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Background: Ventilator-induced lung injury is considered to be a main factor in the 
pathogenesis of bronchopulmonary dysplasia (BPD). Optimizing ventilator strategies 
may reduce respiratory morbidities in preterm infants. Permissive hypercapnia has been 
suggested to attenuate lung injury. We aimed to determine if a higher PCO2 target range 
results in less lung injury compared to the control target range and possibly reduces 
pro-inflammatory cytokines and acid sphingomyelinase (ASM) in tracheal aspirates (TA), 
which has not been addressed before.

Methods: During a multicenter trial of permissive hypercapnia in extremely low birth-
weight infants (PHELBI), preterm infants (birthweight 400–1,000 g, gestational age 23 
0/7–28 6/7 weeks) requiring mechanical ventilation within 24 h of birth were randomly 
assigned to a high PCO2 target or a control group. The high target group aimed at PCO2 
values of 55–65, 60–70, and 65–75 mmHg and the control group at PCO2 values of 
40–50, 45–55 and 50–60 mmHg on postnatal days 1–3, 4–6, and 7–14, respectively. 
TA was analyzed for pro-inflammatory cytokines from postnatal day 2–21. BPD was 
determined at a postmenstrual age of 36 weeks ± 2 days.

Main findings: Levels of inflammatory cytokines and ASM were similar in both 
groups: interleukin (IL)-6 (p = 0.14), IL-8 (p = 0.43), IL-10 (p = 0.24), IL-1β (p = 0.11), 
macrophage inflammatory protein 1α (p = 0.44), albumin (p = 0.41), neuropeptide Y 
(p = 0.52), leukotriene B4 (p = 0.11), transforming growth factor-β1 (p = 0.68), nitrite 
(p  =  0.15), and ASM (p  =  0.94). Furthermore, most inflammatory mediators were 
strongly affected by the age of the infants and increased from postnatal day 2 to 
21. BPD or death was observed in 14 out of 62 infants, who were distributed evenly 
between both groups.

Conclusion: The results suggest that high PCO2 target levels did not result in lower pul-
monary inflammatory activity and thus reflect clinical results. This indicates that high PCO2 
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target ranges are not effective in reducing ventilator-induced lung injury in preterm infants, as 
compared to control targets.

Trial registration: ISRCTN56143743.

Keywords: permissive hypercapnia, bronchopulmonary dysplasia, pulmonary inflammation, tracheal aspirates, 
preterm infants

Abbreviations: ASM, acid sphingomyelinase; BPD, bronchopulmonary dysplasia 
(chronic lung disease of prematurity); CPAP, continuous positive airway pressure; 
ELISA, enzyme-linked immunosorbent assay; IL-1, interleukin-1; IL-6, interleu-
kin-6; IL-8, interleukin-8 (also called CXCL-8); IL-10, interleukin-10; IVH, intra-
ventricular hemorrhage; LTB4, leukotriene B4; MIP-1α, macrophage inflammatory 
protein 1 alpha; NPY, neuropeptide Y; PCO2, partial pressure of carbon dioxide; 
PD, postnatal day; PHELBI, permissive hypercapnia in extremely low birth weight 
infants; TA, tracheal aspirate; TGF-β1, transforming growth factor beta-1.

inTrODUCTiOn

Bronchopulmonary dysplasia (BPD), a form of chronic lung 
disease, is frequently observed in preterm infants. BPD devel-
opment is associated with long-term oxygen supplementation 
(1, 2), and frequent re-admissions to hospitals (3, 4), resulting 
in high health-care costs (5). Lung damage and developmental 
arrest induced by BPD are mainly irreversible and the respiratory 
impairment may continue into adolescence and adulthood (6, 7).

Ventilator-induced baro/volutrauma represents one of the 
main factors in the pathogenesis of lung injury and subsequent 
BPD development and is mainly related to the magnitude of 
tidal volumes (8, 9). Permissive hypercapnia is a therapeutic 
strategy that attempts to minimize baro/volutrauma by reduc-
ing tidal volumes, which may result in alveolar hypoventilation 
with increased blood partial pressure of carbon dioxide (PCO2). 
Possible benefits of permissive hypercapnia such as diminished 
lung injury and pulmonary inflammation (10) might be due to 
the reduction of lung stretch that occurs when tidal volumes are 
minimized. Some retrospective analyses suggested that higher 
arterial PCO2 values in the first days of life of preterm infants 
might be associated with a reduced incidence of BPD (11, 12), 
whereas other studies did not (13, 14). Notably, several previous 
randomized trials of permissive hypercapnia did not demonstrate 
a reduction of BPD incidence (15–17), which might be due to 
small PCO2 differences between groups or limited sample sizes.

