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Cerebral oxygenation is not always reflected by systemic arterial oxygenation. Therefore, 
regional cerebral oxygen saturation (rScO2) monitoring with near-infrared spectroscopy 
(NIRS) is of added value in neonatal intensive care. rScO2 represents oxygen supply to 
the brain, while cerebral fractional tissue oxygen extraction, which is the ratio between 
rScO2 and systemic arterial oxygen saturation, reflects cerebral oxygen utilization. The 
balance between oxygen supply and utilization provides insight in neonatal cerebral 
(patho-)physiology. This review highlights the potential and limitations of cerebral oxy-
genation monitoring with NIRS in the neonatal intensive care unit.

Keywords: near-infrared spectroscopy, cerebral oxygenation, neonates, neonatal intensive care, neonatal 
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iNTRODUCTiON

It has been nearly 8 years, since our research group published a review on the value and pitfalls 
of cerebral oxygenation monitoring with near-infrared spectroscopy (NIRS) in neonatology (1). 
Since then, research into cerebral NIRS has taken an impressive flight. The importance of cerebral 
oxygenation and perfusion monitoring has been increasingly recognized in neonatal intensive care. 
In this review, the development of cerebral NIRS monitoring over the past years is summarized.

value of Cerebral Oxygenation Monitoring
Unfortunately, brain injury is still common in preterm neonates and can lead to a wide range of 
complications later in life, such as behavioral, attentional, cognitive, sensorimotor or language 
impairments, and epilepsy (2). Both the increasing number of preterm infants and improved 
survival rates contribute to the prevalence of neonatal brain injury (3, 4). Preterm infants are 
particularly susceptible to brain injury as the brain undergoes rapid development during the last 
trimester of pregnancy. During this period, the brain does not only increase in volume but also 
undergoes increasing gyri- and sulcification and myelination and improves connectivity (5). Pre-
oligodendrocytes and axons mature, the transient subplate neurons appear, and the cerebellum 
develops and matures. Throughout this process, the brain is using substantial amounts of oxygen (2, 
6, 7). Cerebral pathology can present as white matter injury, such as periventricular leukomalacia, 
or as periventricular–intraventricular hemorrhage (PIVH) (2). Inadequate or fluctuating cerebral 
perfusion and oxygenation can result in brain injury (8). Hyperoxia, hypoxia, and fluctuations in 

Abbreviations: aEEG, amplitude-integrated electro-encephalography; cFTOE, cerebral fractional tissue oxygen extraction; 
NIRS, near-infrared spectroscopy; PDA, hemodynamically significant patent ductus arteriosus; PIVH, periventricular–intra-
ventricular hemorrhage; RDS, respiratory distress syndrome; rScO2, regional cerebral oxygen saturation; SaO2, arterial oxygen 
saturation; TOI, tissue oxygenation index.
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cerebral oxygenation, indicative of poor cerebral autoregulation, 
can adversely affect brain development (9–12).

Vital parameters such as blood pressure, heart rate, and pulse 
oximetry [arterial oxygen saturation (SaO2)] are important to 
assess the condition of the neonate but do not directly assess brain 
oxygenation (13, 14). NIRS-monitored regional cerebral oxygen 
saturation (rScO2) is a non-invasive and elegant method to moni-
tor global brain oxygenation. rScO2 monitoring can be used at 
bedside for extended periods of time (up to several days) without 
side effects. Other methods that examine the brain, such as cra-
nial ultrasound or MRI, do not allow for continuous monitoring. 
NIRS can be used even in the sickest infants and requires minimal 
handling of the infant. The device can be used at bedside in the 
NICU as well as during surgery or transportation (15). NIRS can 
easily be combined with monitoring of cerebral electrical activity 
by amplitude-integrated electro-encephalography (aEEG).

