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It has been suggested that pediatric acute respiratory distress syndrome (PARDS) may 
be a different entity, vis-à-vis adult acute respiratory distress syndrome (ARDS), based on 
its epidemiology and outcomes. A more pediatric-specific definition of PARDS to include 
the subgroup of patients with underlying lung (and heart) disease has been proposed. 
Epidemiological data suggest that up to 13% of the children with ARDS have a history of 
prematurity and/or underlying chronic lung disease. However, the specific contribution of 
bronchopulmonary dysplasia (BPD), the most common chronic lung disease in infants, 
to the development of PARDS is not known. BPD leads to damaged lungs with long-term 
consequences secondary to disordered growth and immune function. These damaged 
lungs could potentially act as a substrate, which given the appropriate noxious stimuli, 
can predispose a child to PARDS. Interestingly, similar biomarkers [KL-6, interleukin (IL)-
6, IL-8, sICAM-1, angiopoietin-2, and matrix metalloproteinase-8 and -9] of pulmonary 
injury have been associated both with BPD and ARDS. Recognition of a unique pattern 
of clinical symptomatology and/or outcomes of PARDS, if present, could potentially be 
useful for investigating targeted therapeutic interventions.

Keywords: BPD, pediatric ARDS, lung diseases, biomarkers, lung development

iNTRODUCTiON

Bronchopulmonary dysplasia (BPD) is the most common chronic respiratory disease in infants and 
is a devastating condition that disrupts the developmental program of the lung secondary to preterm 
birth. In 2013, one in nine (11.4% of all live births) babies was born at <37 weeks gestation (1). 
Babies born at <32 weeks gestation account for 1.9% of live births, resulting in more than 75,000 
babies admitted to neonatal intensive care units (NICUs) each year (1). Of all births in the US, 1.4% 
(55,548/year) are of very low birth weight (VLBW; <1500 g) infants annually (1), of whom 15,000 
develop BPD (2). In the US, BPD is the leading cause of chronic lung disease in babies and the third 
leading cause in children (2, 3).

Despite many advances in neonatal ventilation techniques, widespread use of surfactant and 
antenatal corticosteroids, the incidence of BPD has remained the same (4) or even increased 
slightly (5, 6). The emotional and financial burden of caring for babies with BPD is significant. 
Babies with BPD require intensive hospital care for an average of 120 days. In 2009, the presence of 
BPD in an infant increased mean direct hospital costs (not including physician fees) in the NICU 
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by ~$60,000 (7). Management of BPD takes a considerable toll 
on health services. Among preterm infants, the single costliest 
complication of hospitalization during infancy is BPD, with an 
average cost per discharge of $116,000 (8). Additionally, BPD is 
associated with significant pulmonary and neurodevelopmental 
sequelae that continue to have health ramifications into adult-
hood (5, 9, 10). Home oxygen therapy, when required, averages 
92 days. Up to 50% of babies with BPD require readmission to the 
hospital for lower respiratory tract illness in the first year of life. 
Median medical costs for home care after discharge is $8100 per 
child; if the child requires hospitalization, the cost increases up 
to $50,000. The overall costs of treating babies with BPD in the 
US are estimated to be $2.4 billion. This amount is second only to 
the costs for treating asthma and far exceeds the costs for treating 
cystic fibrosis.

PATHOGeNeSiS OF BPD

There are five distinct stages in lung development, namely, embry-
onic, pseudoglandular, canalicular, saccular, and alveolar (11, 12). 
Preterm infants who are predisposed to developing BPD are born 
in the late canalicular or early saccular stage of lung development. 
In the late canalicular stage, there is development of the primitive 
alveoli and the alveolar capillary barrier, and the differentiation of 
Type I and Type II pneumocytes (13). In the early saccular stage, 
surfactant production starts along with pulmonary vasculariza-
tion and enlargement of terminal airways (11, 12, 14, 15). The 
lungs complete their development after birth, which continues up 
to 8 years of age (16). Alveolar sacs are formed by secondary sep-
tation of alveolar ducts (13). BPD is caused due to an interaction 
between genetic and environmental factors (hyperoxia, invasive 
mechanical ventilation, and sepsis) (5, 17–19).

The foundation of BPD is the immature lung, which may or 
may not be surfactant deficient. Genetic predisposition probably 
accounts for 50–80% of the susceptibility to BPD (20, 21). The 
genetically predisposed immature lung is exposed to noxious 
external factors: pre- and postnatal infections, hyperoxia, and 
ventilator-induced barotrauma, volutrauma, or atelectotrauma, 
which initiates an inflammatory cascade involving inflammatory 
cells and signaling via various cytokines, chemokines, and growth 
factors. This, in turn, activates the cell death pathways. Damage 
to the developing lung is followed by resolution of injury to close 
to normal lung architecture or repair (19). The “old” or “classical” 
BPD occurred in the pre-surfactant days where invasive ventilation 
practices led to significant lung injury characterized by a severe 
fibroproliferative response along with airway injury and alveolar 
growth abnormalities (22). In the post-surfactant, “gentler” 
ventilation era in the more immature lung, this reparative state 
of the lung is characterized by fewer and larger simplified alveoli, 
along with dysmorphic vasculature, leading to the description of 
impaired alveolarization and dysregulated vascularization – the 
pulmonary phenotype of “new” BPD (5, 18, 22–24).

It is important to highlight the fact that for BPD to occur, it 
requires the known environmental factors to be exposed to the 
immature lung for a sustained duration, resulting in persistent 
inflammation (13). While markers of the early inflammatory 
response (cells, cytokines) may not be detectable after the 

prolonged exposure to the damaging environmental agents, the 
initial cascade of the signaling pathways of the inflammatory pro-
cess/immune response does eventually lead to permanent defects 
of structure and function in the BPD lungs (13). Anatomical and 
functional pulmonary deficits in children and adults who had 
BPD during infancy have been well documented (25–27).

ePiDeMiOLOGY OF PULMONARY 
OUTCOMeS UP TO CHiLDHOOD

High resolution chest CT scans (HRCT) in survivors of old BPD 
and new BPD both show persistent radiological abnormalities 
with structural changes (28–33). The extent of the structural 
abnormality has been found to be associated with abnormal 
pulmonary function tests (28, 30, 31). In younger patients with 
new BPD, Mahut et al. have reported that the extent of structural 
abnormalities is correlated with duration of mechanical ventila-
tion and supplemental oxygen (32).

Structural changes in lungs of BPD survivors based on HRCT 
are more marked in the peripheral lung in both old and new BPD 
survivors (34).

