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Extracorporeal life support (ECLS) represents an essential component in the treatment of 
the pediatric patient with refractory heart failure. Defined as the use of an extracorporeal 
system to provide cardiopulmonary support, ECLS provides hemodynamic support to 
facilitate end-organ recovery and can be used as a salvage therapy during acute car-
diorespiratory failure. Support strategies employed in pediatric cardiac patients include 
bridge to recovery, bridge to therapy, and bridge to transplant. Advances in extracorpo-
real technology and refinements in patient selection have allowed wider application of 
this therapy in pediatric heart failure patients.
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iNTRODUCTiON

Based on John Gibbon’s pioneering work on the development of a heart–lung machine for cardiac 
surgery, Bartlett and his colleagues began using extracorporeal support for prolonged periods of 
time to support critically ill patients in the 1970s (1). The first pediatric cardiac extracorporeal life 
support (ECLS) survivor was a young child with postcardiotomy myocardial dysfunction follow-
ing repair of transposition of the great arteries (2). Early clinical successes led to increased use of 
ECLS to support children with respiratory and cardiac failure. Data from the Extracorporeal Life 
Support Organization (ELSO) international registry indicate that ECLS has been used to provide 
cardiac support for more than 19,000 children (3). Despite significant advances in durable and non-
durable ventricular assist devices for adult patients, ECLS remains the most commonly used form of 
mechanical cardiac and cardiopulmonary support in infants and young children.

PeRiOPeRATive SUPPORT

Perioperative support following surgical intervention for congenital heart disease remains the most 
common indication (74%) for pediatric cardiac ECLS, followed by support for cardiomyopathy 
(4.4%), myocarditis (2.6%), cardiac arrest (2.5%), and cardiogenic shock (1.8%) (3). Not surpris-
ingly, venoarterial ECLS is the most common mode of support for these patients (95%) (4). Overall 
survival in this patient population has increased moderately during the past several decades from 
38% (1990–2000) to 45% (2001–2011) but remains less than survival in patients of similar age 
who require ECLS for respiratory support alone (5). Pediatric cardiac ECLS survival appears to 
be improving, despite the fact that ECLS is being used to support an increasingly heterogeneous 
patient population. Single-ventricle heart disease, once considered a contraindication for ECLS, now 
represents one of the most common diagnoses in neonates who require extracorporeal support (6). 
Increased utilization has also been observed in other unique patient populations during the past 
decade, including ECLS for refractory cardiac arrest (ECPR, over 4,000 cases in the ELSO registry) 
and patients being bridged to transplantation (284 cases reported in the ELSO registry) (3, 4).
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Despite advances in perioperative care, myocardial protec-
tion, anesthesia, and surgical techniques, children remain 
at risk for myocardial dysfunction following heart surgery. 
In most cases, myocardial dysfunction is mild and improves 
with inotropic therapy, afterload reduction, and pulmonary 
vasodilators. In its most severe form, postoperative myocardial 
dysfunction may lead to inadequate end-organ oxygen delivery 
and inability to separate from cardiopulmonary bypass. ECLS 
may be used as short-term supportive therapy to improve end-
organ oxygen delivery, reverse acidosis and other metabolic 
derangements, prevent progression to cardiac arrest, prevent 
dysrhythmias, and limit further myocardial injury by decreas-
ing myocardial oxygen demand. Initiation of ECLS provides 
short-term mechanical circulatory support that enables weaning 
of inotropic and vasopressor support and facilitates myocardial 
recovery. The incidence of postoperative ECLS varies by patient 
population and center, with some centers reporting its use in 
fewer than 0.6% of patients and others reporting that up to 6.8% 
of patients require postoperative mechanical support (7, 8). 
Postoperative ECLS is utilized in as many as 10% of patients who 
undergo some high-risk procedures, such as surgical palliation 
of single-ventricle heart disease (9). Overall survival in children 
who require ECLS for failure to separate from cardiopulmonary 
bypass is around 45% (10).