NiRS Technique
The NIRS technique is based on the relative transparency of 
biological tissue to light. Neonatal cerebral tissue can easily be 
penetrated by NIR light (700–1,000 nm) due to thin overlaying 
layers of skin and skull. An emitter sends light of the near-
infrared spectrum through cerebral tissue in a semi-curved shape 
to a detector, approximately 2–3 cm in depth (16). Oxygenated 
(O2Hb) and deoxygenated (HHb) hemoglobin absorb the NIR 
light at different wavelengths, together accounting for total Hb 
(THb = O2Hb + HHb). Differences in NIR light absorption are 
detected by the sensor and used to calculate the concentrations 
of Ohb and HHb according to the modified law of Lambert–Beer. 
The ratio between O2Hb and HHb is expressed as the rScO2 or 
tissue oxygenation index (TOI), depending on the manufacturer 
of the NIRS device. Previous research has shown good correlation 
between TOI and rScO2 (17, 18). The NIR light is absorbed by 
HHb and O2Hb in both arterial and venous vessels, in a 25:75% 
ratio, and thus NRS reflects mainly cerebral venous oxygen satu-
ration (19). The NIR light is absorbed by both superficial tissues 
and the cerebral cortex. When two or more detectors are used, 
the deeper signal reflecting cerebral cortex oxygenation can be 
distinguished from the superficial signal, reducing the influence 
of scattering. The technical details of NIRS are beyond the scope 
of this review but are well described elsewhere (20–23). Most 
commercially available devices utilize the continuous-wave tech-
nique, which measures the attenuation (or absorption) of NIR 
light from a continuous light source to calculate oxygenation (24). 
Other NIRS techniques, such as time-resolved spectroscopy and 
frequency-resolved spectroscopy, are now able to assess cerebral 
blood volume and quantify absolute concentrations of HHb and 
O2Hb, respectively. However, these techniques have not yet been 
proved practically useful in neonatal care (24).

Sensors and Devices
Today, there are several different NIRS devices and sensors com-
mercially available. A number of comparative studies have shown 
that the overall correlation between NIRS devices is acceptable, 
although they differ in technique and algorithm (25–27). Smaller 
and more flexible sensors have been designed for neonatal use. 
However, these neonatal sensors measure 10% higher compared 

to the adult sensors (28, 29). Since the upper limit of most devices 
is set to 95%, high cerebral oxygenation values as measured by the 
neonatal sensors are shown as a flat line in which all variation is 
lost, as demonstrated in Figure 1A. NIRS device and sensor type 
must be taken into account when NIRS monitoring of cerebral 
oxygenation is applied in clinical care. Reference values for the 
neonatal sensor have been published (see below) (29).

validation
Regional cerebral oxygen saturation represents a mixed satura-
tion largely determined by the venous component (75%), which 
is why NIRS validation studies have often focused on venous satu-
ration (19). However, venous saturation does not reflect mixed 
arterial and venous saturation as NIRS does, and there is no “gold 
standard” to measure venous oxygen saturation (30). A good 
correlation has been reported between oxygen saturation in the 
jugular vein and NIRS-monitored cerebral oxygenation, with a 
mean difference of 5%, for different manufacturers (Hamamatsu, 
INVOS, CAS-MED) (31–34). However, the difference between 
jugular venous oxygen saturation and regional cerebral oxygena-
tion may increase during hypoxia. This is presumably caused by 
an increased arterial contribution to the NIRS signal due to 
cerebral arterial vasodilatation as a response to hypoxia (35). 
Cerebral fractional tissue oxygen extraction (cFTOE) has been 
validated against central cerebral venous saturation in newborn 
piglets (36). Brain perfusion assessment with NIRS has been 
compared to perfusion assessment with MRI, which has shown 
strong correlations (37, 38). Both rScO2 and TOI have shown 
good reproducibility (39, 40).