As one would expect, a stormy perinatal period leads to 
lasting effects. Survivors of BPD continue to have a greater 
respiratory morbidity and need for respiratory medications into 
young adulthood. They are also more likely to have chest wall 
deformities and a diagnosis of asthma during childhood (35). 
They have greater rates of hospitalization especially in the first 
2 years of life as compared with infants born full term (36, 37). 
Although rates of hospitalization decrease as these children get 
older, long-term lung function abnormalities persist. Patients 
with old BPD had markedly abnormal lung function during late 
adolescence and 68% of which had evidence of airway obstruc-
tion. There was a marked decrease in forced expiratory volume 
in 1  s (FEV1), forced vital capacity (FVC), and the average 
forced expiratory flow during the mid (25–75%) portion of the 
FVC (FEF 25–75%) with evidence of gas trapping in survivors 
of BPD, as compared with age matched controls who were term 
and preterm infants without BPD (38). In adolescent patients 
(mean age 17.7 years) who were born preterm, Halvorsen et al. 
reported a lower FEV1 when compared those born at term (39). 
Doyle et al. also reported lung function tests of BPD survivors 
at a mean age of 18.9 years. They found a significant decrease 
in FEV1 and FEV1/FVC ratios in patients with a history of 
BPD, compared with those with no BPD (40). Patterns of lung 
function abnormalities were similar in survivors of old and new 
BPD. In patients with new BPD, Fawke et al. found that in over 
half of the cohort of children born at <26 weeks of gestation 
that they followed had abnormal spirometry at 11 years of age 
(35). Others too have reported small airway abnormalities and 
diffusion abnormalities in infants and young children with 
BPD (41–43) and persistent abnormalities into late childhood 
(40, 44–47). BPD survivors with persistent airflow obstruction 
are less likely to respond to bronchodilators as compared with 
patients with asthma with a similar degree of obstruction, 
suggesting that some of the small airway dysfunction seen in 
BPD survivors may be related to structural change rather than 
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eosinophilic inflammation (48). It is difficult to directly com-
pare outcomes in patients with old BPD with new BPD due to 
the lack of conformity in the definition of BPD between the two 
eras since relatively more immature babies are surviving in the 
post-surfactant era as compared with the pre-surfactant era. It 
is important to mention here that, while not the focus of this 
article, significant abnormalities in pulmonary function tests in 
infants with BPD extend well into late adolescence and adult-
hood (31, 38–40, 49–52). On the other hand, in adult survivors 
of acute respiratory distress syndrome (ARDS) (median age 
44 years), pulmonary function has been shown to improve over 
5 years with the majority of patients having normal and near 
normal lung function (53).

Thus, a damaged lung with disordered growth and immune 
function could potentially act as a substrate, given the appropri-
ate noxious stimuli, to predispose a child to ARDS. However, 
until recently, the definitions for ARDS were not well suited for 
children. This may have led to an under diagnosis of ARDS in 
children with underlying lung disease.

ePiDeMiOLOGY OF ARDS/PARDS

When first described by Ashbaugh et al. in the year 1967 (54), adult 
respiratory distress syndrome was defined as respiratory failure 
with the following three criteria, such as (1) PaO2/FiO2 ratio of 
<300 mm of Hg, (2) diffuse bilateral infiltrates on chest radio-
graph, and (3) an identifiable insult within 7 days of developing a 
compromise in oxygenation and a well preserved left ventricular 
function. The terminology of “respiratory distress syndrome” 
was coined as a reference to a similar neonatal condition. In 
1994, recognizing that the adult respiratory distress syndrome 
occurs in both children and adults, the American-European 
Consensus Conference (AECC) changed the nomenclature from 
adult respiratory distress syndrome to acute respiratory distress 
syndrome (ARDS) and defined it as a syndrome of inflamma-
tion and increased permeability in the lungs that is associated 
with a constellation of clinical, radiological, and physiological 
abnormalities that cannot explain but coexist with left atrial or 
pulmonary capillary hypertension (55).

In clinical practice, the adult criteria were used for more than 
a decade in the pediatric population. However, there were limita-
tions in the use of this definition in children, including differences 
in triggering disease states, epidemiology, and outcomes, and 
technical problems of assessing oxygenation in children without 
arterial blood gas measurements. The Berlin definition has 
addressed some of the limitations of the AECC definition (56) 
better, in terms of validity, for predicting mortality with ARDS, 
but still lacked pediatric perspective. Pediatric acute respiratory 
distress syndrome (PARDS) may be a different entity specifically 
based on its epidemiology and outcomes. A group of experts 
have proposed a more pediatric-specific definition of PARDS 
to account for differences in adults and children (57). Authors 
propose the following changes in the (a) simplification of chest 
imaging criteria to eliminate presence of bilateral infiltrates, (b) 
use of pulse oximetry-based criteria when PaO2 is not available, 
and (c) inclusion of oxygenation index instead of PaO2/FiO2 
with a minimum positive end expiratory pressure for invasively 

ventilated patients and specific inclusion of children with under-
lying lung and heart disease.

Pediatric acute respiratory distress syndrome is less common 
as compared with ARDS with an incidence of 2.0–12.8 children 
per 100,000 patient years with a lower morality in PARDS as 
compared with ARDS (58–62). The incidence of PARDS is likely 
underestimated, especially in patients with a preexisting lung 
disease. In a child with underlying lung disease (such as BPD), 
it can be difficult to make a diagnosis of ARDS given the Berlin 
definition. An acutely ill child with underlying lung disease is 
often diagnosed with an exacerbation of their underlying disease 
rather than ARDS, possibly leading to an under diagnosis and 
underestimation of PARDS (59). The revised definition of PARDS 
to specifically include the subgroup of pediatric patients with 
underlying lung and heart disease in the definition of PARDS may 
improve the recognition of this condition.

PATHOGeNeSiS OF ARDS/PARDS

Similar to adults, the most common causes of ARDS in the pedi-
atric age group are underlying pneumonia or viral illness (58, 63). 
Sepsis, aspiration, and trauma can also cause ARDS in children, 
but occur less frequently in children compared with adults. A sig-
nificant proportion of patients of PARDS have underlying chronic 
comorbidities. Of these, underlying chronic lung disease is one 
of the commonest comorbidity reported in pediatric patients 
who develop ARDS/acute lung injury (ALI) (62). Prematurity 
has been reported in 13% of the children with ARDS (45), and 
underlying chronic lung disease has been reported to occur in 
11–13% (62, 63). However, in some studies of ARDS in children, 
patients with underlying hypoxic lung disease were excluded 
(58). Nevertheless, children with BPD are at risk for developing 
ARDS, especially if they have a history of severe BPD that is 
often associated with other comorbidities. These include swallow 
dysfunction and neurodevelopmental delay, which puts them at 
risk for impaired airway clearance and aspiration pneumonia, 
increasing the risk of recurrent pulmonary infections. Therefore, 
it becomes difficult to determine if patients with BPD have a 
flare up of their underlying condition or have ARDS triggered 
by infection, aspiration, or other pulmonary insults. This may 
also affect the management of a patient with acute exacerbation 
of underlying BPD, which may be significantly different from a 
patient with ARDS with underlying BPD; for example, the use 
of corticosteroids would probably be more likely in the former 
category of patients. In addition, pulmonary vascular disease and 
coexistent pulmonary hypertension play a role in the morbidity of 
infants with BPD presenting with respiratory failure. Pulmonary 
vasodilatory therapies, such as inhaled nitric oxide (iNO), may 
help in these circumstances (2). This variability in reported data 
presents challenges in sorting out whether past history of BPD 
increases the risk of development of ARDS or affects outcomes 
in this population.

