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Epigenetic modifications are among the most important mechanisms by which environ-
mental factors can influence early cellular differentiation and create new phenotypic traits 
during pregnancy and within the neonatal period without altering the deoxyribonucleic 
acid sequence. A number of antenatal and postnatal factors, such as maternal and 
neonatal nutrition, pollutant exposure, and the composition of microbiota, contribute 
to the establishment of epigenetic changes that can not only modulate the individual 
adaptation to the environment but also have an influence on lifelong health and disease 
by modifying inflammatory molecular pathways and the immune response. Postnatal 
intestinal colonization, in turn determined by maternal flora, mode of delivery, early 
skin-to-skin contact and neonatal diet, leads to specific epigenetic signatures that can 
affect the barrier properties of gut mucosa and their protective role against later insults, 
thus potentially predisposing to the development of late-onset inflammatory diseases. 
The aim of this review is to outline the epigenetic mechanisms of programming and 
development acting within early-life stages and to examine in detail the role of maternal 
and neonatal nutrition, microbiota composition, and other environmental factors in deter-
mining epigenetic changes and their short- and long-term effects.

Keywords: epigenetic regulation, fetal programming, overnutrition, undernutrition, micronutrients, human milk, 
microbiome, disease origin

iNTRODUCTiON

Following the so-called “Developmental Origins” hypothesis, introduced by Barker and Osmond 
30 years ago (1) and based on early developmental plasticity, the environmental influence on health 
and disease has been progressively explored over the last decades.

Abbreviations: APC, antigen-presenting cell; ASD, autism-spectrum disorders; BPA, bisphenol A; CNS, central nervous 
system; CS, C-section; DHA: docosahexaenoic acid; DNA, deoxyribonucleic acid; GF, germ free; HBM, human breast milk; 
HDAC, histone deacetylase; IBD, intestinal bowel diseases; IBS, irritable bowel syndrome; IL, interleukin; IUGR, intrauterine 
growth restriction; LCPUFAs, long-chain polyunsaturated fatty acids; LDL, low-density lipoproteins; miRNAs, microRNAs; 
TC, total cholesterol; TCA, trichostatin A; TLR, toll-like receptor.
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FiGURe 1 | Interrelation between maternal and neonatal nutrition, gut microbiota, and epigenetics during the first 1,000 days of life. The main influencing factors are 
detailed in the boxes.
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Research on this issue has eventually led to the discovery of a 
“second genome,” which comprises human microbiome and, via its 
metabolites, actively interacts with the genome derived by sperm and 
egg, resulting in far-reaching epigenetic modifications (2, 3).

The term “epigenetics,” which literally means “on top of genet-
ics,” defines a variety of processes that cause mitotically and mei-
otically heritable changes in gene expression without modifying 
the deoxyribonucleic acid (DNA) sequence; particularly, DNA 
methylation, histone modification, and non-coding RNA are the 
main mechanisms underlying epigenetic modifications.

The period of life during which epigenetic DNA imprinting 
activity is the most active lasts from conception to the second 
anniversary, thus being referred to as “the 1,000 days period” (4). 
During this time interval, via epigenetic changes, early nutrition 
can play a key role in developmental programming, thereby 
possibly influencing the individual susceptibility to the later 
development of cardiovascular diseases, obesity, diabetes, and 
other non-communicable chronic conditions.

According to recent evidence, the microbial colonization 
begins far before birth; particularly, the microbial flora from 
amniotic fluid, placenta, and maternal gut can support the devel-
opment of a prenatal microbiota (5–7) that is likely to have an 

influence on the developing embryo and fetus. Furthermore, early 
postnatal microbiota perturbations, resulting from skin contacts, 
mode of delivery and neonatal diet, have been proposed to play 
a role in the susceptibility to several late-onset diseases (i.e., obe-
sity, diabetes, allergies, asthma, autoimmunity) by modulating 
the immune development through epigenetic modifications (8). 
Similar mechanisms might also underlie the increased risk of 
necrotizing enterocolitis associated with the use of antibiotics or 
histamine-2 receptor blockers in the neonatal population (9, 10).

Recent evidence has shown that some of the epigenetic 
changes ensuing from early nutrition and microbiome can be 
transgenerationally inherited, thus having a significant impact 
on evolution (11). Although preliminary data currently available 
on the role of epigenetic in the determination of long-term health 
and disease look promising, however, most of the underlying 
mechanisms still need to be clearly elucidated.

This review aims to provide a complete overview on the 
complex interactions between early nutrition, microbiome, 
and epigenome during the early phases of human development 
(summarized in Figure 1), examining current evidence in detail 
and shedding light on the complex epigenetic processes that have 
been identified so far.
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TABLe 1 | Main antenatal factors associated with epigenetic modifications in the offspring.

Factor epigenetic mechanism Route Clinical effects in the offspring

Maternal supplementation with dietary 
methyl donors (folic acid, vitamin B12, 
choline, zinc, methionine, betaine)

Deoxyribonucleic acid  
(DNA) methylation

Runt-related transcription factor 
3 (Runx3)

Increased risk of allergic airway disease in offspring mice (16)

Maternal choline supplementation DNA and histone 
methylation

Histone H3, Kmt1a, Kmt1c Improved development and functioning of the adult rat brain 
(23)

Maternal zinc supplementation DNA methylation (gut cells) Not specified Anti-inflammatory effects on the intestinal mucosa (26)

Maternal vitamin D deficiency DNA methylation (placental 
tissue)

Vitamin D metabolic pathway 
(1α-hydroxylase, vitamin D  
receptor, retinoid X receptor)

Preeclampsia development in humans and possible adverse 
pregnancy outcomes (31)

Low maternal dietary intakes of long-
chain polyunsaturated fatty acids

DNA methylation Angiogenic factor genes Vascular dysregulation, altered placentation, and increased 
long-term risk of cardiovascular diseases (32, 33)

Maternal high-fat diet Histone acetylation H3K9, H3K14, H3K18 in fetal liver Alteration in fetal chromatin structure and fetal non-alcoholic 
fatty liver disease in primates (47)

Histone acetylation Hepatic antioxidant enzyme Pon1 Gender differences in the oxidative balance observed later 
on in life (49)

