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Hypoxic–ischemic encephalopathy (HIE) is a recognizable and defined clinical syndrome 
in term infants that results from a severe or prolonged hypoxic–ischemic episode before 
or during birth. However, in the preterm infant, defining hypoxic–ischemic injury (HII), 
its clinical course, monitoring, and outcomes remains complex. Few studies examine 
preterm HIE, and these are heterogeneous, with variable inclusion criteria and outcomes 
reported. We examine the available evidence that implies that the incidence of hypoxic–
ischemic insult in preterm infants is probably higher than recognized and follows a more 
complex clinical course, with higher rates of adverse neurological outcomes, compared 
to term infants. This review aims to elucidate the causes and consequences of preterm 
hypoxia–ischemia, the subsequent clinical encephalopathy syndrome, diagnostic tools, 
and outcomes. Finally, we suggest a uniform definition for preterm HIE that may help in 
identifying infants most at risk of adverse outcomes and amenable to neuroprotective 
therapies.
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iNTRODUCTiON

Worldwide, 11.1% of all live births every year are preterm (born before 37 weeks’ of completed gesta-
tion) (1), and the rate appears to be rising (2). In high-income settings, advances in neonatal care 
for preterm babies have greatly increased survival rates; however, premature babies remain at risk 
of serious health problems, including respiratory distress syndrome, bronchopulmonary dysplasia, 
retinopathy of prematurity, feeding difficulties, necrotizing enterocolitis, infections, longer hospital 
stays, and adverse long-term outcomes. In low-income countries, prematurity is a leading cause of 
neonatal and infant mortality (3).

Infants born prematurely have a high incidence of neonatal brain injury, with detrimental effects 
on motor, cognitive, behavioral, social, attentional, and sensory outcomes. Increased survival in lower 
gestational ages is accompanied by increased suboptimal neurodevelopmental outcomes (4–9). The 

Abbreviations: AABR, automated auditory brain stem response; aEEG, amplitude-integrated EEG; BBB, blood–brain barrier; 
BPD, bronchopulmonary dysplasia; CP, cerebral palsy; CTG, cardiotocograph; EEG, electroencephalography; HbT, hemo-
globin total; HIE, hypoxic–ischemic encephalopathy; HII, hypoxic–ischemic injury; MRI, magnetic resonance imaging; NIRS, 
near-infrared spectroscopy; OLs, oligodendrocytes; PVL, periventricular leukomalacia; rSO2, regional tissue oxygen saturation; 
SVZ, subventricular zone; TOI, tissue oxygenation index; WHO, World Health Organization; WM, white matter; WMI, white 
mater injury.
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incidence of any adverse neurodevelopmental outcomes varies 
with up to 17% of preterm infants described as having major 
impairments and, for babies weighing less than 1000 g at birth, 
up to 42% of survivors having minor impairment. The incidence 
of cerebral palsy (CP) and other adverse neurodevelopmental 
outcomes increases with decreasing gestational age at birth [from 
5 to 10% in very low birth weight infants (<1500 g), 6 to 20% 
in extremely premature babies (<26 weeks’ gestation), and up to 
25% in those born at a gestational age of less than 25 weeks] (10).

Historically, the best described neuropathological correlates of 
“encephalopathy of prematurity” (11) have been periventricular 
leukomalacia (PVL) with associated axonal/neuronal disruption 
and severe germinal matrix/intraventricular hemorrhage, with 
or without, posthemorrhagic ventricular dilatation (12). More 
recently, abnormalities of white matter (WM), with disrupted 
development of other cerebral structures (such as hippocampus, 
basal ganglia, corpus callosum) have been described in the con-
text of premature brain abnormalities observed in the neonatal 
period (13, 14).

Preterm cerebral hypoxic–ischemic injury (HII) may occur 
rarely because of a recognized sentinel event. However, in the set-
ting of coexistent factors, such as infection, inflammation, growth 
restriction, severe hypoglycemia, or hyperoxia, the contribution 
of individual pathologies may be difficult. For these reasons, 
perinatal HII to the premature brain, its clinical manifestations, 
recognition, and monitoring has not been well studied. In con-
trast, the diagnosis of HIE in full-term infants is aided by defined 
objective criteria involving perinatal factors, such as acidosis, 
Apgar scores, and the need for resuscitation, with standardized 
neurological examination and neurodevelopmental outcomes 
(15–17).