The preterm lung lacks antioxidant capacity and anti-
inflammatory mediators, leading to enhanced oxygen toxicity, 
inflammatory reactions, and repair processes (18–20). Thus, 
control of inflammatory processes is disturbed in immature 
lungs and inflammatory reactions may be prolonged and more 
damaging than in the mature lung. Cytokines can be measured 
in tracheal aspirates (TA) and reflect the extent of the inflam-
matory reactions (21, 22). Elevated levels of interleukin (IL)-1, 
IL-6, IL-8, intercellular adhesion molecule-1, macrophage 
inflammatory protein (MIP)-1α, transforming growth factor 
(TGF)-β1, and leukotriene B4 (LTB4) were detected within the 
first 10 days of life in the bronchoalveolar lavage fluid of preterm 
infants who subsequently developed BPD compared to infants 
who did not (23–29). In multicenter trials of high-frequency 

oscillatory ventilation (30) and inhaled nitric oxide (31), the 
clinical outcome was predicted by the IL-8 and LTB4 TA levels 
(32, 33). Furthermore, increased glycolipids, such as ceramide, 
were detected in the bronchoalveolar lavage fluid of patients 
with acute respiratory distress syndrome (34) and ceramide has 
been shown to induce apoptosis in lung epithelial cells (35, 36). 
More recently, ceramide and acid sphingomyelinase (ASM), the 
enzyme synthesizing ceramide, were shown to be involved in 
edema formation in models of acute lung injury (37, 38), and 
ASM levels were elevated in an ovine BPD model (39). Nitrite 
and nitrate are breakdown products of peroxynitrite, which may 
be formed in inflammatory processes from superoxide and nitric 
oxide. Furthermore, nitrotyrosine may be formed from peroxyni-
trite reacting with tyrosine residues (40, 41).

Thus, in addition to inflammatory cytokines, nitrite and 
nitrate as well as ASM might be involved in BPD development.

During a multicenter trial of permissive hypercapnia in 
extremely low birthweight infants (PHELBI) (42), two different 
target ranges of PCO2 were randomly allocated in order to deter-
mine whether a higher PCO2 target range prevents BPD. Within 
this trial, TAs were collected at one study center to determine 
the effects of permissive hypercapnia on pulmonary inflam-
mation. We hypothesized that permissive hypercapnia reduces 
pro-inflammatory cytokines and ASM in TA of preterm infants.

MaTErialS anD METHODS

The PHElBi Trial
In brief, infants with a birthweight of 400–1,000 g and a gestational 
age between 23 0/7 and 28 6/7  weeks requiring endotracheal 
intubation and mechanical ventilation within 24 h of birth were 
enrolled. Infants were randomly allocated within 12 h of intuba-
tion to two different target ranges of PCO2. The high target group 
aimed at PCO2 values of 55–65 mmHg on postnatal days (PD) 
1–3, followed by 60–70  mmHg on PD 4–6, and 65–75  mmHg 
on PD 7–14. The control target group aimed at PCO2 values 
of 40–50 mmHg on PD 1–3, followed by 45–55 mmHg on PD 
4–6, and 50–60  mmHg on PD 7–14 (42), representing a mild 
hypercapnia. Thereby, the intervention aimed at a difference of 
15 mmHg between the control and high target group for 14 days. 
Blood PCO2 was measured in 12-h intervals, or more frequently, 
if clinically indicated or when measurement results outside the 
target range occurred. To minimize volutrauma, a high ventila-
tion rate (60–80/min) was favored over high tidal volumes in both 
groups. Initial ventilator settings comprised a rate of 60–80/min 
or greater, inspiratory time of 0.25–0.35 s, positive end-expiratory 
pressure 3.6 mbar, and a peak inspiratory pressure (PIP) resulting 
in minimal to moderate chest rise. The rate was allowed to decrease 
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TaBlE 1 | Demographic and outcome characteristics of the infants.