Histone acetylation Fetal surtuin 1 (SIRT1) Increased susceptibility to fetal non-alcoholic fatty liver 
disease (50)

Maternal hyperglycemia Histone modification Insulin growth factor (IGF-1) 
promoter

Decreased hepatic IGF-1 mRNA variant levels and 
H3Me3K36 of IGF-1 gene in male rat offspring. Possibly 
increased susceptibility to adult-onset insulin resistance (38)

Maternal food restriction resulting in 
intrauterine growth restriction (IUGR)

DNA methylation IGF-1 A and B genes; IGF-1 exon 
1–2

Increased risk of obesity and related metabolic dysregulation 
in rats (39)

IUGR Histone acetylation Histone H3, peroxisome 
proliferator-activated receptor-
γ coactivator 1 (PGC-1) and 
carnitine-palmitoyl-transferase I 
(CPTI) genes

Possibly increased susceptibility to insulin resistance and 
diabetes in rats (37)

Histone methylation and 
acetylation

Pancreatic and duodenal  
homeobox factor-1 (PDX1) gene

Reduced PDX1 expression in rats; possible role on type 2 
diabetes development (40)

Phthalates exposure DNA methylation 
hypothesized

Adrenal and gonadal 
steroidogenesis pathways

Decreased circulating levels of testosterone and aldosterone 
in adult male offspring and of estradiol in adult female 
offspring in rats (58)

Global DNA 
hypermethylation in CD4+ 
T cells

TH2 differentiation genes,  
including the GATA-3 repressor  
of zinc finger protein 1 (Zfpm1)

Increased risk for allergic airway disease (60)

Bisphenol A exposure DNA methylation Genes involved in mammary  
gland development

Increased mammary cancer risk in rats (63)

Maternal exposure to Acinetobacter 
lwoffii during pregnancy

Histone acetylation T-helper 1 and T-helper 2 relevant 
genes in CD4+ T cells

Reduced risk of asthma-like disease in mice (156).

3

Indrio et al. Epigenetics Role in Early Life

Frontiers in Pediatrics | www.frontiersin.org August 2017 | Volume 5 | Article 178

eFFeCT OF MATeRNAL NUTRiTiON ON 
PReGNANCY ePiGeNeTiCS AND FeTAL 
PROGRAMMiNG

Throughout their lifespan, humans are exposed to several 
environmental hazards; nevertheless, the effects of these expo-
sures may take decades for their phenotypic expression. It has 
been speculated that, in response to maternal homeostasis and 
intrauterine stimuli, the fetus undergoes predictive responses 
theoretically resulting in permanent adjustments of the homeo-
static systems, aimed at improving adaptation to the postnatal 
environment. Nevertheless, a mismatch may occur, and these 
adjustments might ultimately become disadvantageous, resulting 
in heritable risk factors for future diseases (12).

In this section, we will review the effects of maternal nutrition, 
in its qualitative [i.e., micronutrients, long-chain polyunsatu-
rated fatty acids (LCPUFAs), food pollutants] and quantitative 
(i.e., under- and overnutrition) aspects, on epigenetic fetal 
programming in both human and animal models. A detailed 
list of these effects on the offspring is provided in Table 1.

The Role of Methyl Donors and Their 
Cofactors on Fetal epigenetics
The most common epigenetic modification is DNA methylation, 
resulting from the addition of a methyl group to the cytosine of 
a cytosine–guanine pair. If this methylation is located in close 
proximity to a gene, it often results in lowered or abolished gene 
expression. As the one-carbon metabolism depends upon dietary 
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methyl donors, DNA methylation can be influenced by nutrition 
during early life: this process involves a large number of enzymes 
with methyltransferase activity, cofactors including choline, 
methionine, vitamins B6 and B12, zinc, betaine and dietary 
micronutrients acting as methyl donors (13–15).

Folic acid is a well-known one-carbon donor for DNA meth-
ylation and synthesis; its role is crucial during early postnatal 
development, when rapid cell growth and proliferation take place. 
However, in animal models, in utero exposure to a maternal diet 
supplemented with methyl donors has also shown unexpected 
effects, such as an increased susceptibility to allergic airway 
disease. Particularly, mice born to mothers supplemented with 
folic acid, vitamin B12, methionine, zinc, betaine, and choline 
experienced significantly higher rates of allergic airway inflam-
mation, ensuing from an excessive methylation of the runt-related 
transcription factor 3 (Runx3), a mediator of T-lymphocyte 
differentiation predisposing to asthma-like diseases (16). Hence, 
methylation can act as a double-edged sword, and this finding is 
consistent with human epidemiologic evidence of a significant 
association between perinatal folic acid supplementation and 
increased risk of wheezing at 18 months of age (17).

On the other hand, folic acid deficiency has been associated 
with an increased expression of inflammatory mediators, such 
as interleukin (IL)-β, IL-6, tumor necrosis factor-α (TNF-α), and 
monocyte chemoattractant protein-1 in the mouse monocyte cell 
line RAW264.7 (18); this is consistent with the beneficial role of 
folic acid in preventing inflammatory responses (19).

In addition to folic acid, imbalanced maternal concentrations 
of other micronutrients can affect DNA methylation patterns in 
the offspring. For example, increased maternal serum levels of 
vitamin B12 during pregnancy correlate with decreased global 
DNA methylation in newborns, while high vitamin B12 serum 
levels in newborns have been associated with reduced methylation 
of insulin-like growth factor-binding protein 3, a gene involved 
in intrauterine growth (20). Vitamin B12 deficiency, on the other 
hand, can result in global hypomethylation as, along with folic 
acid, this micronutrient is involved in the synthesis of methionine 
and S-adenosyl methionine, donors commonly required for the 
maintenance of DNA methylation patterns (21).

There is growing evidence that optimal dietary intakes of 
choline, which is involved in one-carbon transfer or methyla-
tion pathways as folic acid, support a successful completion of 
fetal development (22). In animal studies, maternal choline 
supplementation during pregnancy as been shown to modify 
histone and DNA methylation in fetal liver and brain, suggesting 
concerted epigenetic mechanisms that contribute to favorable 
long-term developmental effects (23).