Reference values
Several studies have analyzed changes in rScO2 with advancing 
postnatal age. rScO2 is between approximately 40 and 56% directly 
after birth (irrespective of delivery mode) (41–43), increases up 
to 78% in the first 2 days after birth (44) and then slowly stabilizes 
during 3–6  weeks after birth with values between 55 and 85% 
(45–47). Several studies have published reference ranges imme-
diately after birth, which show a gradual increase during the first 
15 min of life (42, 46). A recent study by Alderliesten et al. provides 
reference values based on a large study cohort during the first 
72 h of life in preterm infants [<32 weeks gestational age (GA); 
n = 999]. The data are converted into reference curves stratified 
for different GAs which can be used for cot side interpretation of 
rScO2 and cFTOE values, as shown in Figure 1B (29). These refer-
ence values, obtained with the (small) adult sensor (SomaSensor 
SAFB-SM, Covidien, Mansfield, MA, USA), will facilitate clinical 
application of cerebral oxygenation monitoring. As stated above, 
it is important to realize that neonatal sensors of various NIRS 
manufacturers display higher values (up to 10%) as compared to 
adult sensors (28).

CLiNiCAL APPLiCATiON

Gaining insight into the oxygenation of the neonatal brain can be 
of important clinical value, as a large share of neonatal pathology 
is brain associated. NIRS monitoring of cerebral oxygenation can 
be considered in several clinical situations as outlined below.

http://www.frontiersin.org/Pediatrics
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FiGURe 1 | (A) Regional cerebral oxygen saturation (rScO2) monitored with an adult (blue line) and pediatric (green line) sensor. Hyperoxia values are untraceable 
with the pediatric sensor due to the cutoff value of 95%. (B) Reference values [stratified for gestational age (GA)] of rScO2 in premature infants (GA < 32 weeks). 
Adapted from Ref. (29).
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Cerebral Oxygenation and the Patent 
Ductus Arteriosus
The hemodynamically significant patent ductus arteriosus (PDA) 
remains a controversial topic. Clinicians and researchers are still 
debating whether or not it should be treated, what the best treat-
ment strategy is and when would be the best time to intervene 
(48–51). Unfortunately, the brain is rarely included in this dis-
cussion. A PDA can negatively influence cerebral oxygenation. 
Shunting of the blood through the duct away from the brain has a 
profound negative effect on rScO2. This effect is independent from 
SaO2, which remains within normal limits during a PDA (13, 52). 
Cerebral oxygenation normalizes after ductal closure (13, 52). The 
ductal diameter is associated with cerebral oxygenation, where a 
larger diameter (indicating a significant left to right ductal shunt) 
is associated with lower rScO2 (52). Infants who need surgical 
PDA closure are often exposed to low rScO2 values for a longer 
period of time, as shown in Figure 2A, and are therefore at risk of 
cerebral injury (14). Additionally, a further reduction in cerebral 
oxygenation occurs during ductal surgery (53, 54). Weisz et al. 
reported an increased risk of neurodevelopmental impairment 
in infants after surgical ductal ligation compared to pharmaceuti-
cally treated infants (55). More specifically, underdevelopment of 
the cerebellar structure has been reported in infants who needed 
surgical closure (14). Extended episodes of low cerebral oxygena-
tion are most likely responsible for this phenomenon (14).

Cerebral Oxygenation and Respiration
Preterm infants often require respiratory support, which can 
affect cerebral hemodynamics and cerebral oxygenation (56, 57). 
An earlier study reported NIRS-monitored changes in cerebral 
blood flow (CBF) during continuous positive airway pressure and 
artificial ventilation. CBF significantly correlated with the type of 
respiratory support, leading to the conclusion that ventilation can 
impact cerebral circulation (58). Cerebral oxygenation can also 
be affected by the type of ventilation support during surgery (59).

Ventilation is the main regulatory mechanism of arterial 
carbon dioxide pressure (pCO2). pCO2 can affect the brain by 
altering cerebral arterial vessel diameter, where hypercapnia can 
induce cerebral vasodilatation and hypocapnia induces vaso-
constriction (60). As such, pCO2 can affect cerebral perfusion 
and oxygenation, and both hyper- and hypocapnia have been 
associated with neuropathology (61, 62). An increase in pCO2 is 
accompanied by an increase in cerebral oxygen saturation with 
a decrease in oxygen extraction (63, 64). Acute fluctuations in 
pCO2, even within the normal range, appear to directly affect the 
neonatal brain perfusion (personal communication). The pCO2-
induced changes in cerebral perfusion and oxygenation can be 
monitored by NIRS, as shown in Figure 2B, in order to identify 
and prevent pCO2-induced cerebral hypo- or hyperperfusion and 
brain damage.

