Treg cells have been detected in the lungs of 
infected animals (91). Recent studies showed that T-cell response 
plays a major role in protection against B. pertussis (89). It is 
assumed that the high amount of Treg cells may be a benefit to 
the infected patient by limiting pathological alterations (78).

More recent studies showed an induction of Th17 cells by 
B.  pertussis (78, 80). Pulmonary hypertension is one possible 
lethal complication of pertussis infection in infants and young 
children. Interestingly, Th17 cells are discussed to contribute to the 
pathomechanisms of pulmonary hypertension in severe pertussis 
cases (92). By the induction of Treg cells, pertussis subverts the 
protective immune response (72, 93). During infection, protective 
Th1 and Th17 response can be detected locally and systemically 
(94). However, the exact role of Th17 cells in protection against  
B. pertussis has to be more precisely studied in humans.

Despite all achievments, the first priority for the improve-
ment of a long-lasting protection after vaccination is to study 
the exact immunological responses to infection and identify 
new targets that improve the robustness of pertussis vaccination. 
Furthermore, the highest mortality rates are known in infants. 
The infantile immune system is difficult to treat and protect. 
Considering these challenges, future studies should focus on 
new priorities irrespective of the socioeconomic status of the 
patients.

B. PERTUSSIS – vACCiNATiONS

Up to date, two differenct vaccines can be used: an acellular per-
tussis (aP) vaccine and a whole-cell pertussis (wP) vaccine. Early 
studies in murine models and humans have revealed that wP and 
aP vaccine induce distinct Th1 versus Th2 responses (44, 45, 95). 
In case of the aP vaccine, the T-cell immune responses to pertus-
sis were assessed during the safety and efficacy trials conducted 
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in Sweden and Italy in the 1990s (96, 97). In these early studies, 
a “robust” T-cell immune response to the pertussis vaccine was 
detected in infants and young children (96, 97). Following studies 
showed that T-cell immunity persisted over a long time period 
even after the decline of antibodies (98, 99). Furthermore, T-cell 
immunity could be boostered by wild virus infection (99). By 
contrast, T-cell response after wP vaccine was compareable to 
natural infection, inducing a Th1 response (98, 100, 101). After 
primary vaccination with wP vaccine, an aP booster dose induces 
a mixed Th1/Th2 response (44, 45).

Several studies emphazised the importance of booster vaccina-
tions to enhance the T-cell response to pertussis antigen. In a study 
in adolescents, Rieber et al. pointed out that T-cell parameters to 
PT, FHA, PRN, and fimbriae increase after booster vaccination 
with a five-component Tdap booster vaccine (102). Due to lacking 
immunity more recently, a more complicated understanding of 
immunity after pertussis aP vaccination occurred. An aP booster 
vaccination in preterm infants between 13 and 16 months of age 
did not induce a significant immune response after vaccination, 
when compared to values before the booster vaccination (103). 
Similarly, another study showed that in children who were first 
vaccinated with aP vaccine an increase in cytokine production 
was missed after booster vaccination, whereas children who were 
first immunized with wP vaccine did show an increase in cytokine 
production (104). In children at 9 years of age, a second aP vaccine 
booster dose did not increase T-cell respose (105). One possible 
explanation might be that the enhancement of T-cell immunity 
during the 5 years following the booster at 4 years of age is prob-
ably caused by natural boosting (104). Early studies also proofed 
that vaccination-induced T-cell response could wane by 4 years 
of age and can be naturally boosted by symptomless wild-type 
infection (98). Another possible explanation for the differing 
results might be the differences in study design. While the early 
studies took blood samples to measure immune responses from 
the same subject before and after vaccination (102, 106), more 
recent studies had different subjects in the boostered and non-
boostered study group (104, 105).

Nowadays, it is discussed if the duration of immunity of aP 
vaccines in the 1990s was overestimated due to an natural booster 

because of high wild-type pertussis infections. It is speculated 
that wild-type infection and subclincal pertussis infection may 
induce a long-term immunity in previously infected or immu-
nized individuals (3, 89).

Immunization of children with wP induced a CD4+ and 
CD17+ T-cell respone (3, 107). wP vaccines include pathogen-
associated molecular patterns (PAMPs) (e.g., LPS) that induce 
a IL-1, -6, -12, and -23 production by macrophages and DCs 
(3). By contrast, vaccination with aP was shown to induce a 
TH2 or Th1/Th2 response (3, 107). aP vaccines consist of the 
adjuvant alum, which stimulates IL-1, IL-4, or IL-17 (3). When 
wP and aP are compared, different cytokines are stimulated after 
vaccination promoting the induction of different T cells and 
B cells (3) (Figure 2). Recent data showed that after primary aP 
vaccination, CCR7+CD45RA− (central memory 328 T cells) 
and CCR7−CD45RA− (effector memory T cells) T-cell subsets 
are induced (108, 109). It is discussed that, after vaccination, 
a greater amount of central memory T cells is associated with 
greater amount of Th1 cytokines after infection, whereas a greater 
amount of effector memory T cells is more likely associated with a 
Th2 response (110). Former studies showed that pertussis-specific 
CD8+ memory T cells are induced after vaccination (111), but 
booster vaccination had no effect on the total number of these 
specific T-cell subsets (109).