Despite multiple chronic comorbidities in those with PARDS, 
presence of underlying immunodeficiency is the only comorbid-
ity associated with poor outcome (64, 65). Others have reported 
that non-pulmonary sepsis is associated with increased mortality 
in patients with ALI (62, 65). However, most epidemiological 
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TABLe 1 | Biomarkers of lung injury that are similar in BPD and ARDS.

epithelial cells endothelial cells

Angiopoietin-2a Angiopoietin-2a

KL-6 sICAM-1
IL-6
IL-8
MMP-8
MMP-9

aCan be made/released by both epithelial and endothelial cells.
IL, interleukin; MMP, matrix metalloproteinase; sICAM, soluble intercellular adhesion 
molecule.
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studies of ARDS do not list specific diagnoses as comorbidities 
or underlying conditions and, instead, describe organ system 
involvement more broadly. Since BPD is one of the commonest 
forms of preexisting lung disease, it may be reasonable to extrapo-
late that there is no clear associated increase in risk of death with 
PARDS in patients with BPD. However, it is important to clarify 
that there is no specific data to support or refute the extrapolated 
statement.

Some studies have suggested a predominance of Caucasian 
infants being predisposed to BPD (66); this finding has not been 
consistent (67). Given the significant genetic susceptibility to 
BPD, it very likely that if specific single nucleotide polymorphisms 
(SNPs) occur more commonly in a particular race/ethnic group, 
that would be more important for predisposing a particular race/
ethnic group towards developing BPD (68, 69). It is important 
to mention here that race/ethnicity has been noted to impact on 
lung function and utilization of respiratory medications in infants 
born preterm and/or with BPD (70–72). African-American 
adults are more likely to have a more severe disease and greater 
mortality with ARDS. Hispanic adults also have higher mortality 
rates independent of severity of disease (73). There is no reported 
race bias in terms of mortality in PARDS. Male gender has also 
been shown to increase the risk of developing BPD (74, 75). 
However, similar to the data reported in adults with ARDS, in 
PARDS, there is no difference in mortality rates based on gender 
(58, 62, 63, 76, 77).

OUTCOMeS OF PARDS

There is significant mortality associated with PARDS; however, 
these mortality rates appear to be lower than that in adults, rang-
ing from 15 to 50% mortality in children compared with 35 to 
45% mortality in adults (60, 62). There is, however, a wide range 
in the mortality range of the cohorts of children with ARDS (47). 
This wide range in mortality assessment may be due to differences 
in the comorbid or underlying conditions in the children in these 
relatively small cohorts or may be due to improvements in care 
over time (47).

BiOMARKeRS iN BPD AND ARDS

Theoretically, biomarkers can be used to identify at risk population, 
predict severity of illness, target therapy, and predict prognosis.

Various biomarkers detected in different biological fluids have 
been proposed for early identification of infants predisposed to 
BPD (3, 78). The majority of the studies have been conducted 
using blood, urine, or tracheal aspirate (TA) samples (3, 78). 
Among these that have been implicated both in BPD and ARDS 
(vide infra) are the following.

KL-6 (a lung injury marker) was increased in infants in the 
umbilical cord blood samples in infants who went on to develop 
BPD (n = 50 vs. non-BPD n = 24) (79) and was also useful as a 
predictor of moderate/severe BPD at 1 week of postnatal life (80). 
Combining results from all models, BPD/death (n = 606 out of 
1062) was associated with higher levels of interleukin (IL)-6 and 
-8 in blood samples collected at various timepoints during the 
infants’ stay in the NICU (81).

Among the cytokines, it is important to note consistent results 
with increased blood levels of IL-6 and -8 have been associated 
with BPD (3). This is supported by increased concentrations of 
these cytokines in TA obtained from human infants developing 
BPD (3). Among other pulmonary biomarkers of BPD, two 
independent cohorts have reported increased TA levels of angi-
opoietin-2 (Ang-2) to be associated with increased risk of BPD 
and/or death (82, 83).

Soluble intercellular adhesion molecule-1 (sICAM-1) is 
increased in TA samples in the first week of life in infants develop-
ing BPD (77, 84). Increased levels of matrix metalloproteinase 
(MMP)-8 and -9 have been reported in infants developing BPD 
(18, 77, 84).

In a systematic meta-analysis of plasma-derived biomarkers 
associated with ARDS, Terpstra et al. reported ranking of plasma 
biomarkers for ARDS according to the strength of associa-
tion with both diagnosis and mortality of ARDS (85). Authors 
found that KL-6, lactic dehydrogenase, soluble RAGE, and von 
Willebrand factor are strongly associated with the development 
of ARDS in at-risk patients. They also concluded that mortality 
with ARDS was most strongly associated with IL-4, IL-2, Ang-2, 
and KL-6. Increased plasma levels of transferrin and protein C 
were associated with decreased odds for both development of 
ARDS and mortality with ARDS (85). Studies examining the 
role of inflammatory biomarkers in PARDS are far fewer than 
in ARDS (86). Serum IL-8 and IL-6 have both been shown to 
be elevated in patients with PARDS (86). While elevated levels 
of plasma sICAM-1 on days 1 and 2 of ALI were associated with 
increased risk of death and prolonged mechanical ventilation, 
Flori et al. noted that when combined with a physiological index 
of oxygenation defect (PaO2/FiO2), it further strengthened the 
predicted value risk of death in PARDS (87). Higher TA MMP-8 
and MMP-9 levels in patients with PARDS have been shown to 
correlate with increased risk of death and prolonged mechanical 
ventilation (87, 88). The biomarkers have been categorized into 
markers of pulmonary epithelial or endothelial ling injury and 
summarized in Table 1.

It is unclear what causes the difference in outcomes of pedi-
atric patients, as compared with adults with ARDS. It has been 
suggested that in pediatric patients the stage of lung development 
at the time of the insult may be one cause of this outcome differ-
ence. This may pertain especially to younger children. It is known 
that alveolar development is a primarily postnatal process which 
starts at ~36 weeks of gestation and continues in the postnatal 
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period. Maximal alveolar growth is completed by 24 months of 
age, although there may be some growth that occurs for up to 
8 years. Although this has not been researched adequately, in a 
child where alveolar growth is still not complete, ARDS may lead 
to a different pathology, thus affecting not only the course of the 
disease but also the long-term outcome.

Acute respiratory distress syndrome is primarily an inflamma-
tory response to injury. There is evidence to suggest that children 
have a unique inflammatory response to injury, which confers 
protection from development of multi-organ failure, although 
underlying mechanisms are not known (89). It is fair to say that 
the child’s inherent immune response may have some role to play 
in the difference in the course and outcomes of PARDS.

LACK OF DATA AND NeeD FOR  
FUTURe ReSeARCH

Pediatric acute respiratory distress syndrome is less common 
than ARDS; furthermore, epidemiological studies of PARDS do 
not provide specific diagnoses as comorbidities or underlying 
conditions. This limits our understanding of how underlying 
lung disease (specifically BPD) may affect the pattern of clini-
cal presentation and/or outcomes of PARDS. Newer criteria of 
PARDS have been proposed recently, which we hope will help 
better understand the contribution of underlying chronic lung 
disease to PARDS. Proper categorization and definition of 
ARDS in patients with underlying disease, such as BPD, are also 
important to guide clinical therapy. This review highlights many 
questions that remain unanswered and underscores the need for 

future multidisciplinary collaboration to study the long-term 
outcome of BPD and as a substrate for PARDS.