Other factors related to respiration have also been shown to 
influence cerebral oxygenation. Apneas, for example, can affect 
brain oxygenation, and high mean airway pressure during 
artificial ventilation can also reduce cerebral oxygenation (1, 
65–67). Also, infants with respiratory distress syndrome (RDS) 
have lower cerebral oxygenation and increased variance in rScO2 
and cFTOE during the first 3 days after birth (68, 69). Moreover, 
they often have an impaired cerebral autoregulation, which may 
further predispose them to cerebral injury (70). Combining arte-
rial blood pressure and cerebral oxygenation measures can help 
to identify (lack of) cerebral autoregulation (see below).

Cerebral Oxygenation and Autoregulation
Cerebral autoregulation is the ability to maintain stable cerebral 
perfusion and oxygenation during fluctuations in blood pres-
sure (71). Hypotension can cause a severe reduction in cerebral 
perfusion and impairment of cerebral autoregulation, leading to 
inadequate perfusion (72). Combining rScO2-monitoring with 
arterial blood pressure monitoring enables assessment of cerebral 
autoregulation (73). Prematurity is a risk factor for impaired 
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FiGURe 2 | (A) Regional cerebral oxygen saturation (rScO2) just before ductal closure in patients treated with indomethacin (red squares) or surgery (blue circles) as 
a function of postnatal age in days. Note that the majority of infants requiring surgical treatment are exposed to the lowest rScO2 values for a longer period. Adapted 
from Ref. (14). (B) Acute end-tidal CO2 (etCO2) decrease results in a subsequent reduction in rScO2, on the contrary arterial oxygen saturation (SaO2) remains stable. 
MABP, mean arterial blood pressure. (C) rScO2 during hypothermia and after rewarming (rew) in two severely asphyxiated infants. The infant with an adverse 
outcome (blue line) showed higher rScO2 values compared to the infant that survived (green line). Cerebral fractional tissue oxygen extraction values (not shown) 
mirrored rScO2 values.
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autoregulation, and even small variations in blood pressure can 
affect cerebral oxygenation in clinically sick and unstable babies 
(48, 74). Cerebral autoregulation can indeed be affected in several 
clinical situations that are commonly seen in preterm infants. 
Our group has previously demonstrated that RDS predisposes for 
lack of cerebral autoregulation (70). Autoregulation might also 
be impaired during surgery and high concentrations of positive 
inotropes such as dopamine (11, 49). Impaired autoregulation 
has been linked to poor neurodevelopmental outcome (50). 
Evaluating cerebral autoregulation at bedside can identify 
episodes of impaired autoregulation, and appropriate measures 
can be initiated to stabilize cerebral perfusion and oxygenation. 
Cerebral autoregulation can be computed in different ways, and 
software to calculate autoregulation at bedside is currently being 
developed (51). In summary, cerebral autoregulation may become 
impaired, especially in the unstable (preterm) infant, predispos-
ing these neonates to brain injury. This underlines the importance 
of cerebral oxygenation an autoregulation monitoring in the early 
neonatal period (75).

Cerebral Oxygenation and Hypotension
Cerebral oxygenation can play an important role in assessing 
hypotension and whether positive inotropic therapy is indicated. 
There is an increasing awareness that the current definitions of 
hypotension of prematurity do not always reflect true hypotension. 
Permissive hypotension is increasingly accepted, unless there 
are (clinical) signs of hypoperfusion (76–78). As already stated 
above, hypotensive treatment is not without side effects and may 
have adverse effects on outcome (11, 79). Cerebral oxygenation 
plays an important role as a marker of end-organ oxygenation and 
can help making decisions whether or not treatment for hypoten-
sion is indicated. Other parameters such as blood gasses, urine 
production, and capillary refill should be taken into account. 
Identifying small reductions in blood pressure that do not affect 
cerebral oxygenation, and systemic perfusion might prevent 
unnecessary treatment with inotropes (78, 80). Monitoring rScO2 
and cerebral autoregulation during neonatal surgery is important 