According to vaccine-specific long-term protection against 
pertussis, the available studies are problematic to compare. Data 
from different geographic areas with specific pertussis epidemiol-
ogy and differences in the methodology used are hard to compare. 
Second, the determination of an asymptomatic natural booser 
is hard to predict. As a consequence, many studies on different 
vaccines and vaccination schedules in a variety of countries exit. 
A study in a pre-adolescent cohort showed that wP vaccination 
during infancy induced a longer lasting T-cell immunity than 
aP vaccination (109). This study showed that in  vivo cytokine 
response to antigenic stimulation was higher in subjects who 
received wP vaccination even if the time from the last booster 
dose was significantly longer than in aP vaccinated subjects 
(109). Controversially, other studies showed that the antigen-
specific cytokine response improved after shift from wP to aP 
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vaccination (104, 105). Interestingly, studies of the past years 
unveiled that protective immunity obtained after aP vaccination 
wanes more rapidly than after wP vaccination (112). To overcome 
these deficiencies, many efforts are in progress, e.g., the inclusion 
of additional antigens in aP vaccines, the reformulation with 
adjuvants that more favor Th1 and Th17 cell response, and the 
development of live-attenuated vaccines (113). The development 
of a live attenuated vaccine has several advantages, including the 
generation of a mucosal immunity. However, it remains unclear if 
a brought public acceptance will be reached. Therefore, it should 
be considered to retain the immunogenicity of wP vaccines. One 
has to keep in mind that the development and approval of a new 
vaccine will be a long-lasting process.

However, it is still unclear which vaccination strategy might 
be the most effective. Actual studies on vaccination effectiveness 
and population-based vaccine coverage rates are not comparable. 
Therefore, it is not possible to identify a predictive value for the 
estimated vaccination coverage. Further studies should use com-
parable vaccination and testing schedules in age matched patients 
and controls for a more precise estimation of real duration of 
vaccination coverage.

B. PERTUSSIS AND AGiNG?

Pertussis affects all people from the first hour of life to the last 
breath. Throughout life, the immune systems undergo several 
changes that might lead to age-related difference in the pertussis-
specific immune response. During the past years, more insight 
was gained into vaccine-specific B- and T-cell memory. With 
ongoing age, significantly stronger waning of vaccine-induced 
memory B cells is detected when compared to younger age groups 
(66). Studies in infants detected a mature development of Th1 
and Th2 response in neonates and pre-terms (114, 115). With 
ongoing age, the lymphoproliferative responsiveness is lost (66, 
110). Taken together, studies showed an impact of immunose-
nescence on pertussis-specific immunity via a decreased T-cell 
 responsiveness (66).

B. PERTUSSIS – COCOONiNG veRSUS 
vACCiNATiON DURiNG PReGNANCY

After the resurgence of pertussis infection, several studies showed 
that the main source of infection in newborns and infants were 
close contact persons, mostly family members (116, 117). In a 
first attempt to reduce pertussis incidence, indirect protection 
by reduction of transmission rates was favored, as the so called 
“cocooning strategy.” Therefore, some countries adapted their 
national immunization guidelines (116, 118, 119) and some stud-
ies were elicited. Another study focused on the influence of vacci-
nation rates among siblings and vaccination rates among mothers 
showed that the provided protection rates are comparable (120). 
A recent study on the effect of cocooning infants younger than 
6 months of age did not detect any reduction in pertussis cases 
among infants younger than 6 months of age (117). It is discussed 
controversially if cocoon strategies are cost-effective or even 
prevent infections (116, 121, 122). Taken together, it is advisable 
for women to know their immunization status and to identify 

all close contact persons (family members, non-household close 
contact persons), which may play a considerable role in the 
transmission of pertussis.

Another attempt to reduce pertussis rates among newborns 
and young infants was the introduction of pertussis vaccinations 
during pregnancy. Vaccination during pregnancy has become 
more important in some countries.