In this review, we highlight the contribution of preterm HIE 
to the injury complex in the developing brain. We propose an 
algorithm for a universal definition of preterm HIE, based on 
recognition of the specific manifestations of a perinatal HII. 
An accurate and uniform definition of preterm HIE may help 
to identify a homogeneous population of infants, who may be 
eligible for future clinical intervention trials.

PReMATURe BRAiN DeveLOPMeNT AND 
PATHOPHYSiOLOGY OF HYPOXiC–
iSCHeMiC iNSULT

Between 24 and 40 weeks of gestation, the human brain undergoes 
rapid changes that make the developing brain vulnerable to injury 
from hypoxia–ischemia, inflammation, free radical, and excito-
toxic damage (Figure 1). There is growing understanding of the 
etiology of preterm brain injury, involving interactions between 
an immature brain and vulnerable WM developmental processes 
(18). Key developmental processes during this time include the 
development of cerebral WM, proliferation zones, and neuronal 
structures. WM development involves pre-myelinating oligoden-
drocytes (OLs), axons, microglia, and neurons (subplate and late 
migrating GABAergic neurons). Pre-OLs are the predominant 
cell lineage present in human cerebral WM from 24 to 40 weeks 
of gestation that differentiate into myelin-producing OLs. These 

mature forms of OLs do not become abundant until after term, 
and tolerate hypoxic insult better than pre-OLs. Microglial cells, 
which become abundant during the third trimester, are capable of 
generating inflammatory cytokines, enhancing cytotoxicity and 
generating free radicals when exposed to hypoxia and infection. 
Subplate neurons are a collection of neurons located beneath 
the cortical plate, reaching their peak mass and developmental 
impact by 24–32 weeks of gestation. Development of the subplate 
is closely linked with development of cerebral cortex, deep nuclear 
structures (especially thalamus and formation of area-specific 
thalamocortical connections), and axons. The second significant 
developmental difference is the presence of two proliferative zones 
[dorsal cerebral subventricular zone (SVZ) and the ventral ger-
minative epithelium of the ganglionic eminence]. The fetal SVZ 
is directly related to the evolutionary expansion of the human 
cerebral cortex. The third key process is the development of 
neuronal structures, such as thalamus, cerebral cortex, and basal 
ganglia (11, 12, 18, 19).

Even without exacerbating factors, preterm birth is associ-
ated with subtle WM pathology (20). One theory is that the 
OL precursors and subplate neurons are exquisitely sensitive to 
pro-inflammatory cytokines, hypoxia, and oxidative stress (21). 
The principle pathogenic mechanism underlying neurological 
damage in HIE resulting from hypoxemia, ischemia, or both, is 
deprivation of glucose, and oxygen supply that causes a primary 
energy failure and initiates a cascade of biochemical events lead-
ing to cell dysfunction and ultimately to cell death (22–24).

The phases of cell death and biochemical interactions at 
cellular level in HII are well described and studied. Primary 
energy failure, where depletion of oxygen prevents oxidative 
phosphorylation, disrupting Na–K pump activity is followed by 
anaerobic metabolism with accumulation of lactic acid (25). The 
failure of the transmembrane Na–K pump results in the intra-
cellular accumulation of sodium, calcium, and water (cytotoxic 
edema) leading to membrane depolarization, excessive release of 
excitatory neurotransmitters (particularly glutamate), increase in 
the intracellular concentration of calcium, activation of phospho-
lipase, and generation of free radicals. The release of glutamate 
results in further calcium accumulation and sodium retention 
contributing to cell damage (26–28). Excitotoxicity refers to cell 
death mediated by excessive stimulation of excitatory amino acid 
receptors in response to dicarboxylic acid glutamate and, at the 
cellular level, is believed to be fundamental in hypoxic–ischemic 
damage to neurons (28). With the restoration of blood flow, there 
is a brief period of normalization of cerebral metabolism called a 
latent period. The latent period is believed to vary depending on 
the severity of the hypoxic–ischemic insult. The more severe the 
insult, the shorter is the recovery period (29–31). The secondary 
energy failure phase begins 6–48  h after the initial insult. The 
exact mechanisms of secondary energy failure are unclear but are 
attributed to oxidative stress, excitotoxicity, and inflammation (32, 
33) and ultimately results in cell death through either apoptosis 
or necrosis, depending on the region of the brain affected and the 
severity of the insult. Necrosis dominates in severe injury, whereas 
apoptosis is observed in milder insults (10, 34). Following HII, a 
cell may undergo nitric oxide-mediated necrosis, when endog-
enous inhibitors of apoptosis are abundant, or apoptosis, when 
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3