to prevent hypotension-related injury to the immature brain (see 
also below) (81). Our research group is currently involved in a 
prospective study (the TOHOP study) to find an answer to the 
question at which stage hypotension treatment is warranted 
(TOHOP; http://ClinicalTrials.gov identifier: NCT01434251).

Cerebral Oxygenation and Small-for-
Gestational-Age (SGA) Neonates
Preterm infants who are born SGA show higher cerebral oxygena-
tion during the first postnatal days (29, 82). This is most likely 
related to the prenatal blood flow redistribution of the intrauterine 
growth restricted (IUGR) fetus, in an attempt to preserve oxygen 
supply to the brain (brain sparing effect) (83). However, this does 
not necessarily protect against cerebral injury, and infants born 
following IUGR are at an increased risk of neurodevelopmental 
impairment (84, 85). In case of a PDA, SGA infants demonstrated 
a significantly larger fall in cerebral oxygenation, as compared to 
AGA infants (86).

Cerebral Oxygenation and 
Neurodevelopmental Outcome
Disturbances in cerebral perfusion and oxygenation are major 
contributors to neonatal brain injury, increasing the risk of 
impaired neurodevelopmental outcome (8, 87). Infants are par-
ticularly susceptible to brain injury during the first 3 days after 
birth, when major hemodynamic transitional changes occur. A 
large international randomized controlled trial, the SafeboosC 
study (Safeguarding the brains of out smallest children), has 
investigated whether it is possible to reduce the hypoxic and/or 
hyperoxic burden on the immature brain with cerebral oxygena-
tion monitoring, in order to prevent neurological damage and to 
improve outcome (88). The study has shown that disturbances in 
cerebral oxygenation could be identified with NIRS. A treatment 
protocol prescribed treatment steps to restore normal brain oxy-
genation. The burden of hypoxia (and hyperoxia), as expressed 
by the percentage of time spend outside the normal range of 
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rScO2 (55–85%), was significantly lower in the group with (vis-
ible) NIRS monitoring as compared to the blinded control group 
(median 36.1 vs. 81.3%) (47). This difference was mainly due to a 
reduction in hypoxic episodes.

Impaired cerebral oxygenation below the threshold of 
55% appears to affect neurodevelopmental outcome at 15 and 
24  months corrected age (personal communication). Poor 
cerebral autoregulation, examined by the correlation between 
rScO2 and arterial blood pressure, has been be associated with an 
increased risk score predictive of neonatal mortality and morbid-
ity (CRIB II) (89).

Several studies, in newborn animals and humans, showed 
that rScO2 values consistently below 40% (measured with adult 
sensors) are related to brain damage (90–92). Other clinical 
studies showed that low cerebral oxygen saturation immedi-
ately after birth (<15  min) is associated with PIVH (93). In 
accordance with these results, low cerebral oxygenation during 
the first 48  h after birth was associated with death or severe 
PIVH in a study by Cerbo et  al. (94). Similarly, increased 
oxygen extraction cFTOE can precede development of PIVH 
(95, 96).

Cerebral Oxygenation and Red Blood Cell 
Transfusions
Several studies have shown a significant increase in cerebral 
oxygenation after red blood cell transfusions in anemic 
infants (97, 98). The infants with the lowest pre-transfusion 
rScO2 values seem to benefit the most from transfusions (99). 
Similarly, high cFTOE levels (>0.4) can indicate an imbal-
ance between cerebral oxygen supply and demand, which 
may underline the need for red blood cell transfusion (100). 
This indicates that cerebral oxygenation monitoring might 
be useful as a marker to identify infants with high cFTOE 
and/or low rScO2 who might benefit from blood transfusions 
(100–102).