Up to date pertussis cocooning strategies remain deficient 
and vaccines are licensed for use after 6  weeks of age (116, 
123–125). Due to a steady transplacental transfer of pertussis 
antibodies from the mother to the fetus, health authorities first 
recommended in 2011 the use of pertussis vaccinations for 
pregnant woman (126–128). The US first recommended mater-
nal vaccination after gestational week 20 and subsequently the 
time window was narrowed to gestational week 27–36 (129). 
Switzerland and the United Kingdom adopted these recom-
mendations (128). Early studies showed that vaccination with 
Tdap vaccines during gestational week 27–30 + 6 was associated 
with the highest values of IgG in umbilical cord blood when 
compared to vaccination beyond gestational week 31 (125). 
According to one of the most potent virulence factors of per-
tussis PT (44–46), it was shown that vaccination of the mother 
between gestational week 27–30  +  6 elicited the highest PT 
antibody concentrations at birth (125). A recent study supports 
these data because it showed that maternal Tdap vaccination 
in the early second-trimester significantly increases neonatal 
antibodies at birth when compared to third-trimester vaccina-
tions (123). All in all the antenatal vaccination campaign in the 
United Kingdom achieved a vaccine coverage of 60% with >90% 
effectiveness (130, 131). A recent study in the United Kingdom 
showed that after introduction of pertussis vaccination during 
pregnancy a strong reduction in confirmed cases and hospital 
admissions because of pertussis, especially in infants younger 
than 3  months of age was reported (131). Furthermore, 
the question arose if vaccination early in pregnancy might 
adversely affect the infant’s immune response to vaccinations 
after birth. Some studies showed that antibody concentrations 
at birth did not interfere with the immune response to further 
immunizations after birth (132–134). It is known that mater-
nally derived antibodies are able to interfere with the infant’s 
immune responses with the same vaccination (135), which was 
detected after DTaP vaccination (136). It was shown that mater-
nal antibodies interfere with antibody responses after primary 
vaccination during infancy in children born to Tdap-vaccinated 
mothers (127). Interestingly, a mouse model showed that the 
vaccination of infant mice reduced the protective functions of 
maternally derived antibodies in vitro and in vivo (137). A study 
that focused on the Repevax vaccination (a combined tetanus, 
low-dose diphtheria, 5-component aP, inactivated polio vaccine; 
Repevax; Sanofi Pasteur) detected a significant attenuation of 
pertussis antibodies in infants whose mothers where vaccinated 
with Repevax during pregnancy (136).

Spotlighted by recent findings, the lack of protection by aP 
vaccines, the efficacy of current vaccines should be maximized by 
prenatal vaccination, additional boosting, and alternative vacci-
nation strategies. In future, it is important to determine the func-
tionality of maternal and infant antibodies to better understand a 
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probable interference of vaccination during pregnancy and later 
vaccinations of the infants.

B. PERTUSSIS – CONCLUSiON

It is irrefutable that the incidence of severe pertussis cases is 
rising worldwide. Nearly 90% of all cases of deaths caused by 
pertussis occur in infants younger than 4 months of age (113). 
Most of these cases are caused by fatal pertussis pneumonia 
caused by PT (113). Therefore, it is also imperative to conduct 
studies focusing on the limitation of PT activity during acute 
infection. During the past years, the resurgence of pertussis 
lead to many new studies focusing on a better understanding 
of transmission dynamics, virulence factors, and host immune 
reactions as well as the search for new vaccine targets. It was 
shown that the first tries to achieve herd immunity and focusing 
on cocooning and possible eradication failed. It is discussed if 
a meanwhile switch to wP vaccine as a first dose in the primary 
immunization schedule should be introduced (29). Frightfully 
by gaining more and more inside into the cellular and humoral 
immune response to an infection caused by B. pertussis, more 
and more questions arise. Efficacious vaccines need to be long-
lasting, prevent transmission, and reduce disease burden. Up to 
date, none of the existing vaccines fulfils these criteria. Recent 
studies highlighted that a likely effective immune response 

requires the induction of a Th1/Th17 immune response, which 
stimulates opsonizing, toxin-neutralizing, and mucosal anti-
body production as well as the induction of a memory T-cell 
response, which recruites and activates phagocytes. Therefore, 
it is an urgent need to re-evaluate certain immunization routes 
to achieve a better vaccine. New studies on vaccinations dur-
ing pregnancy showed interesting first results but long-term 
protection in the new borne have to be controlled over time. 
Furthermore, more detailed studies on the surveillance rates of 
symptomatic and asymptomatic infections and the examination 
of the genetic diversity of circulation B. pertussis strains may 
probably lead to a better understanding of possible prevention 
targets.

Although all insights into the pathogenicity of pertussis 
infection identified in animal models, our understanding of the 
human disease has to be improved. Therefore, more detailed stud-
ies on several levels, including gene expression, virulence-factor 
delivery, binding-specificity and activity have to be conducted. 
Because we should not forget, that we still do not know why 
infected patients cough!
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