Gopagondanahalli et al. Preterm HIE

Frontiers in Pediatrics | www.frontiersin.org October 2016 | Volume 4 | Article 114

the inhibitors are deficient (35, 36). Mitochondrial dysfunction 
appears to play a crucial role in determining whether the cells 
affected by hypoxia–ischemia undergo necrosis or apoptosis 
(37, 38). Apoptosis may be predominant in the premature brain 
through upregulation of the key elements, such as caspase-3, 
caspase-12, and BAX (39, 40).

HYPOXiC iSCHeMiA iN PReTeRM 
POPULATiON

The pathophysiology of HII in the premature brain is particularly 
complex. How HI damage affects the developing brain is deter-
mined by the severity, intensity, timing of asphyxia, in addition 
to selective cellular vulnerability, and immaturity of the brain 
(36, 41). The following summarizes the distinguishing effect of 
HII on key components of the developing brain and the suscepti-
bility of the immature brain to the effects of HII.

vascular Fragility
The thin, delicate vessels of the developing brain may not sustain 
effective blood flow to compensate for HII because of the underde-
veloped distal arterial network and an immature cerebral auto regu-
latory capacity (12). The peripheral arteries in the growing brain lack 
collateral vessels and have limited vasodilatory function in response 
to HII, making them more susceptible to hypoxic injury (42).

Blood–Brain Barrier Function
The effect of hypoxia on the blood–brain barrier function in the 
developing brain can be profound. HII results in altered function 

and increased permeability of the BBB. The hypoxic insult affects 
the important cellular and functional components of the BBB, 
the astrocytes, the tight junctions of endothelial cells, and the 
pericytes (43, 44).

Developing Neuroglial Cells
Astrocytes are the predominant cell population in the CNS. They 
provide structural and metabolic support; they play a crucial role 
in scavenging high levels of excitatory neurotransmitters and 
are an important constituent of the BBB (6). In response to HII, 
astrocytes influence neuronal survival. Astrocytes play a neu-
roprotective role following insult, by promoting erythropoiesis 
(45); however, sustained HII can lead to a decreased functioning 
astrocyte population and, thereby, greatly decrease neuronal 
regeneration (46).

Pre-Oligodendrocytes and the immature 
Oligodendrocytes
Oligodendroglial maturation involves four sequential stages, 
the oligodendroglial progenitor, the pre-OL (or late oligo-
dendroglial progenitor), the immature OL, and the mature 
myelin-producing OL (12). The late oligodendroglial progeni-
tors predominate in cerebral WM and SVZ and, at 28 weeks 
of gestation, account for 90% of the total OL population 
(47). Pre-OLs and OL progenitors are highly susceptible to 
hypoxia, and this vulnerability is central to the pathogenesis 
of preterm WM injury and PVL (48, 49). The mechanism 
of damage to OLs results from release of excitatory amino 
acids (glutamate, GABA, and aspartate) cytokine and free 
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radical-mediated injuries, and the inflammatory response 
induced by HII (12, 49–52).

Selective vulnerability
In the developing brain, certain regions and cells appear vulner-
able depending on timing and the severity of the insult. In the 
preterm brain, the subplate neurons and OL precursors are most 
vulnerable, and in the term brain, projection neurons especially 
in the deep gray nuclei are at greatest risk during ischemic insults. 
Subplate neurons are the earliest and the most transient cell 
population of the neocortex – and are affected by HI (53). Loss of 
these cells results in abnormal thalamocortical connectivity and 
may explain the visual and somatosensory impairment seen in 
prematurely born infants suffering perinatal HII (15, 54). Several 
studies have shown that the late OL progenitors appear to be 
the most vulnerable in this lineage, and they neither mature nor 
develop following injury. The selective vulnerability could result 
from expression of the receptor subtypes that favor calcium entry 
and excitability and inefficient endogenous antioxidant mecha-
nisms (48, 55, 56).