SUMMARY AND CONCLUSiON

Chronic pulmonary disease is a commonly seen comorbidity in 
patients with PARDS. There is no clear data to suggest an associa-
tion of BPD with increased probability of developing ARDS, nei-
ther is there any suggestion that underlying lung disease portends 
a worse outcome with ARDS. However, similar biomarkers (KL-6, 
IL-6, IL-8, sICAM-1, Ang-2, and MMP-8 and -9) of pulmonary 
injury have been associated both with BPD and ARDS. Current 
practice where pediatric patients are more likely to be diagnosed 
with their underlying disease rather than PARDS underestimates 
the true incidence of ARDS, and possibly the effect of underlying 
chronic lung disease. Future research incorporating listing BPD 
as a specific underlying diagnosis would assist in recognition of 
a unique pattern (if present) of clinical presentation and/or out-
comes of PARDS, which, in turn, could potentially set the stage 
for investigating targeted therapeutic interventions.

AUTHOR CONTRiBUTiONS

AB: concept, design, interpretation, analysis, revision for critical 
intellectual content, and final approval of draft. CC: interpreta-
tion, analysis, revision for critical intellectual content, and final 
approval of draft. VB: concept, design, initial draft, interpreta-
tion, analysis, revision for critical intellectual content, and final 
approval of draft.

ReFeReNCeS

1. National Center for Health Statistics, Final Natality Data. (2016). Available 
from: www.marchofdimes.org/peristats

2. Lal CV, Ambalavanan N. Pulmonary hypertension in bronchopulmonary 
dysplasia. In: Bhandari V, editor. Bronchopulmonary Dysplasia. Respiratory 
Medicine. Switzerland: Springer (2016). p. 259–80.

3. Bhandari A, Bhandari V. Biomarkers in bronchopulmonary dysplasia. Paediatr 
Respir Rev (2013) 14(3):173–9. doi:10.1016/j.prrv.2013.02.008 

4. Smith VC, Zupancic JA, McCormick MC, Croen LA, Greene J, Escobar GJ, 
et al. Trends in severe bronchopulmonary dysplasia rates between 1994 and 
2002. J Pediatr (2005) 146(4):469–73. doi:10.1016/j.jpeds.2004.12.023 

5. Bhandari A, Bhandari V. “New” bronchopulmonary dysplasia: a clinical review. 
Clin Pulm Med (2011) 18(3):137–43. doi:10.1097/CPM.0b013e318218a071 

6. Trembath A, Laughon MM. Predictors of bronchopulmonary dysplasia. Clin 
Perinatol (2012) 39(3):585–601. doi:10.1016/j.clp.2012.06.014 

7. Johnson TJ, Patel AL, Jegier BJ, Engstrom JL, Meier PP. Cost of morbidities in 
very low birth weight infants. J Pediatr (2013) 162(2):243–9.e1. doi:10.1016/j.
jpeds.2012.07.013 

8. Russell RB, Green NS, Steiner CA, Meikle S, Howse JL, Poschman K, et al. 
Cost of hospitalization for preterm and low birth weight infants in the United 
States. Pediatrics (2007) 120(1):e1–9. doi:10.1542/peds.2006-2386 

9. Bhandari A, Panitch HB. Pulmonary outcomes in bronchopulmonary dyspla-
sia. Semin Perinatol (2006) 30(4):219–26. doi:10.1053/j.semperi.2006.05.005 

10. Anderson PJ, Doyle LW. Neurodevelopmental outcome of bronchopul-
monary dysplasia. Semin Perinatol (2006) 30(4):227–32. doi:10.1053/j.
semperi.2006.05.010 

11. Kotecha S. Lung growth: implications for the newborn infant. Arch Dis Child 
Fetal Neonatal Ed (2000) 82(1):F69–74. doi:10.1136/fn.82.1.F69 

12. Maeda Y, Dave V, Whitsett JA. Transcriptional control of lung morphogenesis. 
Physiol Rev (2007) 87(1):219–44. doi:10.1152/physrev.00028.2006 

13. Balany J, Bhandari V. Understanding the impact of infection, inflammation, 
and their persistence in the pathogenesis of bronchopulmonary dysplasia. 
Front Med (2015) 2:90. doi:10.3389/fmed.2015.00090 

14. Joshi S, Kotecha S. Lung growth and development. Early Hum Dev (2007) 
83(12):789–94. doi:10.1016/j.earlhumdev.2007.09.007 

15. Kramer EL, Deutsch GH, Sartor MA, Hardie WD, Ikegami M, Korfhagen 
TR, et  al. Perinatal increases in TGF-{alpha} disrupt the saccular phase 
of lung morphogenesis and cause remodeling: microarray analysis. Am 
J Physiol Lung Cell Mol Physiol (2007) 293(2):L314–27. doi:10.1152/
ajplung.00354.2006 

16. Berger J, Bhandari V. Animal models of bronchopulmonary dysplasia. The term 
mouse models. Am J Physiol Lung Cell Mol Physiol (2014) 307(12):L936–47. 
doi:10.1152/ajplung.00159.2014 

17. Baraldi E, Filippone M. Chronic lung disease after premature birth. N Engl 
J Med (2007) 357(19):1946–55. doi:10.1056/NEJMra067279 

18. Bhandari A, Bhandari V. Pitfalls, problems, and progress in bronchopulmo-
nary dysplasia. Pediatrics (2009) 123(6):1562–73. doi:10.1542/peds.2008-1962 

19. Bhandari V. Postnatal inflammation in the pathogenesis of bronchopulmo-
nary dysplasia. Birth Defects Res A Clin Mol Teratol (2014) 100(3):189–201. 
doi:10.1002/bdra.23220 

20. Bhandari V, Bizzarro MJ, Shetty A, Zhong X, Page GP, Zhang H, et al. Familial 
and genetic susceptibility to major neonatal morbidities in preterm twins. 
Pediatrics (2006) 117(6):1901–6. doi:10.1542/peds.2005-1414 

21. Lavoie PM, Pham C, Jang KL. Heritability of bronchopulmonary dysplasia, 
defined according to the consensus statement of the national institutes of 
health. Pediatrics (2008) 122(3):479–85. doi:10.1542/peds.2007-2313 

22. de Paepe ME. Pathology of bronchopulmonary dysplasia. In: Bhandari V, edi-
tor. Bronchopulmonary Dysplasia. Respiratory Medicine. Switzerland: Springer 
(2016). p. 149–64.