Due to its role in DNA methylation, zinc status can exert a fun-
damental influence on the epigenome. Particularly, its deficiency 
during intrauterine life and childhood may contribute to alter 
promoter methylation, resulting in an immune dysregulation 
that could contribute to the development of chronic inflamma-
tory diseases (24) and to increase cardiovascular risk (25). On the 
contrary, evidence from animal studies has shown that maternal 
zinc supplementation during pregnancy is associated with a lower 
degree of DNA methylation in gut cells, which, in turn, can have 
an anti-inflammatory effect on the intestinal mucosa (26).

In sum, these findings suggest that specific dietary interven-
tions at key time points of fetal development can lead to different 
and unintended long-term consequences on health and disease.

vitamin D and its effect on Fetal 
epigenetic Programming at the  
Placental interface
Changes in vitamin D metabolism have been associated with 
altered methylation patterns in placental tissue, with a possible 
influence on pregnancy outcome and on the development of great 
obstetrical syndromes (27).

After oral ingestion, vitamin D3 undergoes hepatic and renal 
hydroxylation, being thus converted in its biologically active form 
(1,25-dihydroxyvitamin D3), which enters the cells and combines 
with the retinoid receptor, forming a heterodimer that binds to 
vitamin D-responsive genes and regulates their transcription and 
translation (28).

The placenta has a functional vitamin D endocrine system, 
expressing vitamin D receptors and allowing the local conversion 
of vitamin D in its active form (29). Of interest, a potential associa-
tion between vitamin D insufficiency and increased risk of preec-
lampsia has been reported (27, 30). In order to better understand 
the possibly underlying epigenetic processes, Anderson et  al. 
(31) analyzed DNA methylation patterns and protein expression 
of placental genes involved in vitamin D metabolism in relation 
to vitamin D intakes in women with preeclampsia, compared 
to those who remained normotensive throughout pregnancy. 
Though not significant, the incidence of vitamin D deficiency was 
higher in the preeclamptic (46%) than in the normotensive group 
(20%). Moreover, placental samples from pregnant women with 
preeclampsia showed increased DNA methylation of CYP27B1, 
vitamin D receptor and retinoid receptor genes, with lower 
protein expression levels of the latter. A possible interference 
between availability of vitamin D at the maternal–fetal interface, 
hypermethylation of key placental genes involved in vitamin 
D metabolism and placentation can be hypothesized; however, 
further studies are needed to clarify the exact mechanisms.

LCPUFAs intakes and DNA Methylation
Long-chain polyunsaturated fatty acids are essential components 
of human diet known for their beneficial effects on health, growth 
and development. From an epigenetic point of view, LCPUFAs 
are rich in phospholipids, which are among the major methyl 
group acceptors in the one-carbon metabolic pathway, being thus 
involved in methylation reactions (32).

Recent studies investigating the role of LCPUFAs in determin-
ing gestational outcomes and influencing the offspring’s health 
have shown that inadequate intakes during pregnancy may result 
in aberrant DNA methylation patterns, affecting the expression 
of clinically relevant genes (e.g., angiogenic factor genes) (32). 
This can contribute not only to the vascular dysregulation associ-
ated with abnormal placentation but might also play detrimental 
effects on fetal programming, ensuing in an increased long-term 
risk of cardiovascular diseases (33).

High intakes of n-3 LCPUFAs, such as eicosapentaenoic acid, 
docosahexaenoic acid (DHA) and α-linolenic acid (18:3n23) are 
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largely known to be associated with protective metabolic effects. 
In mice, high-dietary n-3 LCPUFAs have been shown to bring 
significant epigenetic changes in leptin promoter, resulting either 
from the inhibition of the enzymes catalyzing DNA methylation 
and histone modifications or from a reduced availability of the 
relative substrates (34). On the other hand, fish oil supplementa-
tion in animal models has been associated with decreased global 
DNA methylation in the liver persisting for two generations, 
lowered blood lipid concentrations, increased insulin-stimulated 
glucose uptake, and insulin sensitivity (35); however, the path-
ways involved still need to be completely elucidated.

epigenetic effects of Maternal 
Undernutrition and Overnutrition  
during Pregnancy
Growth and development during fetal life and early childhood are 
greatly influenced by macronutrient intakes during pregnancy, 
suggesting the importance of an adequate maternal diet in this 
crucial phase. A poor maternal nutrition has been shown to modify 
epigenetic programming and have a negative impact on fetal gene 
expression, resulting in possible long-term consequences (36).

Maternal undernutrition (either global or protein-restricted) 
has been extensively used in rodent studies to induce intrauterine 
growth restriction (IUGR). In the setting of an altered early nutri-
tion, organisms can achieve environmental adaptation by modu-
lating their gene expression via epigenetic alterations of histone 
markers. In experimental models of IUGR, uteroplacental insuf-
ficiency has been shown to decrease postnatal insulin-like growth 
factor-1 (IGF1) mRNA variants and H3 acetylation of IGF1 gene 
(37). Similar patterns of histone modification on IGF-1 promoter 
have also been reported by Zinkhan et al. (38) following maternal 
gestational hyperglycemia. Moreover, different changes in hepatic 
IGF-1 mRNA expression and histone H3K4 methylation have also 
been reported in relation to early growth patterns following IUGR 
in the rat (39). One of the molecular phenotypes associated with 
IUGR rats is a decreased expression of pancreatic and duodenal 
homeobox factor-1 (PDX1), a key transcription factor regulating 
pancreatic development (40); similar findings have also been 
observed for the muscular glucose transporter GLUT4 (41).

Low-protein regimens at conception or during pregnancy 
bring additional evidence on the noxious epigenetics effects of 
maternal nutrition deficiency on the offspring health: in animal 
models, a protein-restricted maternal diet has been associated 
with impaired immune response (42), increased sensitivity to 
oxidative stress (43), metabolic abnormalities, and glucose dys-
homeostasis (44).

The Dutch Winter Study provides a bright example on how 
famine during early and mid-gestation can lead to metabolic 
dysregulation later on in life, having been associated with hyper-
glycemia, higher incidence of coronary heart disease, a more 
atherogenic lipid profile, disturbed blood coagulation, increased 
stress responsiveness, and obesity (45). Remarkably, follow-up 
studies on the population exposed to the Dutch famine have 
shown increased rates of neonatal adiposity and poorer health 
among the offspring of women exposed to maternal undernutri-
tion in utero, suggesting that the related detrimental effects are 

probably transmitted to subsequent generations through epige-
netic modifications persisting during meiosis (46).