PReTeRM HYPOXiC–iSCHeMiC 
eNCePHALOPATHY – DeFiNiTiONS, 
iNCiDeNCe, CLiNiCAL SPeCTRUM,  
AND ReCOGNiTiON

Definitions used to identify preterm HIE vary across available 
studies. Chalak et al. (57) screened preterm babies (33–35 weeks) 
using NICHD criteria for hypothermia, whereas Logitharajah 
et al. (58) included Apgar scores of less than 5 and 7 at 1 and 5 min, 
cord pH <7, sentinel event, and need for resuscitation. Schmidt 
and Walsh (59) included babies with 5-min Apgar score less than 
6, cord or initial pH <7, base deficit >15 mmol/L, sentinel event, 
and clinical evidence of encephalopathy, and the severity of HIE 
was based on modified Sarnat HIE staging.

iNCiDeNCe/ePiDeMiOLOGY

There is a paucity of literature on the true incidence and epi-
demiology of HIE in infants born preterm. Depending on the 
definition used, the reported incidence across studies varies 
from 1.3/1000 live births to 5–9/1000 live births (57, 59, 60). The 
gestational age for inclusion also varies slightly across studies. In 
a study by Salhab and Perlman (60), most babies were close to 
34 weeks (range 31–36), whereas Chalak et al. (57) and Schmidt 
and Walsh (59) reported outcomes on infants between 32 and 
35 weeks. The major limitations in these studies are small sample 
sizes, retrospective examination, and variable inclusion criteria 
used to identify the babies with hypoxic ischemia. The Salhab 
study included babies with umbilical cord pH <7, whereas the 
Schmidt study screened infants of 32–36 weeks of gestation for 
HIE on the basis of a 5-min Apgar score less than 6. In a study 
by Logitharajah et  al. (58), up to 30% of babies with preterm 
HIE had a cord pH >7, so only including infants with a pH <7 
might underestimate preterm HIE. Most of the studies quoted 
above had an incidence for moderate to severe HIE in a preterm 

population, not the milder forms of HIE. It is likely that the true 
incidence of preterm HIE is higher than in the term population 
that is around 1–2/1000 live births (61).

CLiNiCAL SPeCTRUM

The clinical manifestations of HIE in the preterm population are 
vague, variable, and not well studied (Table 1). The difficulties 
in diagnosing HIE in preterm infants exist because the infant’s 
developmental immaturity adds ambiguity to differentiating 
clinical features (62).

The neurological signs in the study by Chalak et al. used the 
NICHD guidelines for hypothermia and concluded that stand-
ard neurological assessment, including tone, posture, level of 
consciousness, spontaneous activity, primitive reflexes, and auto-
nomic nervous system, can be applied reliably for gestational age 
of 33–35 weeks (64). There are no reported studies, which describe 
neurological signs of HIE in lower gestational (<32 weeks) age 
groups. The cord or initial pH was lower than 7.2 in babies with 
HIE in most of the studies, and persistent or delayed resolution of 
metabolic acidosis was associated with development of HIE (57).

TeRM vS. PReTeRM HYPOXiC–iSCHeMiC 
eNCePHALOPATHY

The clinical features among term and preterm babies in HIE do 
overlap at many junctures, but what characteristically sets apart 
the preterm from term HIE are as follows:

• The higher rates of neurodevelopmental impairment as the 
effect of hypoxia–ischemia exaggerates vulnerability of the 
preterm brain.

• Preterm infants with moderate acidosis often appear well 
initially and often receive less intervention than term infants 
with the same degree of acidosis.

• Distinctive selective vulnerability of developing brain.
• Seizures in preterm infants with HIE have been reported as a 

marker of more severe outcome (24).

MONiTORiNG/ReCOGNiTiON OF 
PReTeRM Hie

The recognition of HIE in preterm babies is difficult. Although 
a standard neurological examination may be applicable in the 
late premature group, between 33 and 35 weeks of gestation, the 
clinical features in the younger preterm group can be masked by 
physiological immaturity and, thus, can be even more challenging 
to diagnose. The low initial arterial pH may be a subtle marker 
of hypoxic ischemia and is associated with abnormal cognitive 
outcome in apparently low-risk preterm babies (65–68).