23. Bhandari A, Bhandari V.  Bronchopulmonary dysplasia: an update. Indian J 
Pediatr (2007) 74(1):73–7.

http://www.frontiersin.org/Pediatrics
http://www.frontiersin.org
http://www.frontiersin.org/Pediatrics/archive
http://www.marchofdimes.org/peristats
http://dx.doi.org/10.1016/j.prrv.2013.02.008
http://dx.doi.org/10.1016/j.jpeds.2004.12.023
http://dx.doi.org/10.1097/CPM.0b013e318218a071
http://dx.doi.org/10.1016/j.clp.2012.06.014
http://dx.doi.org/10.1016/j.jpeds.2012.07.013
http://dx.doi.org/10.1016/j.jpeds.2012.07.013
http://dx.doi.org/10.1542/peds.2006-2386
http://dx.doi.org/10.1053/j.semperi.2006.05.005
http://dx.doi.org/10.1053/j.semperi.2006.05.010
http://dx.doi.org/10.1053/j.semperi.2006.05.010
http://dx.doi.org/10.1136/fn.82.1.F69
http://dx.doi.org/10.1152/physrev.00028.2006
http://dx.doi.org/10.3389/fmed.2015.00090
http://dx.doi.org/10.1016/j.earlhumdev.2007.09.007
http://dx.doi.org/10.1152/ajplung.00354.2006
http://dx.doi.org/10.1152/ajplung.00354.2006
http://dx.doi.org/10.1152/ajplung.00159.2014
http://dx.doi.org/10.1056/NEJMra067279
http://dx.doi.org/10.1542/peds.2008-1962
http://dx.doi.org/10.1002/bdra.23220
http://dx.doi.org/10.1542/peds.2005-1414
http://dx.doi.org/10.1542/peds.2007-2313


6

Bhandari et al. BPD and Pediatric ARDS

Frontiers in Pediatrics | www.frontiersin.org June 2016 | Volume 4 | Article 60

24. Bhandari V. Hyperoxia-derived lung damage in preterm infants. Semin Fetal 
Neonatal Med (2010) 15(4):223–9.   doi:10.1016/j.siny.2010.03.009

25. Bhandari A, McGrath-Morrow S. Long-term pulmonary outcomes of patients 
with bronchopulmonary dysplasia. Semin Perinatol (2013) 37(2):132–7. 
doi:10.1053/j.semperi.2013.01.010 

26. Islam JY, Keller RL, Aschner JL, Hartert TV, Moore PE. Understanding the 
short- and long-term respiratory outcomes of prematurity and broncho-
pulmonary dysplasia. Am J Respir Crit Care Med (2015) 192(2):134–56. 
doi:10.1164/rccm.201412-2142PP 

27. Saarenpaa HK, Tikanmaki M, Sipola-Leppanen M, Hovi P, Wehkalampi K, 
Siltanen M, et  al. Lung function in very low birth weight adults. Pediatrics 
(2015) 136(4):642–50. doi:10.1542/peds.2014-2651 

28. Aquino SL, Schechter MS, Chiles C, Ablin DS, Chipps B, Webb WR. High-
resolution inspiratory and expiratory CT in older children and adults with 
bronchopulmonary dysplasia. AJR Am J Roentgenol (1999) 173(4):963–7. 
doi:10.2214/ajr.173.4.10511158 

29. Howling SJ, Northway WH Jr, Hansell DM, Moss RB, Ward S, Muller 
NL. Pulmonary sequelae of bronchopulmonary dysplasia survivors: 
 high-resolution CT findings. AJR Am J Roentgenol (2000) 174(5):1323–6. 
doi:10.2214/ajr.174.5.1741323 

30. Wong PM, Lees AN, Louw J, Lee FY, French N, Gain K, et al. Emphysema in 
young adult survivors of moderate-to-severe bronchopulmonary dysplasia. 
Eur Respir J (2008) 32(2):321–8. doi:10.1183/09031936.00127107 

31. Aukland SM, Rosendahl K, Owens CM, Fosse KR, Eide GE, Halvorsen  T. 
Neonatal bronchopulmonary dysplasia predicts abnormal pulmonary 
HRCT scans in long-term survivors of extreme preterm birth. Thorax (2009) 
64(5):405–10. doi:10.1136/thx.2008.103739 

32. Mahut B, De Blic J, Emond S, Benoist MR, Jarreau PH, Lacaze-Masmonteil T, 
et al. Chest computed tomography findings in bronchopulmonary dysplasia 
and correlation with lung function. Arch Dis Child Fetal Neonatal Ed (2007) 
92(6):F459–64. doi:10.1136/adc.2006.111765 

33. Ochiai M, Hikino S, Yabuuchi H, Nakayama H, Sato K, Ohga S, et al. A new 
scoring system for computed tomography of the chest for assessing the clinical 
status of bronchopulmonary dysplasia. J Pediatr (2008) 152(1): 90–5, 95.e1–3. 
doi:10.1016/j.jpeds.2007.05.043 

34. Wilson AC. What does imaging the chest tell us about bronchopulmo-
nary dysplasia? Paediatr Respir Rev (2010) 11(3):158–61. doi:10.1016/j.
prrv.2010.05.005 

35. Fawke J, Lum S, Kirkby J, Hennessy E, Marlow N, Rowell V, et al. Lung function 
and respiratory symptoms at 11 years in children born extremely preterm: the 
EPICure study. Am J Respir Crit Care Med (2010) 182(2):237–45. doi:10.1164/
rccm.200912-1806OC 

36. Greenough A, Cox S, Alexander J, Lenney W, Turnbull F, Burgess S, et  al. 
Health care utilisation of infants with chronic lung disease, related to hospi-
talisation for RSV infection. Arch Dis Child (2001) 85(6):463–8. doi:10.1136/
adc.85.6.463 

37. Doyle LW, Casalaz D; Victorian Infant Collaborative Study Group. Outcome at 
14 years of extremely low birthweight infants: a regional study. Arch Dis Child 
Fetal Neonatal Ed (2001) 85(3):F159–64. doi:10.1136/fn.85.3.F159 

38. Northway WH Jr, Moss RB, Carlisle KB, Parker BR, Popp RL, Pitlick PT, 
et al. Late pulmonary sequelae of bronchopulmonary dysplasia. N Engl J Med 
(1990) 323(26):1793–9. doi:10.1056/NEJM199012273232603 

39. Halvorsen T, Skadberg BT, Eide GE, Roksund OD, Carlsen KH, Bakke P. 
Pulmonary outcome in adolescents of extreme preterm birth: a regional cohort 
study. Acta Paediatr (2004) 93(10):1294–300. doi:10.1111/j.1651-2227.2004.
tb02926.x 

40. Doyle LW, Faber B, Callanan C, Freezer N, Ford GW, Davis NM. 
Bronchopulmonary dysplasia in very low birth weight subjects and lung 
function in late adolescence. Pediatrics (2006) 118(1):108–13. doi:10.1542/
peds.2005-2522 

41. Filbrun AG, Popova AP, Linn MJ, McIntosh NA, Hershenson MB. Longitudinal 
measures of lung function in infants with bronchopulmonary dysplasia. 
Pediatr Pulmonol (2011) 46(4):369–75. doi:10.1002/ppul.21378 

42. Fakhoury KF, Sellers C, Smith EO, Rama JA, Fan LL. Serial measure-
ments of lung function in a cohort of young children with broncho-
pulmonary dysplasia. Pediatrics (2010) 125(6):e1441–7. doi:10.1542/
peds.2009-0668 