Initiation of ECLS for failure to separate from cardiopulmonary 
bypass should prompt investigation for residual hemodynami-
cally significant lesions. Diagnostic imaging, such as echocardi-
ography or catheterization, should be undertaken promptly when 
questions remain about adequacy of surgical repair or palliation, 
or if a patient makes poor clinical progression toward separa-
tion from ECLS. Unsuspected lesions may have been found in 
over half of pediatric ECLS patients who undergo perioperative 
diagnostic cardiac catheterization (11). In many cases, clinically 
important residual lesions may be addressed by percutaneous 
interventional techniques, whereas others may require surgical 
intervention to facilitate separation from ECLS. Left ventricular 
distention must be avoided in patients who require postoperative 
venoarterial ECLS. Ventricular distention increases myocardial 
wall tension and reduces myocardial oxygen delivery, which 
has deleterious effects on ventricular recovery and function. In 
patients with severely depressed left ventricular systolic func-
tion, consideration should be given to inserting a left heart vent 
at time of conversion from cardiopulmonary bypass to ECLS. 
Effective left ventricle decompression may be accomplished by 
venting through pulmonary vein, left atrium, or left ventricle 
apex cannulae. Alternatively, surgical or percutaneous balloon 
atrial septostomy may be used to adequately decompress the 
left ventricle during ECLS. Meticulous hemostasis prior to leav-
ing the operating room is essential to reduce the likelihood of 
postoperative bleeding and infection, which occur in up to 30 
and 11%, respectively. Positive routine surveillance mediastinal 
cultures obtained at time of postoperative surgical interven-
tions, including delayed sternal closure, have been shown to be 
predictive of postoperative surgical site infection in children 
(12). Routine ECLS circuit cultures may also detect occult but 
clinically important infection in pediatric patients who require 
postoperative ECLS.

Indications and thresholds for initiating ECLS during the 
perioperative period are not well established. There is evidence 
that patients who successfully separate from cardiopulmonary 
bypass but subsequently require ECLS during the postoperative 
period are more likely to survive than patients who are unable 
to separate form cardiopulmonary bypass (69 vs. 24% survival) 
(13). However, there is also evidence that initiation of ECLS in 
the operating room is associated with improved survival when 
compared to initiation of support in the intensive care unit 
(64 vs. 29%) (14). Irrespective of indication for and location 
of support, prolonged duration of ECLS is an independent risk 
factor for death. ECLS survival is typically >50% when support 
is limited to <72 h but is <40% for patients supported >72 h (15, 
16). Survival following 7 days of ECLS support is very low in this 
population (17).

BRiDGe TO TRANSPLANT

Extracorporeal life support may be used to support children with 
severe, life-threatening congenital and non-congenital forms of 
heart failure. The most common forms of non-congenital heart 
disease in this population are cardiomyopathy (16% of pediatric 
cardiac ECLS cases) and myocarditis (8% of cases) (4). In general, 
survival is better in these patients (62% cardiomyopathy; 70% 
myocarditis) than in those with structural congenital etiologies 
of heart failure because in many cases, the underlying disease 
process is self-limited or manageable with appropriate pharma-
cotherapy. Additional causes of pediatric heart failure that may 
require ECLS include refractory or chronic dysrhythmia, infec-
tion, and myocardial infarction (18, 19).

Despite increased risk associated with prolonged support, 
ECLS has been used to provide mechanical cardiac support 
for children awaiting heart transplantation for nearly 30  years 
(20–24). The ELSO registry contains data from over 280 pediatric 
patients who were successful bridged to cardiac transplantation 
using ECLS (4). Single-center reports of pediatric patients who 
receive ECLS while awaiting heart transplantation suggest that 
up to 24% of patients may recover adequate myocardial func-
tion to be weaned from ECLS prior to transplantation and that 
approximately 50% of patients are successfully transplanted (23, 
24). Early posttransplant survival is approximately 80%, and 
survival in patients supported with ECLS appears to be similar 
to that in patients who do not requite extracorporeal bridge to 
transplantation at 1 year.