Preterm babies with acidotic cord or initial pH, delayed reso-
lution of acidosis, renal impairment, raised creatinine, elevated 
liver enzymes, prolonged assisted ventilation, and abnormal 
neurological examination can be presumed to have suffered 
some degree of hypoxic insult. But these features may also result 
from etiology other than HIE (e.g., chorioamnionitis, fetal 
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TABLe 1 | Published studies on preterm Hie.

Study (reference, 
type, number of 
patients)

Gestational 
age 
(weeks)

Criteria for Hie Clinical features Outcomes

Barkovich and Sargent 
1995 (63), retrospective 
case series, n = 5

27–32 Profound hypoxia at birth None mentioned Pattern of injury on MRI

Salhab and Perlman 
2005 (60), retrospective 
cohort, n = 61

31–36 Fetal acidemia (cord arterial pH <7) Abnormal neurological examination based 
on Sarnat staging

3 out of 8 babies died

Abnormal neurological outcome seen in 
those with low 1 and 5 min Apgar, need 
for CPR, mechanical ventilation

No mention on long-term 
neurological outcome

Logitharajah et al. 2009 
(58), retrospective 
cohort, n = 55

26–36 Apgar scores <5 at 1 and <7 at 5 min Longer duration of assisted ventilation 
and seizures was associated with severe 
outcome/death

Mainly focused on imaging 
pattern in preterm HI insult 
and long-term neurological 
outcome associated with 
imaging abnormality

Major resuscitation (intubation/cardiopulmonary 
resuscitation/adrenaline) at birth
Brain MRI within 6 postnatal week
Additional inclusion criteria: abnormal intrapartum 
CTG, sentinel event, meconium staining, cord pH 
<7, neonatal seizures, and multiorgan failure

Schmidt and Walsh 
2010 (59), retrospective 
cohort, n = 12

32–36 5-min Apgar score <6 Incidence 0.9%, significant acidosis, poor 
tone, seizures

25% of study population 
died. 44% had long-term 
neurological adverse 
outcome

Cord or initial patient blood pH <7, or base deficit 
>15 mmol/L
Evidence of encephalopathy at or shortly after birth 
(seizures, hypotonia)
History of a sentinel event at the time of delivery

Chalak et al. 2012 (57), 
retrospective cohort, 
n = 9

33–35 pH <7 and base deficit >16 mmol/L Incidence 5/1000 live births Stages 1 and 2 had normal 
neurological outcomesSentinel event Graded according to Sarnat staging

10-min Apgar score <5, requiring assisted 
ventilation at birth

HIE 1 – brief ventilation, mild elevation 
of liver enzymes, creatinine, normal 
neurological examination
HIE 2 – multiple organ injury resolved 
by 7 h. Normal neuro examination at 
discharge. One had seizure
HIE 3 – severe multiorgan dysfunction, 
DIC, status epilepticus, prolonged 
ventilation, persistent abnormal 
neurological exam
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growth restriction), and patterns of enzyme changes following 
an asphyxial event are only described for term-born infants and 
older children (69, 70).

DiAGNOSTiC evALUATiON

Magnetic resonance imaging (MRI) is considered the most sensi-
tive imaging modality for many pathological conditions of the 
newborn brain. Techniques, such as MR spectroscopic imaging 
and diffusion tensor imaging (DTI), aid in assessment of neonatal 
brain development. MR spectroscopic imaging measures regional 
brain biochemistry and is useful in assessing metabolic changes 
associated with brain development and injury.

imaging Pattern in Preterm vs.  
Term Brain with Hie
The classical imaging abnormalities in HIE involve three major 
types of lesions – PVL, basal ganglia thalami lesions, and 
multicystic encephalopathy. Focal non-cystic WMI is the most 
commonly recognized pattern of brain injury in the preterm 

population whereas, in term babies with HIE, two major types of 
injury are involved (i) a watershed predominant pattern involving 
the WM, particularly in the vascular watershed, extending to 
cortical gray matter following severe insult (ii) a basal ganglia 
predominant pattern involving the deep gray nuclei and periro-
landic cortex, involving the cortex in severe injury (70).