Cerebral Oxygenation and Neonatal 
Surgery
Infants with cardiac or non-cardiac anomalies may require major 
surgery in the first few months after birth (103). Exposure to 
neonatal surgery can put the immature brain at risk (104, 105). 
An increased risk of neurodevelopmental delay after neonatal 
surgery has indeed been reported (106, 107). Both the procedure 
as well as anesthetics can be harmful (108–110). Monitoring 
cerebral oxygenation during surgery to increase cerebral safety is 
therefore advised (111–116). Perioperative monitoring evaluates 
brain oxygenation pre- and postsurgery, while intraoperative 
monitoring can assist surgeons and anesthesiologists to optimize 
cerebral oxygenation during the procedure to protect the neonatal 
brain (113, 117, 118). During surgery, cerebral NIRS can detect 
episodes of hypoxia more reliably than arterial SaO2 monitoring 
(114, 119). Introduction of cerebral oxygenation monitoring 
during cardiac surgery has improved intraoperative transfusion 
management (120). Cerebral oxygenation monitoring can also 
reflect changes in vital parameters during cardio-pulmonary 
bypass (121).

Cerebral Oxygenation and Hypoxic-
ischemic encephalopathy (Hie)
Previous studies have demonstrated that rScO2 is increased 
and cFTOE is decreased during the first days after severe 
birth asphyxia, and these findings have been correlated 
with an adverse outcome at 2  years of age (Griffiths Mental 
Developmental scales) (122, 123) (see also Figure  2C). NIRS 
monitoring combined with simultaneous assessment of aEEG 
background patterns has a strong prognostic value for long-term 
neurodevelopmental outcome. High cerebral oxygenation with 
an abnormal aEEG background pattern (low electrical activity) 
in severely asphyxiated neonates with hypothermia treatment at 
12  h of age has a positive predictive value of 91%, absence of 
these results in a negative predictive value of 100% (123). These 
findings strongly suggest that NIRS monitoring of cerebral 
oxygenation can have an important role in the (early) prognosis 
of neurodevelopmental outcome. Cerebral hyperoxygenation in 
neonates with an adverse outcome is most likely explained by 
low energy metabolism after severe brain injury with low oxygen 
utilization, cerebral hyperperfusion, and impaired autoregula-
tion of the cerebral vascular bed (124, 125). These findings have 
been confirmed in other studies, incorporating MRI (126). 
Cerebral oxygenation with NIRS correlates strongly with CBF 
as assessed by arterial spin labeled MRI in infants with severe 
HIE (37).

LiMiTATiONS

Hair, dark skin, and interfering light from other sources such as 
phototherapy devices can pose a problem during NIRS monitor-
ing (1). Subdural edema or hematoma below the sensor might 
also interfere with measurements (127) in small infants, place-
ment of the electrode might be challenging if they also require 
simultaneous aEEG monitoring. The curvature of the skull and 
head circumference has been mentioned as potential limitations 
(24). However, Alderliesten et  al. did not find a correlation 
between head circumference and rScO2, stating that influence 
of head curvature seems unlikely (29). As previously discussed, 
type of NIRS device and sensor must be taken into account when 
interpreting cerebral oxygenation values (28).

CONCLUSiON

Injury to the immature brain remains a major contributor to 
neonatal mortality and morbidity. Monitoring vital parameters 
provides us with critical information concerning the condition 
of the infant but does not offer direct information regard-
ing brain oxygenation and perfusion. Cerebral oxygenation 
monitoring with NIRS, at least during the vulnerable transition 
period throughout the first 3 days after birth, provides the cli-
nician with additional important information. Several clinical 
conditions can affect brain oxygenation, and studies have shown 
that systemic oxygen saturation does not always reflect cerebral 
oxygenation. The assessment of neonatal brain oxygenation 
(and perfusion) can be extremely useful in the clinical setting. 
It has the potential to guide clinical management in order to 
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prevent brain injury and to avoid unnecessary treatment. It 
may also provide important information regarding the infant’s 
prognosis.
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