Retrospective analysis of ELSO and Organ Procurement 
Transplant Network data suggest that up to 45% of children await-
ing heart transplantation while receiving ECLS may ultimately 
receive a donor organ, but only 47% of these patients survive to 
hospital discharge (25). In contrast, bridge to transplantation with 
the Berlin Heart EXCOR, the only pediatric ventricular assist 
device approved for use in the United States, is successful in 64% 
of patients (26). Approximately 75% of these patients remain alive 
at 12 months but roughly one-third of children supported with 
the Berlin Heart device experience clinically significant neuro-
logic injury prior to transplantation (26). It is clear that ECLS and 
currently available ventricular assist devices are inferior to adult 
mechanical bridge to transplant options. Despite this, ECLS will 
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likely continue to play a crucial role in stabilization of critically ill 
young children and, in many cases, will serve as a viable option 
for bridge-to-bridge or bridge-to-decision (27, 28). In addition, 
ECLS is probably the best mode of mechanical cardiac support 
for infants and young children with single-ventricle heart disease 
and refractory heart failure.

eXTRACORPOReAL CARDiOPULMONARY 
ReSUSCiTATiON

Perhaps, the most significant advancement in the field of 
pediatric ECLS during the last several decades is the use of 
ECLS as an adjunct to standard cardiopulmonary resuscitation 
(ECPR). The earliest reported use of ECPR was in 1976 (29). 
Since that time, a number of advances in ECLS equipment, 
refinements in surgical techniques, and growing recognition of 
an apparent survival benefit have led to increased use of ECPR 
in pediatric patients. Hospitals worldwide have developed 
rapid-response ECPR programs to expeditiously initiate ECLS 
during cardiopulmonary resuscitation, often within 30 min of 
cardiac arrest (30). To date, over 6,400 ECPR cases have been 
reported to the ELSO registry, with an overall survival rate of 
36.8% (3). Despite the absence of randomized, controlled trials 
to support the use of ECPR, there is strong evidence that ECPR 
provides a significant survival advantage over conventional 
cardiopulmonary resuscitation in children (37 vs. 13–27%) 
(31). Overall survival following ECPR appears to be higher for 
neonates (41%) and children (41%) than adults (30%), which 
may reflect age-related differences in etiology of cardiac arrest 
and patient comorbidities (3). ECPR survival is greater in 
children with two functional ventricles than in those who have 
single-ventricle congenital heart disease (32, 33). Survival is as 
high as 89% in children with cardiomyopathy who experience 
cardiac arrest (33). Overall ECPR survival is lower (21%) and 
central nervous system hemorrhage is higher in neonates born 
before 34-week gestational age than it is for all preterm infants 
(27% survival) (34).

There is no consensus regarding the impact of duration of 
pre-ECLS cardiopulmonary resuscitation on survival in children. 
Some retrospective studies suggest that duration of pre-ECPR 
resuscitation impacts survival (31). Although survival following 
conventional resuscitation efforts >30 min is rare, survival is not 
uncommon in patients who receive ECPR following 45–60 min 
of conventional resuscitation (30, 31, 35, 36), and the use of con-
ventional resuscitative measures for >30 min before initiation of 
ECPR is not necessarily associated with poorer outcome (30). The 
impact of duration of pre-ECPR resuscitation on survival may 
vary by age and patient population. Increased duration of pre-
ECPR resuscitation has been shown to be associated with worse 
outcome in adults, using propensity score-matched analysis (36). 
Adequacy, rather than duration, of pre-ECPR resuscitation is 
undoubtedly the most important determinant of ECPR outcomes 
(37–39).