In addition to nutrient deficiency, overnutrition during preg-
nancy has also been demonstrated to cause detrimental effects on 
the offspring health either at early or late life stages.

Studies performed in primates have shown that a high-fat 
maternal diet can alter fetal chromatin structure via covalent 
histone modifications (47). Maternal high-fat dietary intakes 
have been associated with hormonal dysregulation and release of 
inflammatory cytokines that can predispose the offspring to various 
vascular diseases (48). Strakovsky et al. (49) showed that, by modi-
fying histone acetylation, a maternal diet with high-fat contents 
contributes to alter the expression of neonatal hepatic antioxidant 
enzymes in a sex-specific manner, thus possibly contributing to the 
known gender differences in the oxidative balance observed later 
on in life. In primates, a maternal high-fat diet has been reported to 
modulate protein deacetylase activity and to modify fetal surtuin 1 
(SIRT1) histone, which is a likely mediator of fetal epigenome and 
metabolome in the setting of maternal obesity (50).

As for maternal obesity, in further animal models it has been 
correlated with increased pancreatic beta cell mass and excessive 
insulin secretion (51) that, in the long-term, can predispose to the 
development of diabetes and non-alcoholic fatty pancreas disease 
in the offspring (52).

Eventually, of great interest is the effect of nutrition on microR-
NAs (miRNAs), which reciprocally interact with other epigenetic 
mechanisms, such as histone modification and DNA methylation, 
in order to modulate the expression of target genes (53). The 
expression of miRNAs can be controlled by DNA methylation and 
chromatin modifications; in turn, miRNAs affect the methylation 
machinery and the expression of proteins involved in histone 
modification. The combination of these mechanisms contributes 
to determine gene expression and the resultant phenotype.

Nutrition has been shown to modulate the expression of 
endogenous miRNAs, resulting in different serum miRNA 
profiles that may influence biological processes, including inflam-
mation and metabolism. Overnutrition can actively regulate 
several miRNAs involved in immune function modulation, thus 
contributing to the development of chronic inflammation (54). 
Of interest, a maternal high-saturated-fat diet has been shown 
to induce inflammation pathways in the offspring in animal (55) 
and human studies (56).

Eventually, the intrauterine exposure to inflammatory media-
tors, whose levels are often increased in the context of obesity 
and metabolic dysregulation, has been shown to influence the 
adulthood risk of diseases with an inflammatory component 
(e.g., asthma, cardiovascular diseases, atherosclerosis) (48, 57). 
Although the causative mechanisms still need to be elucidated, a 
detrimental effect of maternal inflammation on the appropriate 
maintenance of fetal epigenetic profiles can be hypothesized.

epigenetic effects of Antenatal exposure 
to Food Pollutants
The epigenetic effects of prenatal exposure to chemical food 
contaminants, such as phthalates and bisphenol A (BPA), are in 
the early stages of elucidation.
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TABLe 2 | Main epigenetic modifications associated with neonatal nutrition.

Type of 
feeding

epigenetic 
mechanism

Route Clinical effects

Human 
breast 
milk

Unclear Nuclear factor-
κB (NF-κB) 
pathway 
inhibition

Decreased secretion of 
interleukin (IL) 8 in human 
intestinal cells; possible 
protective effect on 
necrotizing enterocolitis (NEC) 
development (65)

Unclear Peroxisome 
proliferator-
activated 
receptor-γ 
(PPARγ)

Counterbalance of the 
increased risk of obesity 
associated with PPARγ2 
Pro12Ala polymorphism in 
adolescents (71)

Unclear Hepatic 
hydroxymethyl 
glutaryl 
coenzyme A 
reductase

Lower serum levels of total 
cholesterol and low-density 
lipoprotein cholesterol in 
adults who were breastfed as 
infants (73)

Formula 
feeding

Histone 
hyperacetylation

Inflammatory 
and pattern-
recognition 
receptor genes 
(including IL-8 
and toll-like 
receptor 4)

Mild lesions on intestinal 
mucosa; possible predisposing 
role for NEC development (77)
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Phthalates are ubiquitous plasticizers mainly used in the 
manufacture of polyvinyl chloride products; food packaging 
and contact materials are considered the major sources of food 
contamination. Phthalates have been shown to act as endocrine-
disrupting compounds and are thought to interfere with epigenetic 
programming. In a rat model, fetal and postnatal contamination 
through maternal exposure and food sources, respectively, has 
been found to decrease circulating levels of testosterone and 
aldosterone in adult male offspring and of estradiol in females 
(58). Furthermore, recent murine evidence has contributed 
to shed light on the epigenetic mechanisms undergoing the 
increased risk for allergic airway disease observed after prenatal 
and early postnatal phthalate exposure (59), showing a signifi-
cantly increased global DNA hypermethylation in CD4+ T cells 
of the offspring that resulted in a transcriptional downregulation 
of genes involved in T-helper 2 differentiation (60).

Contamination modalities for BPA are similar to those 
previously described for phthalates. Dietary exposure to BPA in 
the Agouti viable yellow (A(vy)) mouse model has been shown 
to hypomethylate metastable epialleles, an effect that can be 
counteracted with dietary supplementation of methyl donors 
or genistein (61). According to further evidence from animal 
models, antenatal and perinatal BPA exposure has been found to 
lead to specific epigenetic changes, resulting, among the others, 
in impaired stress response (62) and higher rates of mammary 
cancer (63); this contributes to highlight the clinical burden 
associated with chemical food contamination.

eARLY NUTRiTiON AND ePiGeNeTiCS: 
THe KeY ROLe OF HUMAN MiLK

Among the postnatal factors that can contribute to determine 
lifelong health and disease via epigenetic mechanisms, infant 
feeding plays a key role. Evidence on the epigenetic effects of 
early nutrition on developmental programming, possibly result-
ing in later development of cardiovascular diseases, overweight, 
obesity, diabetes, and other chronic conditions (64), is constantly 
increasing.