43. Korhonen P, Laitinen J, Hyodynmaa E, Tammela O. Respiratory outcome 
in school-aged, very-low-birth-weight children in the surfactant era. Acta 
Paediatr (2004) 93(3):316–21. doi:10.1111/j.1651-2227.2004.tb02954.x 

44. Lum S, Kirkby J, Welsh L, Marlow N, Hennessy E, Stocks J. Nature and severity 
of lung function abnormalities in extremely pre-term children at 11 years of 
age. Eur Respir J (2011) 37(5):1199–207. doi:10.1183/09031936.00071110 

45. Balinotti JE, Chakr VC, Tiller C, Kimmel R, Coates C, Kisling J, et al. Growth 
of lung parenchyma in infants and toddlers with chronic lung disease of 
infancy. Am J Respir Crit Care Med (2010) 181(10):1093–7. doi:10.1164/
rccm.200908-1190OC 

46. Cazzato S, Ridolfi L, Bernardi F, Faldella G, Bertelli L. Lung function outcome 
at school age in very low birth weight children. Pediatr Pulmonol (2013) 
48(8):830–7. doi:10.1002/ppul.22676 

47. Landry JS, Chan T, Lands L, Menzies D. Long-term impact of bronchopul-
monary dysplasia on pulmonary function. Can Respir J (2011) 18(5):265–70. 
doi:10.1155/2011/547948 

48. Baraldi E, Bonetto G, Zacchello F, Filippone M. Low exhaled nitric oxide 
in school-age children with bronchopulmonary dysplasia and airflow 
limitation. Am J Respir Crit Care Med (2005) 171(1):68–72. doi:10.1164/
rccm.200403-298OC 

49. Trachsel D, Brutsche MH, Hug-Batschelet H, Hammer J. Progressive 
static pulmonary hyperinflation in survivors of severe bronchopulmonary 
dysplasia by mid-adulthood. Thorax (2012) 67(8):747–8. doi:10.1136/
thoraxjnl-2011-200695 

50. Gough A, Spence D, Linden M, Halliday HL, McGarvey LP. General and respi-
ratory health outcomes in adult survivors of bronchopulmonary dysplasia: 
a systematic review. Chest (2012) 141(6):1554–67. doi:10.1378/chest.11-1306 

51. Gibson AM, Reddington C, McBride L, Callanan C, Robertson C, Doyle LW. 
Lung function in adult survivors of very low birth weight, with and without 
bronchopulmonary dysplasia. Pediatr Pulmonol (2015) 50(10):987–94. 
doi:10.1002/ppul.23093 

52. Landry JS, Tremblay GM, Li PZ, Wong C, Benedetti A, Taivassalo T. Lung 
function and bronchial hyperresponsiveness in adults born prematurely. 
A cohort study. Ann Am Thorac Soc (2016) 13(1):17–24. doi:10.1513/
AnnalsATS.201508-553OC 

53. Herridge MS, Tansey CM, Matte A, Tomlinson G, Diaz-Granados N, Cooper 
A, et al. Functional disability 5 years after acute respiratory distress syndrome. 
N Engl J Med (2011) 364(14):1293–304. doi:10.1056/NEJMoa1011802 

54. Ashbaugh DG, Bigelow DB, Petty TL, Levine BE. Acute respiratory distress 
in adults. Lancet (1967) 2(7511):319–23. doi:10.1016/S0140-6736(67)90168-7 

55. Bernard GR, Artigas A, Brigham KL, Carlet J, Falke K, Hudson L, et al. The 
American-European Consensus Conference on ARDS. Definitions, mech-
anisms, relevant outcomes, and clinical trial coordination. Am J Respir Crit 
Care Med (1994) 149(3 Pt 1):818–24. doi:10.1164/ajrccm.149.3.7509706 

56. Force ADT, Ranieri VM, Rubenfeld GD, Thompson BT, Ferguson ND, 
Caldwell E, et al. Acute respiratory distress syndrome: the Berlin definition. 
JAMA (2012) 307(23):2526–33. doi:10.1001/jama.2012.5669 

57. Khemani RG, Smith LS, Zimmerman JJ, Erickson S; Pediatric Acute Lung 
Injury Consensus Conference Group. Pediatric acute respiratory distress 
syndrome: definition, incidence, and epidemiology: proceedings from the 
Pediatric Acute Lung Injury Consensus Conference. Pediatr Crit Care Med 
(2015) 16(5 Suppl 1):S23–40. doi:10.1097/PCC.0000000000000432 

58. Erickson S, Schibler A, Numa A, Nuthall G, Yung M, Pascoe E, et al. Acute lung 
injury in pediatric intensive care in Australia and New Zealand: a prospective, 
multicenter, observational study. Pediatr Crit Care Med (2007) 8(4):317–23. 
doi:10.1097/01.PCC.0000269408.64179.FF 

59. Kneyber MC, Brouwers AG, Caris JA, Chedamni S, Plotz FB. Acute respira-
tory distress syndrome: is it underrecognized in the pediatric intensive care 
unit? Intensive Care Med (2008) 34(4):751–4. doi:10.1007/s00134-008-1029-4 

60. Lopez-Fernandez Y, Azagra AM, de la Oliva P, Modesto V, Sanchez JI, 
Parrilla  J, et  al. Pediatric acute lung injury epidemiology and natural 
history study: incidence and outcome of the acute respiratory distress 
syndrome in children. Crit Care Med (2012) 40(12):3238–45. doi:10.1097/
CCM.0b013e318260caa3 

61. Bindl L, Dresbach K, Lentze MJ. Incidence of acute respiratory distress syn-
drome in German children and adolescents: a population-based study. Crit 
Care Med (2005) 33(1):209–312. doi:10.1097/01.CCM.0000151137.76768.08 