In the study by Logitharajah et al. (58), WM injury was noted 
in around 82% of the study population and was usually diffuse 
and mild. Most of the infants with WM injury also had basal 
ganglia/thalamus injury. Infants with brain stem lesions were 
most likely to have incurred a severe insult. Isolated WM injury in 
which the cortex was spared and there was no cystic PVL was an 
uncommon finding, consistent with an earlier study by Barkovich 
and Sargent (63). The reduced susceptibility of the preterm cortex 
to HII may result from the lower density of a subtype of glutamate 
receptor allowing calcium influx into the cell leading to calcium 
induced excitotoxicity in the early third trimester (71, 72).

In contrast to the advantage of lesion identification, the use 
of MRI has a major limitation in early diagnosis since brain 
abnormalities might only be apparent several days after insult 
(73). Diffusion-weighted (DWI) MRI detects abnormalities from 
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day 1 after birth asphyxia, but it remains unclear if the detected 
abnormalities relate to outcome (74, 75). However, early MRI, 
especially DWI, may help in detecting diffuse WM injury, which 
is the most dominant form of neuropathology in the premature 
brain (76). Given that all potential neuroprotective treatments 
have a limited therapeutic window of opportunity (77, 78), 
alternative diagnostic and predictive tools that can promptly and 
accurately detect abnormalities are required.

AMPLiTUDe-iNTeGRATeD 
eLeCTROeNCePHALOGRAM/eeG

Amplitude-integrated electroencephalogram (aEEG)/electro-
encephalogram (EEG) are powerful tools for the diagnosis and 
prediction of neurological outcomes in asphyxiated infants 
(79, 80). Because of their practicality, and real-time interpreta-
tion, continuous monitoring with aEEG has become standard in 
the care of term infants with HIE (81–83). It has been suggested 
that the predictive accuracy of aEEG is limited compared to 
conventional EEG due to its data reduction and artifacts (84). 
However, the provision of prolonged conventional multichannel 
EEG with expert interpretation is not readily available in most 
NICUs. Thus, one or two channel aEEG is currently used more 
commonly in NICU (83). With respect to the assessment in 
preterm infants, EEGs change with uneventful maturity of the 
developing brain, making interpretation more complex (85–87). 
Specifically, the abnormal background patterns that are predic-
tive of poor outcome at term are normal at early gestational 
ages. Various classification systems using conventional EEG 
were reported for abnormal EEGs of the preterm infants, and 
the findings characterized by increased discontinuity, decreased 
faster frequency activities, and lowered amplitudes at day 1–2 
have demonstrated high predictive value of neurological out-
come in infants born 27–32 weeks of gestation (88). The absence 
or mild depression of background activity is associated with a 
favorable outcome in 89%, and severe depression is associated 
with death in 38% and moderate or severe CP in 52% of surviving 
infants (85). The background pattern of aEEG 6 h after birth in 
asphyxiated late preterm infants born between 34 and 36 weeks 
of gestation has prognostic value for neurodevelopmental 
outcome (88). Although the data are not limited to asphyxiated 
infants, a recent study showed that single-channel aEEG/EEG 
can predict long-term outcome with 75–80% accuracy at 24 h 
postnatal age, even in very preterm infants born 22–30  weeks 
(89). In preclinical animal studies, decrease of EEG spectral edge 
and power are indicators of preterm brain injury following acute 
HI (90). Where EEG spectral edge and power were markedly and 
rapidly suppressed after 25–30 min HI in fetal sheep at 0.65–0.7 
gestation (corresponding to 24–32  weeks gestation of brain 
development in human), these parameters neither recovered to 
baseline values within 3 days (91, 92) nor were they suppressed 
after 15-min HI, but did not lead to significant histopathological 
brain damage. These findings indicate that the changes of EEG 
post HI reflect the degree of injury sensitively and instantly in 
the preterm brain. The development of aEEG/EEG measure-
ments and analysis may provide an effective early assessment in 
preterm HI injury.