Human breast milk (HBM) is universally considered the nor-
mative standard for infant feeding, as it confers unique nutritional 
and non-nutritional benefits that could be partly explained by 
epigenetics; although the majority of the underlying mechanisms 
are still unclear, a number of them, summarized in Table 2, have 
been progressively elucidated.

Lactoferrin is an abundant HBM protein that regulates gene 
expression by binding to pro-inflammatory bacterial DNA 
sequences in Peyer’s patches and intestinal mucosa. As a result, 
this binding inhibits the transcriptional activation of nuclear 
factor-κB (NF-κB) in human intestinal B-lymphocytes and 
downregulates IL-8 synthesis, which is involved in the pathogen-
esis of necrotizing enterocolitis (65).

Human milk oligosaccharides contained in HBM promote a 
healthier composition of gut microbiota, which plays a leading 
role in programming the infant’s immune phenotype and in pre-
venting early and later diseases (66). Particularly, breastfeeding-
induced microbiota has been proved to regulate the expression 

of genes involved in digestion, barrier function, and angiogen-
esis and enhance immunoglobulin-A secretion (67), thus pos-
sibly contributing to prevent necrotizing enterocolitis. Similar 
mechanisms involving gut microbiota have also been proposed 
to explain HBM beneficial effects in preventing infections and 
immune-mediated diseases, such as asthma and allergies (68).

The most striking evidence of nutritional programming, how-
ever, is observed for the protective effect of HBM on later obesity 
and metabolic diseases. The peroxisome proliferator-activated 
receptor-γ (PPARγ) transcription factor is highly expressed in 
adipocytes, where it regulates the maintenance of insulin sensi-
tivity. In particular, PPARγ ligands contribute to restore normal 
levels of adipose-derived substances, such as leptin, adiponectin, 
and TNF-α, thus reversing insulin resistance syndrome, improv-
ing endothelial cell functions and reducing inflammation (69). 
Pro12Ala substitution at codon 12 is the most common variant 
identified in the PPARγ2 gene and has been associated with an 
increased risk of obesity in adulthood (70). Non-breastfed ado-
lescents carrying Pro12Ala polymorphism showed higher body 
mass index, waist circumference, and higher skinfold thickness 
when compared to those who had been breastfed even for a short 
period. According to this finding, by inducing epigenetic modi-
fications, breastfeeding could counterbalance the risk of obesity 
even in genetically predisposed adolescents (71). To this regard, 
the authors supposed a possible role of the natural PPARγ ligand 
contained in HBM in decreasing PPARγ2 transcriptional activity 
in Pro12ala carriers.

Human breast milk is particularly rich in n-3 LCPUFAs, such 
as DHA. In animal models, DHA has been shown to downregu-
late hepatic lipogenesis and cholesterol biosynthesis pathways 
(72), consistently with the lower levels of serum total cholesterol 
(TC) and of low-density lipoproteins (LDL) observed in adults 
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who had been breastfed as infants (73). Paradoxically, however, 
increased TC and LDL levels have been observed in breastfed 
infants during their first year of life (73). This effect, which is 
rapidly reversible, is likely to be a direct consequence of the high 
cholesterol contents of HBM that, on the other hand, contribute 
to reduce TC and LDL levels at older ages by downregulating 
hepatic hydroxymethyl glutaryl coenzyme A reductase via epi-
genetic modifications.

The beneficial effects of HBM are not only limited to breastfed 
infants but are also relevant to breastfeeding mothers. An inverse 
correlation between breastfeeding duration and breast cancer 
risk has been previously established (74). This effect has also 
been observed in women carrying deleterious mutations in the 
BRCA1 gene who breastfed their children for more than 1 year 
(75). Although the epigenetic links occurring between HBM 
components and breast cancer prevention need to be further 
elucidated, a proposed underlying is the inhibiting effect that 
DHA exerts on breast cancer cell growth by modulating PPARβ 
mRNA expression (76).

While the beneficial epigenetic effects of HBM are well estab-
lished, on the other hand, less is currently known about formula 
feeding.

Recent evidence from preterm piglets has shown that, com-
pared to colostrum, formula feeding was associated with a sig-
nificant upregulation of inflammatory and pattern-recognition 
receptor genes, including IL-8 and toll-like receptor (TLR)-4; 
this pro-inflammatory status corresponded to decompacted 
chromatin configurations and histone hyperacetylation in key 
inflammatory genes, thus suggesting underlying epigenetic 
modifications. These findings histologically correlated with 
mild mucosal lesions, and a possible predisposing role for NEC 
development has been hypothesized (77).

iNTeSTiNAL MiCROBiAL COLONiZATiON 
AND ePiGeNeTiCS

The gastrointestinal tract is the most important site of host–
microbe interactions and the establishment of an indigenous 
intestinal microbiota during early life has been shown to have a 
major impact on human physiology.

Compelling evidence contradicts the dogma that the fetus 
resides in a sterile environment and that the newborn only attains 
its microbiota after extrauterine exposure (78). Although con-
troversy still exists about the “sterile womb” versus the “in utero 
colonization” concept (79), it is difficult to dispute that the micro-
bial environment of the fetus in  utero has major implications 
for health and disease. For over 30  years, we have known that 
even without a ruptured amniotic sac, amniotic fluid frequently 
contains significant levels of bacteria as evaluated by quantitative 
culture techniques (80). Moreover, intrauterine “infection” and 
subsequent inflammatory responses link to prematurity, brain, 
lung, and eye disease (81, 82) and suggest that perturbations of 
critical maternal–fetal–microbial interactions lead to pathology.

The postnatal establishment of gut microbiota is influenced 
by several factors: mode of delivery, contact with the mother 
(such as with skin-to-skin care), composition of the diet, and 

administration of pharmacologic agents, especially antibiotics 
(83). Immediately after birth, the infant gut microbiome has 
relatively low-species diversity and high rates of bacterial flux. 
By 3 years of age, this flux begins to stabilize (84). Staphylococcus, 
Streptococcus, Escherichia coli, and Enterobacteria are thought to 
be the first colonizers of the gut. Facultative anaerobic bacteria 
subsequently replace these taxa and consist in large relative 
abundances of Actinobacteria and Firmicutes (85). This is influ-
enced in large part by diet; for example, breastfeeding appears to 
stimulate the growth of Bifidobacteria species (86).