Not surprisingly, patients who require ECPR are at risk for sig-
nificant ECLS and resuscitation-related complications. Clinically 
significant hemorrhage is seen in as many as 30% of patients 

(32). Acute kidney injury that requires renal replacement therapy 
occurs in 8.7% and bloodstream infections in 8.5% of patients 
(32). Central nervous system injury occurs in approximately 11% 
of ECPR patients and is independently associated with increased 
mortality (34). Approximately 80% of pediatric ECPR survivors 
have a Pediatric Cerebral Performance Category score ≤2 at hos-
pital discharge or follow-up, indicating mild or no neurological 
disability (30). Information about long-term neurologic outcome 
is limited, but a recent study reported that children who survived 
ECPR scored 76.5% on full-scale intelligence quotient testing 
5 years after hospital discharge (40).

Despite increasing use by a growing number of centers, ECPR 
remains a relatively infrequently utilized therapy, representing 
only 8% of ECLS cases reported to the ELSO registry (3). When 
properly executed, ECPR requires expeditious mobilization of a 
large number of hospital resources and coordinated interaction 
between several interprofessional teams. Many centers now per-
form ECPR simulation training to increase team preparedness 
and reduce time to ECLS initiation. ECLR simulation has been 
found to improve practitioner confidence and knowledge regard-
ing deployment of ECPR (41, 42) and reduce ECLS initiation 
times during ECPR events (43). ECLS simulation is recognized 
as a critical component in the development and maintenance of 
successful ECPR programs.

CONTRAiNDiCATiONS

Pediatric cardiac ECLS is performed in a heterogeneous patient 
population that in many cases would not survive without extra-
corporeal support. Therefore, it is difficult to determine absolute 
contraindications for its use. In general, potential ECLS candi-
dates must be free of a lethal cardiac condition not amenable to 
surgery or any other terminal condition, including a severe and 
irreversible brain injury. The ECLS team must assess each candi-
date for bleeding risk, and those with severe bleeding diatheses 
are generally not offered ECLS. Historically, extreme prematurity 
and low weight have been considered contraindications; however, 
determining absolute cutoffs for gestational age or weight has 
proven difficult. Extrapolating data from neonatal respiratory 
ECLS, Smith et  al. showed that neonates with gestational age 
<32  weeks had a 38% rate of CNS hemorrhage (44). In this 
report of ELSO data, there was a stepwise decrease in mortality as 
gestational age increased. Furthermore, McMullan et al. showed 
that survival following neonatal ECPR decreased with younger 
gestational age (34).

Several reports have addressed the association between patient 
weight and pediatric cardiac ECLS outcome. For example, infants 
placed on ECLS weighing <2.5  kg with hypoplastic left heart 
syndrome have been found to have a survival of only 10% (45). 
A follow-up study examined outcomes in neonates <3 kg placed 
on ECLS following cardiac surgery (46). In this series, 30-day 
survival was 33%. Finally, neonates <2 kg that underwent ECPR 
were found to have a greater than four times risk of mortality as 
compared to newborns >3 kg (34). The ELSO registry contains 
very little data on patients at the extreme lower end of gestational 
age or weight, making the determination of absolute cutoff values 
for gestational age or weight impossible. Therefore, clinicians must 
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balance risks and potential benefits on an individual patient basis, 
understanding the risk of neurologic injury and death increases 
in smaller and younger infants.

COMPLiCATiONS

Hemorrhagic
Children who require ECLS are at risk for a number of clinically 
significant and life-threatening complications. Postoperative 
hemorrhage is an important risk factor for mortality in chil-
dren who require ECLS during the postoperative period (47). 
Hemorrhagic complications, including surgical and cannulation 
site bleeding, occur in >30% of patient populations, such as 
patients who require perioperative support (3). Cardiopulmonary 
bypass causes platelet dysfunction due to contact activation and 
consumption of platelets and clotting factors, which increases the 
risk of hemorrhage (48). In addition, cardiopulmonary bypass-
induced hemodilution further increases the risk of postoperative 
bleeding (49). ECLS circuit surface coatings are frequently used 
to reduce the risk of circuit-related derangements in the coagula-
tion system, but there is little clinical evidence to support the 
use of surface coatings or for the superiority of one coating over 
another. Immaturity of the coagulation cascade makes neonates 
particularly vulnerable to ECLS-related hemorrhage during the 
postoperative period (50). The impact of ECLS-related bleeding 
on survival appears to vary by age, with neonates exhibiting worse 
overall survival (31%) than older children (50%). Patients at 
increased risk for bleeding may be safely managed with reduced 
or delayed systemic anticoagulation for a limited period of time 
(51). In cases of refractory hemorrhage, recombinant Factor VII 
can been used to effectively control bleeding in many patients, 
albeit with a 19–24% rate of thromboembolic complications 
(52–55).