http://www.frontiersin.org/Pediatrics
http://www.frontiersin.org
http://www.frontiersin.org/Pediatrics/archive
http://dx.doi.org/10.1016/j.siny.2010.03.009
http://dx.doi.org/10.1053/j.semperi.2013.01.010
http://dx.doi.org/10.1164/rccm.201412-2142PP
http://dx.doi.org/10.1542/peds.2014-2651
http://dx.doi.org/10.2214/ajr.173.4.10511158
http://dx.doi.org/10.2214/ajr.174.5.1741323
http://dx.doi.org/10.1183/09031936.00127107
http://dx.doi.org/10.1136/thx.2008.103739
http://dx.doi.org/10.1136/adc.2006.111765
http://dx.doi.org/10.1016/j.jpeds.2007.05.043
http://dx.doi.org/10.1016/j.prrv.2010.05.005
http://dx.doi.org/10.1016/j.prrv.2010.05.005
http://dx.doi.org/10.1164/rccm.200912-1806OC
http://dx.doi.org/10.1164/rccm.200912-1806OC
http://dx.doi.org/10.1136/adc.85.6.463
http://dx.doi.org/10.1136/adc.85.6.463
http://dx.doi.org/10.1136/fn.85.3.F159
http://dx.doi.org/10.1056/NEJM199012273232603
http://dx.doi.org/10.1111/j.1651-2227.2004.tb02926.x
http://dx.doi.org/10.1111/j.1651-2227.2004.tb02926.x
http://dx.doi.org/10.1542/peds.2005-2522
http://dx.doi.org/10.1542/peds.2005-2522
http://dx.doi.org/10.1002/ppul.21378
http://dx.doi.org/10.1542/peds.2009-0668
http://dx.doi.org/10.1542/peds.2009-0668
http://dx.doi.org/10.1111/j.1651-2227.2004.tb02954.x
http://dx.doi.org/10.1183/09031936.00071110
http://dx.doi.org/10.1164/rccm.200908-1190OC
http://dx.doi.org/10.1164/rccm.200908-1190OC
http://dx.doi.org/10.1002/ppul.22676
http://dx.doi.org/10.1155/2011/547948
http://dx.doi.org/10.1164/rccm.200403-298OC
http://dx.doi.org/10.1164/rccm.200403-298OC
http://dx.doi.org/10.1136/thoraxjnl-2011-200695
http://dx.doi.org/10.1136/thoraxjnl-2011-200695
http://dx.doi.org/10.1378/chest.11-1306
http://dx.doi.org/10.1002/ppul.23093
http://dx.doi.org/10.1513/AnnalsATS.201508-553OC
http://dx.doi.org/10.1513/AnnalsATS.201508-553OC
http://dx.doi.org/10.1056/NEJMoa1011802
http://dx.doi.org/10.1016/S0140-6736(67)90168-7
http://dx.doi.org/10.1164/ajrccm.149.3.7509706
http://dx.doi.org/10.1001/jama.2012.5669
http://dx.doi.org/10.1097/PCC.0000000000000432
http://dx.doi.org/10.1097/01.PCC.0000269408.64179.FF
http://dx.doi.org/10.1007/s00134-008-1029-4
http://dx.doi.org/10.1097/CCM.0b013e318260caa3
http://dx.doi.org/10.1097/CCM.0b013e318260caa3
http://dx.doi.org/10.1097/01.CCM.0000151137.76768.08


7

Bhandari et al. BPD and Pediatric ARDS

Frontiers in Pediatrics | www.frontiersin.org June 2016 | Volume 4 | Article 60

62. Zimmerman JJ, Akhtar SR, Caldwell E, Rubenfeld GD. Incidence and 
outcomes of pediatric acute lung injury. Pediatrics (2009) 124(1):87–95. 
doi:10.1542/peds.2007-2462 

63. Flori HR, Glidden DV, Rutherford GW, Matthay MA. Pediatric acute 
lung injury: prospective evaluation of risk factors associated with mor-
tality. Am J Respir Crit Care Med (2005) 171(9):995–1001. doi:10.1164/
rccm.200404-544OC 

64. Flori H, Dahmer MK, Sapru A, Quasney MW; Pediatric Acute Lung Injury 
Consensus Conference Group. Comorbidities and assessment of severity of 
pediatric acute respiratory distress syndrome: proceedings from the Pediatric 
Acute Lung Injury Consensus Conference. Pediatr Crit Care Med (2015) 16(5 
Suppl 1):S41–50. doi:10.1097/PCC.0000000000000430 

65. Quasney MW, Lopez-Fernandez YM, Santschi M, Watson RS; Pediatric Acute 
Lung Injury Consensus Conference Group. The outcomes of children with 
pediatric acute respiratory distress syndrome: proceedings from the Pediatric 
Acute Lung Injury Consensus Conference. Pediatr Crit Care Med (2015) 16(5 
Suppl 1):S118–31. doi:10.1097/PCC.0000000000000438 

66. Akram Khan M, Kuzma-O’Reilly B, Brodsky NL, Bhandari V. Site-specific 
characteristics of infants developing bronchopulmonary dysplasia. J Perinatol 
(2006) 26(7):428–35. doi:10.1038/sj.jp.7211538 

67. Petrova A, Mehta R, Anwar M, Hiatt M, Hegyi T. Impact of race and ethnicity 
on the outcome of preterm infants below 32 weeks gestation. J Perinatol (2003) 
23(5):404–8. doi:10.1038/sj.jp.7210934 

68. Lal CV, Ambalavanan N. Genetic predisposition to bronchopulmonary dyspla-
sia. Semin Perinatol (2015) 39(8):584–91. doi:10.1053/j.semperi.2015.09.004 

69. Bhandari V, Gruen JR. The genetics of bronchopulmonary dysplasia. Semin 
Perinatol (2006) 30(4):185–91. doi:10.1053/j.semperi.2006.05.005 

70. Hoo AF, Gupta A, Lum S, Costeloe KL, Huertas-Ceballos A, Marlow N, et al. 
Impact of ethnicity and extreme prematurity on infant pulmonary function. 
Pediatr Pulmonol (2014) 49(7):679–87. doi:10.1002/ppul.22882 

71. Collaco JM, Choi SJ, Riekert KA, Eakin MN, McGrath-Morrow SA, Okelo SO. 
Socio-economic factors and outcomes in chronic lung disease of prematurity. 
Pediatr Pulmonol (2011) 46(7):709–16. doi:10.1002/ppul.21422 

72. Lorch SA, Wade KC, Bakewell-Sachs S, Medoff-Cooper B, Escobar GJ, 
Silber JH. Racial differences in the use of respiratory medications in premature 
infants after discharge from the neonatal intensive care unit. J Pediatr (2007) 
151(6): 604–10, 610.e1. doi:10.1016/j.jpeds.2007.04.052 

73. Erickson SE, Shlipak MG, Martin GS, Wheeler AP, Ancukiewicz M, Matthay 
MA, et al. Racial and ethnic disparities in mortality from acute lung injury. 
Crit Care Med (2009) 37(1):1–6. doi:10.1097/CCM.0b013e31819292ea 

74. Klinger G, Sokolover N, Boyko V, Sirota L, Lerner-Geva L, Reichman B, et al. 
Perinatal risk factors for bronchopulmonary dysplasia in a national cohort 
of very-low-birthweight infants. Am J Obstet Gynecol (2013) 208(2):115.e1–9. 
doi:10.1016/j.ajog.2012.11.026 

75. Laughon MM, Langer JC, Bose CL, Smith PB, Ambalavanan N, Kennedy KA, 
et al. Prediction of bronchopulmonary dysplasia by postnatal age in extremely 
premature infants. Am J Respir Crit Care Med (2011) 183(12):1715–22. 
doi:10.1164/rccm.201101-0055OC 

76. Ghuman AK, Newth CJ, Khemani RG. The association between the end tidal 
alveolar dead space fraction and mortality in pediatric acute hypoxemic 
respiratory failure. Pediatr Crit Care Med (2012) 13(1):11–5. doi:10.1097/
PCC.0b013e3182192c42 

77. Dahlem P, van Aalderen WM, Hamaker ME, Dijkgraaf MG, Bos AP. Incidence 
and short-term outcome of acute lung injury in mechanically ventilated 
children. Eur Respir J (2003) 22(6):980–5. doi:10.1183/09031936.03.00003303 