Hence, early environmental influences influencing gut micro-
biota during this crucial developmental period can modify its 
composition toward more pathogenic profiles that, in turn, can 
persist until adulthood and exert long-lasting effects on health 
and disease.

Among the possible mechanisms through which intestinal 
bacteria can influence human health, epigenetic modifications 
prevail. The direct potential of microbes to induce epigenetic 
changes in the host has been recently demonstrated by the evidence 
of microbe-specific patterns of epigenetic DNA modification 
after exposure to commensal or pathogenic organisms in imma-
ture human cells from intestinal epithelia (87). Interestingly, the 
same study also reported that prenatal glucocorticoid-induced 
epigenetic programming results in an altered gut microbiota 
composition in mice, suggesting the existence of complex interac-
tions between microbiome and epigenome (87).

The role of microbiome as an epigenetic modulator is thus 
gaining increasing attention and, although the underlying 
mechanisms still need to be partially elucidated, current evidence 
supports a significant correlation between gut microbiome com-
position and epigenetic changes in genes relevant to immuno-
logical, metabolic, and neurological development and functions. 
The role of gut microbiota on each of these areas is addressed in 
the following paragraphs; moreover, a summary of the currently 
recognized epigenetic mechanisms associated with specific gut 
microbiota profiles is provided in Table 3.

Modulation of immune Response and 
Development of immune-Mediated 
Diseases
Gut microbiota plays a key role in the development of immune 
response since the early phases of life: by activating specific 
pathways of molecular signaling, it supports the maturation of 
gut-associated lymphoid tissue (88), promotes the conversion of 
CD4+ T-cells into T-regulatory cells (89), and influences the bal-
ance between T-helper 1 and 2, which is known to have significant 
effects on the development of allergic diseases (90). Furthermore, 
specific microbiota-induced patterns of TLR-2 and TLR-4 
expression have been observed in gut cells; by modulating TLR 
expression, commensal intestinal bacteria may prime the host 
response to pathogenic threats and act as local immunomodula-
tors, suppressing pro-inflammatory pathways and promoting the 
intestinal transcription of cytoprotective genes (91).

Intriguing data from experimental animal models have sup-
ported the existence of a causal relationship between early micro-
bial contact and the development of immune system: particularly,  
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TABLe 3 | Epigenetic modifications associated with specific profiles of gut 
microbiota.

Strains epigenetic 
mechanism

Route Clinical effects

Lactobacilli and 
Bifidobacteria

Butyrate-
associated histone 
deacetylase 
(HDAC) inhibition

Nuclear 
factor-κB, 
peroxisome 
proliferator-
activated
receptor-γ, 
interferon-γ

Reduced intestinal and 
systemic inflammation 
(88, 104)

Deoxyribonucleic 
acid (DNA) 
methylation 
secondary to 
methyl-donor 
production

Genes 
involved in 
inflammatory 
pathways

Modulation of 
intestinal and systemic 
inflammation (88)

Increased 
Firmicutes/
Bacteroidetes 
ratio

DNA methylation 
(CpG)

Toll-like 
receptor (TLR) 
2 and TLR-4

Altered expression of 
pro-inflammatory genes

Increased risk of type 2 
diabetes mellitus (118)

DNA methylation SCD5 gene, 
encoding for 
a primate-
specific 
stearoyl- 
coenzyme A 
desaturase

Altered catalysis of 
monounsaturated fatty 
acids from saturated fatty 
acids

USF gene, 
involved in 
fatty acid 
synthase and 
in lipogenesis

Possibly increased risk 
of overweight, obesity 
and lipid metabolism 
disturbances (119)
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mice reared in germ-free conditions failed to develop immune 
tolerance and were more prone to allergic-type immune 
responses (92).

Over the last decade, increasing evidence has consistently 
shown that an abnormal composition of gut microbiota in the 
early phases of life is associated with the subsequent development 
of immune-mediated diseases (93, 94). The intrauterine period, 
as well as post-partum, is crucial for the establishment of immune 
response; therefore, different profiles of intestinal bacteria in this 
delicate phase can result in different long-term effects on immu-
nological functions.

During vaginal delivery, infants receive a significant inoculum 
of colonizing microbes from maternal birth canal and intestine. 
Consequently, neonates born by C-section (CS) delivery exhibit 
aberrant gut colonization patterns (95), which may extend at least 
until the age of 7  years (96). According to an epidemiological 
study on 1.9 million subjects from Denmark (97), the incidence 
of immune-mediated disease including asthma, juvenile arthritis 
and inflammatory bowel disease (IBD) is significantly higher in 
CS-born children.

In a similar fashion, treatment with antibiotics is known to 
cause drastic changes in intestinal microecology and, although 
other potential confounding factors may be at play (98), early 
antibiotic exposure in human and animal studies has been 
associated with increased long-term risk of asthma (99), type 

1 diabetes (T1D) (100), and IBD (101). However, the effects of 
microbiota composition in predisposing to non-communicable 
diseases are more likely to ensue from the concerted interactions 
occurring among intestinal bacterial profiles, their metabolites, 
and the host’s responsiveness rather than from the effects of single 
bacterial strains.

Recent data from pediatric patients with both ulcerative colitis 
and Crohn’s disease has shown a striking reduction in species 
richness and diversity in their microbiota, with particularly low 
abundance of Lactobacilli, Bifidobacteria, and other bacteria that 
are known to have a positive influence on gut homeostasis, such as 
Eubacterium rectale and Faecalibacterium prausnitzii (102). Given 
the substantial stability of intestinal microbiota after the first years 
of life (84), it is likely that these abnormal patterns may establish in 
earlier phases, contributing to predispose toward IBD development 
by inducing epigenetic changes. As an example, Lactobacilli and 
Bifidobacteria, whose concentration is lowered in children with 
IBD, exert well-known anti-inflammatory effects and support the 
integrity of intestinal barrier by producing butyrate through cross-
feeding (103). Acting as a histone deacetylase (HDAC) inhibitor, 
butyrate can dampen gut inflammation by suppressing nuclear 
factor-B (NF-B) activation (88), upregulating the expression of 
PPARγ and decreasing interferon-γ production (104). In addition, 
Lactobacilli and Bifidobacteria can also affect DNA methylation 
by regulating methyl-donor availability through their production 
of folate (105). Hence, a decreased butyrate production and folate 
bioavailability ensuing from an altered microbiota may result in 
an increased expression of inflammatory pathways that, in turn, 
can predispose to intestinal and systemic inflammation (88).