CNS injury
Central nervous injury is also a relatively common and dev-
astating complication for pediatric cardiac ECLS patients. 
CNS injury represents a heterogenous group of disorders 
that include CNS hemorrhage, ischemic stroke, seizures, and 
anoxic brain injury. Neonates, especially premature infants, are 
at greatest risk (11%) for experiencing central nervous system 
hemorrhage (3). The need for anticoagulation, along with the 
presence of an arterial cannula (during venoarterial ECLS), 
places these patients at increased risk for both thrombotic 
and hemorrhagic CNS complications. Other risk factors for 
severe CNS injury in pediatric ECLS patients include meta-
bolic acidosis, inotropic/vasopressor medication usage, renal 
failure, cardiopulmonary resuscitation, or LVAD placement 
prior to ECLS initiation (56). Pediatric cardiac ECLS patients 
have also been found to have higher rates of CNS hemorrhage 
as compared to medical patients, and CNS hemorrhage has 
been shown to significantly increase mortality (47). A recent 
ELSO report reviewed cannulation trends and neurologic 
complications and found that pediatric patients placed on 

venoarterial ECLS have been found to be 1.6 times more likely 
to suffer CNS injury than those placed on venovenous support; 
interestingly, no difference was observed in rates of neurologic 
complications between carotid and femoral cannulation among 
venoarterial patients (57). Seizures are a relatively common 
manifestation of CNS injury in pediatric ECLS patients and 
portend a poor outcome. Seizure activity can be difficult to 
detect in these patients, as most are sedate and/or chemically 
paralyzed. However, the utility of routine use of monitoring to 
detect seizure activity, using electroencephalograms (EEGs) or 
amplitude-integrated EEG, remains controversial and an area 
of active investigation (58, 59).

Other Complications
Additional complications include oxygenator failure, pericardial 
tamponade, pneumothorax, acidosis, seizures, infection, renal 
failure, and limb ischemia. Renal failure is an independent pre-
dictor of mortality in several ECLS patient populations (32, 34). 
Acute renal failure (GFR <35 ml/min/1.73 m) is relatively com-
mon and has been reported in up to 72% of pediatric cardiac 
ECLS patients with 59% requiring continuous renal replacement 
therapy (CRRT) (60). Risk factors for renal failure in pediatric 
ECLS patients include increased duration of extracorporeal 
support, hemolysis, increased pre-ECLS creatinine level, and 
pre-ECLS acidosis (60, 61). Severity of pre-ECLS acidemia is 
associated with reduced survival in neonates who require ECLS, 
suggesting that earlier initiation of ECLS may reduce the degree 
and duration of inadequate oxygen delivery and improve survival 
in these patients (62).

SUMMARY

The field of pediatric ECLS has experienced remarkable techno-
logical and medical advances that have led to wider acceptance 
and broader applications of this lifesaving therapy during recent 
decades. The origins of contemporary ECLS are based on the 
pioneering work of John Gibbon in 1931, when he wrote “the 
idea naturally occurred to me that if it were possible to remove 
continuously some of the blue blood from the patient’s swollen 
veins, put oxygen into that blood and allow carbon dioxide to 
escape from it, and then inject continuously the now-red blood 
into the patient’s arteries, we might have saved her life” (2). 
Nearly 90 years later, his vision has been realized. Continuous 
improvements in circuit design, individualized anticoagulation 
strategies, and recognition of the importance of ECLS in the 
management of pediatric heart failure will undoubtedly lead 
to increased use of this highly complex but efficacious support 
therapy.
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