NeAR-iNFRAReD SPeCTROSCOPY

Near-infrared spectroscopy (NIRS) can be useful in analyz-
ing parameters, such as tissue oxygenation index (TOI) and 
regional tissue oxygen saturation (rSO2), of brain in a variety 
of pathological conditions (93). Cerebral blood flow can be 
indirectly measured by TOI and rSO2 under stable arterial 
oxygen saturation, and NIRS measurement of hemoglobin total 
(HbT) can be used to measure the cerebral blood volume (94). 
The abovementioned NIRS parameters may provide important 
information on metabolic dynamics in different brain regions 
and predict long-term prognosis in asphyxiated neonates (95), 
although this remains to be demonstrated. The utility of NIRS in 
evaluating oxygenation and parameters, such as blood volume, 
has been employed in asphyxiated term neonates (96). Tax et al. 
have used NIRS in assessing peripheral oxygenation in asphyxi-
ated neonates beyond 34 weeks of gestation (97). The utility of 
NIRS, along with other modalities such as MRI/aEEG, has been 
studied in term asphyxiated neonates (98, 99). The utility of 
NRIS in monitoring HII in preterm neonates has not been well 
established.

AUDiTORY BRAiN STeM ReSPONSeS

Universal neonatal hearing screening is commonly done in most 
NICUs. Otoacoustic emissions and automated auditory brain 
stem response (AABR) are standard in a number of screen-
ing programs, and infants with a history of perinatal asphyxia 
are overrepresented in the abnormal outcomes group (100). 
Generally, AABR is recommended for screening of high-risk 
infants. A Dutch nationwide cohort of preterm infants (born 
before 30 weeks gestation and less than 1000 g birth weight) who 
underwent AABR hearing screening, recognized severe birth 
asphyxia as an independent risk factor for hearing loss (101). 
AABRs may have a diagnostic and prognostic role to play in 
preterm HIE survivors.

NeUROLOGiCAL OUTCOMe OF 
PReTeRM Hie

There are few well-designed studies available to answer the ques-
tion of neurological outcomes following preterm HIE. In the 
study by Chalak et al. (57), all babies with Stage 1 and Stage 2 
HIE had normal neurological examinations and typical develop-
mental milestones at 12 months of age. All surviving babies with 
HIE Stage 3 had poor neurological outcomes, two of nine babies 
died. In Logitharajah’s study (58), 15 (33%) of babies with HIE 
died and 15 had normal outcome, though this was not matched to 
severity of HIE stage. The most common type of CP observed was 
quadriplegic 13 (25%) followed by diplegic CP 2 (4%). A small 
percentage of babies had minor motor delay.

STANDARD DeFiNiTiON

Having a standard definition of HIE in preterm infants would 
enable the treating physician to recognize, investigate, and 
prognosticate brain injury earlier during the preterm neonate’s 
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journey. It also provides a platform base on which future 
studies and therapeutic interventions can be planned and 
implemented.

PROPOSeD DeFiNiTiON OF PReTeRM 
HYPOXiC–iSCHeMiC eNCePHALOPATHY

Definite pHie (Both Criteria Needed)
• pH ≤7 and base deficit ≥12 mmol/L in fetal/cord/first neonatal 

blood sample (within 1 h of birth).
• Neonatal encephalopathy – Sarnat staging [staged accord-

ing to all criteria (except EEG) for infants between 33 and 
35  weeks of gestation], significant changes in neurological 
examination and/or seizures (for infants less than 33 weeks 
of gestation).

Probable pHie (Any Two Criteria)
• pH 7.01–7.2 in fetal/cord/first neonatal blood sample.
• Early (less than 48  h) multisystem involvement, e.g., renal, 

liver, cardiac dysfunction.
• Preceding identifiable sentinel event (e.g., placental abruption, 

uterine rupture, cord prolapse) with cardiotocograph abnor-
malities with previously normal pattern.

• Prolonged (more than 72  h) need for assisted ventilation in 
absence of respiratory illness/neuromuscular disorder.

• Delayed (more than 24 h) resolution of metabolic acidosis.
• Specific region injury (predominant WM and basal ganglia 

injury, relative sparing of cortex) on MRI brain performed 
within the first week of life.

CONCLUSiON

Preterm HIE produces a complex, heterogeneous, and char-
acteristic pattern of injury to the developing brain with a wide 
spectrum of clinical manifestations. It poses a great challenge for 
the treating physician to recognize, evaluate, and prognosticate. 
An acknowledgment and accurate definition of preterm HIE, as 
a distinct entity, will help in designing future studies and imple-
menting neuroprotective strategies for treatment of this high-risk 
premature population.
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