Further evidence on how early modifications of gut micro-
biota can influence immune responses is provided by the 
non-obese diabetic mouse model of human T1D. Dysfunctional 
antigen-presenting cells (APCs), ensuing in aberrant immune 
tolerance, have been associated with T1D development (106). 
Recently, it has been shown that prenatal exposure to different 
antibiotics, altering gut bacterial composition at the earliest 
phases of life, is associated with significant differences in the 
autoantigen-presenting functions of APCs, resulting in either 
protective (107, 108) or more diabetogenic immune profiles 
(100). Of interest, the observed protective effects were heritable 
by the second-generation offspring and were also transmitted to 
other hosts via gut microbiota transfer, suggesting the presence 
of underlying epigenetic mechanisms (108).

Long-term Metabolic effects of early 
Aberrant Microbiota
The association between early antenatal and perinatal factors and 
metabolic profile later in life has been largely established. As an 
example, preterm birth has been extensively associated with the 
development of obesity, cardiovascular diseases, and type 2 diabetes 
(T2D) in adulthood (109, 110). A significant correlation among 
maternal and neonatal nutrition (73), antenatal (111) and postnatal 
antibiotic exposure (98), and later metabolic outcomes is also well-
known, and a recent meta-analysis of epidemiological studies has 
shown that the risk of childhood obesity is significantly increased in 
infants born by CS, even after correcting for maternal weight (112).
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Similar metabolic effects have been associated with early aber-
rant profiles of gut microbiota (113–115), thus suggesting that 
the impact of microbial contact on metabolic maturation is most 
profound during early life and healthy metabolic development 
depends on interactions with healthy microbiota. Of interest, the 
obese phenotype induced by early aberrant gut microbiota has 
been observed to persist even after gut microecology is restored 
(116), and it has also been shown that obesity may be transferred 
to germ-free mice by colonizing them with intestinal microbes 
from obese humans (117).

The role for microbiota-induced epigenetic modifications in 
mediating these effects is increasingly emerging; nevertheless, 
the mechanisms underlying the interactions between early-life 
microbiota and epigenetic programming of host metabolic 
physiology are only beginning to be unraveled.

According to Remely et  al. (118), obese adults or subjects 
with T2D exhibited marked differences in gut microbiota 
composition compared to lean individuals. The metabolic state 
of the host correlated also with innate immune function, as 
significantly increased CpG methylation was discovered in the 
regulatory region of TLR4 gene in obese subjects compared to 
lean individuals; moreover, the promoter region of the TLR2 gene 
showed higher methylation levels in the diabetic group compared 
to healthy controls.

Deciphering the direction of causality between gut microbiota 
composition and the epigenetic modulation of microbial defense is 
difficult. Further insights into the sequence of events are provided 
in a report by Kumar et al. (119), according to which distinct DNA 
methylation profiles were detected in blood samples obtained 
from women 6 months after delivery, depending on the predomi-
nance of either Firmicutes or Bacteroidetes and Proteobacteria 
in the fecal microbiota during pregnancy. The potential clinical 
significance of this finding is highlighted by previous evidence 
indicating that the ratio of intestinal Bacteroidetes to Firmicutes 
is associated with metabolic disorders, and by the observation 
that the differences in methylation were located in genes whose 
function is linked to obesity, metabolism, and inflammation.

The Microbiota–Gut–Brain Axis
The first 1,000 days of life are crucial not only for the physiologic 
establishment of gut microbiota, but also for the development of 
central nervous system (CNS). While the reciprocal interaction 
between the brain and intestinal organs has been recognized long 
ago (120), evidence supporting a correlation between microbiota 
composition and altered neurocognitive and behavioral develop-
ment has progressively emerged in the last decade, contributing 
to outlining the so-called “microbiota–gut–brain axis” (121).

Remarkable evidence on the effects of gut colonization on 
brain functions and development is provided by rodents raised 
in a sterile environment, which thus lack gut microbiota and 
are referred to as germ free (GF) (122). The most commonly 
reported phenotype in GF mice was an increased anxiety-related 
behavior (123). This altered behavioral response was accompa-
nied by changes in the concentrations of neurotransmitters, their 
metabolites and neurotrophic factors involved in neural plasticity 
(124). Although the underlying molecular mechanisms are not 
well-understood, microbiota-related epigenetic regulation of 

gene expression and transcription in different brain regions has 
been hypothesized (125). Furthermore, increased basal levels of 
corticosterone and enhanced responses to stressors, which are 
known to negatively influence brain development (126), have also 
observed in GF animals, thus suggesting a possible role for gut 
microbiome in the regulation of hypothalamic–pituitary–adrenal 
axis (127).

Of interest, the reconstitution of normal microbiota patterns 
early in life in GF mice normalized both behavioral patterns 
and neurotransmission concentrations (125), whereas such an 
effect could not be established in adulthood (128, 129). Besides 
suggesting the role of microbial colonization in initiating signal-
ing mechanisms that affect neuronal circuits involved in brain 
development and behavior (125), these results also suggest the 
existence of a critical window for intestinal microbes to influence 
developmental programming of long-lasting brain functions. 
In a similar fashion, GF mice have also shown deficits in social 
functioning, completely reversible after post-weaning microbial 
gut colonization (130).

Further supportive evidence on the role of gut microbiome in 
modulating brain development and behavior is provided by the 
evidence that specific microbial profiles resulting from infections, 
antibiotic treatment, or administration of probiotic bacteria have 
been associated with consistent behavioral changes in rodent 
studies. As for the bacterial strains possibly involved, preliminary 
evidence supports Bifidobacteria and Lactobacilli in exerting 
positive behavioral effects (131, 132).