78. Thompson A, Bhandari V. Pulmonary biomarkers of bronchopulmonary 
dysplasia. Biomark Insights (2008) 3:361–73. 

79. Kim DH, Kim HS, Shim SY, Lee JA, Choi CW, Kim EK, et al. Cord blood KL-6, 
a specific lung injury marker, correlates with the subsequent development 
and severity of atypical bronchopulmonary dysplasia. Neonatology (2008) 
93(4):223–9. doi:10.1159/000111100 

80. Ogihara T, Hirano K, Morinobu T, Kim HS, Ogawa S, Hiroi M, et  al. 
Plasma KL-6 predicts the development and outcome of bronchopul-
monary dysplasia. Pediatr Res (2006) 60(5):613–8. doi:10.1203/01.
pdr.0000242361.47408.51 

81. Ambalavanan N, Carlo WA, D’Angio CT, McDonald SA, Das A, Schendel 
D, et  al. Cytokines associated with bronchopulmonary dysplasia or death 
in extremely low birth weight infants. Pediatrics (2009) 123(4):1132–41. 
doi:10.1542/peds.2008-0526 

82. Bhandari V, Choo-Wing R, Lee CG, Zhu Z, Nedrelow JH, Chupp GL, et al. 
Hyperoxia causes angiopoietin 2-mediated acute lung injury and necrotic cell 
death. Nat Med (2006) 12(11):1286–93. doi:10.1038/nm1494 

83. Aghai ZH, Faqiri S, Saslow JG, Nakhla T, Farhath S, Kumar A, et  al. 
Angiopoietin 2 concentrations in infants developing bronchopulmonary 
dysplasia: attenuation by dexamethasone. J Perinatol (2008) 28(2):149–55. 
doi:10.1038/sj.jp.7211886 

84. Bose CL, Dammann CE, Laughon MM. Bronchopulmonary dysplasia and 
inflammatory biomarkers in the premature neonate. Arch Dis Child Fetal 
Neonatal Ed (2008) 93(6):F455–61. doi:10.1136/adc.2007.121327 

85. Terpstra ML, Aman J, van Nieuw Amerongen GP, Groeneveld AB. Plasma 
biomarkers for acute respiratory distress syndrome: a systematic review 
and meta-analysis*. Crit Care Med (2014) 42(3):691–700. doi:10.1097/01.
ccm.0000435669.60811.24 

86. Sapru A, Flori H, Quasney MW, Dahmer MK; Pediatric Acute Lung Injury 
Consensus Conference Group. Pathobiology of acute respiratory distress 
syndrome. Pediatr Crit Care Med (2015) 16(5 Suppl 1):S6–22. doi:10.1097/
PCC.0000000000000431 

87. Flori HR, Ware LB, Glidden D, Matthay MA. Early elevation of plasma 
soluble intercellular adhesion molecule-1 in pediatric acute lung injury 
identifies patients at increased risk of death and prolonged mechanical 
ventilation. Pediatr Crit Care Med (2003) 4(3):315–21. doi:10.1097/01.
PCC.0000074583.27727.8E 

88. Kong MY, Li Y, Oster R, Gaggar A, Clancy JP. Early elevation of matrix metal-
loproteinase-8 and -9 in pediatric ARDS is associated with an increased risk of 
prolonged mechanical ventilation. PLoS One (2011) 6(8):e22596. doi:10.1371/
journal.pone.0022596 

89. Wood JH, Partrick DA, Johnston RB Jr. The inflammatory response to 
injury in children. Curr Opin Pediatr (2010) 22(3):315–20. doi:10.1097/
MOP.0b013e328338da48 

Conflict of Interest Statement: The authors declare that the research was con-
ducted in the absence of any commercial or financial relationships that could be 
construed as a potential conflict of interest.

Copyright © 2016 Bhandari, Carroll and Bhandari. This is an open-access article 
distributed under the terms of the Creative Commons Attribution License (CC BY). 
The use, distribution or reproduction in other forums is permitted, provided the 
original author(s) or licensor are credited and that the original publication in this 
journal is cited, in accordance with accepted academic practice. No use, distribution 
or reproduction is permitted which does not comply with these terms.

http://www.frontiersin.org/Pediatrics
http://www.frontiersin.org
http://www.frontiersin.org/Pediatrics/archive
http://dx.doi.org/10.1542/peds.2007-2462
http://dx.doi.org/10.1164/rccm.200404-544OC
http://dx.doi.org/10.1164/rccm.200404-544OC
http://dx.doi.org/10.1097/PCC.0000000000000430
http://dx.doi.org/10.1097/PCC.0000000000000438
http://dx.doi.org/10.1038/sj.jp.7211538
http://dx.doi.org/10.1038/sj.jp.7210934
http://dx.doi.org/10.1053/j.semperi.2015.09.004
http://dx.doi.org/10.1053/j.semperi.2006.05.005
http://dx.doi.org/10.1002/ppul.22882
http://dx.doi.org/10.1002/ppul.21422
http://dx.doi.org/10.1016/j.jpeds.2007.04.052
http://dx.doi.org/10.1097/CCM.0b013e31819292ea
http://dx.doi.org/10.1016/j.ajog.2012.11.026
http://dx.doi.org/10.1164/rccm.201101-0055OC
http://dx.doi.org/10.1097/PCC.0b013e3182192c42
http://dx.doi.org/10.1097/PCC.0b013e3182192c42
http://dx.doi.org/10.1183/09031936.03.00003303
http://dx.doi.org/10.1159/000111100
http://dx.doi.org/10.1203/01.pdr.0000242361.47408.51
http://dx.doi.org/10.1203/01.pdr.0000242361.47408.51
http://dx.doi.org/10.1542/peds.2008-0526
http://dx.doi.org/10.1038/nm1494
http://dx.doi.org/10.1038/sj.jp.7211886
http://dx.doi.org/10.1136/adc.2007.121327
http://dx.doi.org/10.1097/01.ccm.0000435669.60811.24
http://dx.doi.org/10.1097/01.ccm.0000435669.60811.24
http://dx.doi.org/10.1097/PCC.0000000000000431
http://dx.doi.org/10.1097/PCC.0000000000000431
http://dx.doi.org/10.1097/01.PCC.0000074583.27727.8E
http://dx.doi.org/10.1097/01.PCC.0000074583.27727.8E
http://dx.doi.org/10.1371/journal.pone.0022596
http://dx.doi.org/10.1371/journal.pone.0022596
http://dx.doi.org/10.1097/MOP.0b013e328338da48
http://dx.doi.org/10.1097/MOP.0b013e328338da48
http://creativecommons.org/licenses/by/4.0/

	BPD Following Preterm Birth: A Model for Chronic Lung Disease and a Substrate for ARDS in Childhood
	Introduction
	Pathogenesis of BPD
	Epidemiology of Pulmonary Outcomes up to Childhood
	Epidemiology of ARDS/PARDS
	Pathogenesis of ARDS/PARDS
	Outcomes of PARDS
	Biomarkers in BPD and ARDS
	Lack of Data and Need for Future Research
	Summary and Conclusion
	Author Contributions
	References