Among the pathways through which gut microbiome may 
modulate CNS functions and development, which are just begin-
ning to be unraveled, a possible role for immune signaling has 
been proposed (133). As previously discussed, the multiple anti-
genic stimuli provided by early gut colonization are fundamental 
for an appropriate immunological maturation and have been 
proved to modulate the expression of immune-related genes via 
epigenetic changes. In turn, cytokine receptors have been revealed 
on neurons and glial cells (134) and a significant contribution 
of immune signaling in normal brain function as well as during 
aging or in the context of neurodegenerative diseases (135–138) 
has been observed, thus contributing to support this hypothesis.

Recently, a possible correlation between autism-spectrum 
disorders (ASD) and abnormal gut microbiota composition 
and metabolism has been hypothesized, basing on observation 
that gastrointestinal symptoms are a common comorbidity in 
ASD children (139). However, current evidence from human 
(140–142) and rodent (130) studies is limited and controversial, 
and large prospective and randomized trials are needed to shed 
further light on this issue.

The most striking example supporting the epigenetics role 
in the context of microbiota–gut–brain axis is provided by 
irritable bowel syndrome (IBS). Increased visceral sensitivity, 
ensuing from abnormal brain responses to physiological visceral 
stimulation, has been widely proposed as one of the key mecha-
nisms underlying IBS clinical manifestations (143). In order to 
investigate the possible influence of epigenetics in determining 
brain susceptibility to visceral stimuli, Tran et al. exposed mice 
from a rodent IBS-like model to cerebral injections of trichos-
tatin A (TCA), a potent HDAC inhibitor (144). According with 
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their results, TCA injections led to a significant improvement 
in visceral hypersensitivity, quantified by the number of gut 
contractions in response to graded colorectal distension, thus 
supporting a possible involvement of epigenetic mechanisms in 
modulating stress-induced visceral pain and hinting a potentially 
beneficial effect of HDAC inhibition in the treatment of IBS. In 
line with this, altered microbiota profiles, whose association with 
detrimental epigenetic changes has been previously discussed, 
are a common finding in both pediatric and adult IBS patients 
(145, 146) and therapeutic trials with specific probiotic strains, 
such as butyrate-producing Bifidobacteria, have been shown to 
ameliorate visceral hypersensitivity in animal (147) and human 
studies (148). However, further studies are needed to elucidate 
epigenetic modifications of genes relevant to visceral pain in 
relation to gut microbiome (123) and its influencers during the 
early phases of life.

In sum, according to the abovementioned evidence, a thor-
ough understanding of how the microbiome–gut–brain axis 
operates during infancy may provide not only useful insights into 
early neurocognitive development with possible translational 
applications but also a greater awareness on the several modifi-
able factors influencing the establishment of infant microbiome 
during the first 1,000  days of life and their crucial long-term 
effects (149).

Therapeutic and Preventive implications 
of early interventions on Gut Microbiota
Evidence on epigenetic programming by gut microbiota may 
be interpreted to form a basis for a hypothesis according to 
which detrimental epigenetic modifications and, consequently, 
the development of disease, might be prevented by modulating 
microbial contact in early life. Modifying gut microbiota through 
prebiotic, probiotic, and symbiotic administration [the so-called 
“bacteriotherapy” (150)] might represent a promising approach 
to rebalance the homeostasis of systemic and mucosal immune 
systems.

So far, the most extensive evidence of early microbial interven-
tions has been published in the case of reducing the risk of atopic 
disease using probiotics in high-risk populations. Maternal and 
infant probiotic supplementation from the last weeks of preg-
nancy until the offspring was 6 months of age has been reported 
to significantly reduce the incidence of atopic dermatitis (151). 
Interestingly, this protective effect was still detectable at the age of 
7 years (152), thus suggesting the existence of immune program-
ming mechanisms, even though still largely unknown. Another 
clinical trial demonstrated that a solely maternal probiotic 
intervention during pregnancy and breastfeeding can effectively 
reduce the incidence of atopic dermatitis in the child (153), and 
a recent meta-analysis of clinical trials (154) concluded that, in 
order to be effective in decreasing the risk of atopic dermatitis, 
the probiotic intervention should be commenced before birth.

Inflammatory bowel disease and T1D are other examples of 
immune-mediated diseases that would possibly benefit from 
early probiotic interventions. As different bacteria can induce 
different immune responses, gut microbiota would represent an 
optimal target for preventive and therapeutic strategies aimed, 

for example, at generating self-tolerogenic APCs with protec-
tive effects toward T1D development (107), or at hindering the 
establishment of bacterial profiles that are known to upregulate 
pro-inflammatory pathways and predispose to IBD develop-
ment (88).

Epigenetic programming is known to take place during fetal 
life, and microbial contact might have an impact on disease 
risk even before birth. This notion is consistent with observa-
tions according to which children whose mothers have lived 
in a farming environment during pregnancy, being thus more 
exposed to microbial antigens as compared to urban mothers, 
display a lower risk for asthma (155). This protective effect may be 
mediated by epigenetic mechanisms, since gestational exposure 
to Acinetobacter lwoffii F78, a microbe isolated from cowsheds, 
resulted in modulation of histone acetylation of key immune 
mediators and protected the offspring from the development of 
asthma-like disease in an experimental mouse model (156).

The novel evidence suggesting that microbial gut colonization 
may begin in utero (80) open new areas of research aiming both 
at understanding microbial epigenetic programming during fetal 
life and at devising maternal interventions to modify disease risk 
in the offspring, with potentially useful clinical implications.

CONCLUSiON

Evidence on the role of maternal diet, early nutrition, and gut 
microbiota in the establishment of lifelong health and disease by 
determining epigenetic modifications that can be transgenera-
tionally inherited has progressively spread over the last decades.

In addition to a qualitative assessment, aimed at identifying 
the molecular pathways and the bacterial patterns of gut coloni-
zation involved, a quantitative evaluation would help to establish 
the threshold levels of exposure to nutrients deficiencies or to 
other noxious environmental factors that can lead to clinically 
relevant epigenetic changes. Moreover, a better understanding 
of the underlying mechanisms may be fundamental to improve 
the approach to disease prevention. Nevertheless, further 
experimental research linking together technology advances and 
bioinformatics analyses is needed to identify new key markers 
for translational studies of disease prediction and treatment in 
the human population.
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