Control  
target group

High  
target group

p-Value

Number of patients 31 31
Gestational age (days)a 178 (61–199) 179 (163–201) 0.32
Birth weight (g)a 690 (415–970) 730 (440–990) 0.62
Male 14 (45%) 17 (55%) 0.61
Prenatal steroids 26 (84%) 29 (94%) 0.43
Apgar score 5-mina 8.0 (5.0–10.0) 8.5 (3.0–10.0) 0.11
Apgar score 10-mina 9.0 (6.0–10.0) 9.5 (5.0–10.0) 0.18
Age at intubation (h)a 2 (0–21) 0 (0–17) 0.54
Bronchopulmonary  
dysplasiab

5 (17%) 7 (23%) 0.75

Death 1 (3%) 0 (0%) 1.00
Intraventricular hemorrhage  
(all grades)b

12 (40%) 12 (39%) 1.00

Extubated at 36 weeks/ 
monthb

30 (100%) 31 (100%) 1.00

Age at extubation (days)a 25.5 (3–74) 20 (2–77) 0.42
No continuous positive  
airway pressure (CPAP) 
36 weeks/monthb

27 (90%) 26 (84%) 0.71

Age at CPAP  
termination (days)a

57 (7–79) 47 (7–73) 0.15

Mechanical ventilation (h)a 1,252.5 (152–2,045) 1,130 (42–2,059) 0.23
No O2 36 weeks/monthb 25 (83%) 25 (81%) 1.00

aMedian (minimum–maximum), Mann–Whitney U-test; all others: Fisher’s exact test.
bn (% of surviving infants).

3

Gentner et al. Pulmonary Inflammation during Permissive Hypercapnia

Frontiers in Pediatrics | www.frontiersin.org November 2017 | Volume 5 | Article 246

only if the PIP was 14 mbar or lower. Synchronized ventilation or 
forms of volume control were applied at the discretion of the clini-
cians in charge of patient care (42). TAs were sampled from infants 
enrolled at the largest of the study centers (Ulm, Germany).

Tracheal aspirate Sampling
Tracheal aspirates were sampled during normal medically indi-
cated endotracheal suctioning procedures on PD 2, PD 4, PD 7, 
PD 14, and PD 21, unless the infant was extubated earlier. If less 
than four specimens per day were obtained, further specimen 
were collected on the following day as available. No TA sampling 
was done within 4  h of a surfactant instillation. For sampling, 
a standardized procedure was conducted. A sterile mucus trap 
was inserted in the suctioning system, followed by endotracheal 
instillation of 0.5  ml/kg normal saline, and brief reconnection 
of the ventilator (3–5 breaths). Thereafter, suctioning was per-
formed and TA collected. Afterward, the suctioning catheter 
was flushed with 0.5  ml normal saline. TA were transferred to 
an appropriate tube and immediately centrifuged at 140 × g and 
4°C for 10 min, whereupon, the supernatant was collected and 
immediately frozen. TA samples were held at −80°C until ready 
for shipment to the laboratory, which was done on dry ice. The 
number of infants from whom TA were collected declined with 
advancing postnatal age. Main factors for the declining number of 
samples were extubations within the first 21 days of life, reduced 
number of clinically indicated tracheal suctioning procedures 
due to improved pulmonary function, transfer to other hospitals, 
and death. All procedures of this study were approved by the 
institutional review board of the University of Ulm and informed 
parental permission was obtained.

Tracheal aspirate analyses
Tracheal aspirate analyses were performed at the Institute of 
Pharmacology and Toxicology of the Technical University, 
Aachen, Germany. To determine the TA levels of IL-6, IL-8, 
IL-1β, IL-10, and MIP-1α, a Bio-Plex Cytokine assay (Bio-Rad 
Laboratories, Munich, Germany) was used (43). Enzyme-linked 
immunosorbent assays were conducted to analyze the TA 
concentrations of TGF-β1 (R&D Systems GmbH, Wiesbaden-
Nordenstadt, Germany), albumin (AssayPro, St. Charles, IL, 
USA), and nitrotyrosine (Cell Sciences, Canton, OH, USA). In 
addition, competitive binding assays were used for neuropeptide 
Y (NPY) (Phoenix Europe GmbH, Karlsruhe, Germany) and 
LTB4 (R&D Systems GmbH). Nitrite TA levels were determined 
by a Griess reaction assay (R&D Systems GmbH). All assays were 
performed according to the manufacturer’s recommendations. 
For ASM, a proprietary assay was used as described before (44). 
To increase the sample amount and decrease variations of dilu-
tion, specimen from the same patient and day were pooled. To 
date, no uniformly accepted standard is available and thus no 
attempt to normalize TA levels was made. As recommended by 
the European Respiratory Task Force on Bronchoalveolar Lavage 
in children (45, 46), we expressed the data per milliliter of TA.

Clinical Outcome
The primary outcome of the trial was death or BPD before 
36  weeks postmenstrual age according to the physiological 

definition of BPD—i.e., requiring mechanical pressure support 
or supplemental oxygen at 36  weeks postmenstrual age within 
±2 days, including an oxygen reduction test for infants requiring 
less than 0.3 FiO2 (BPD or death) (42, 47).

Statistical analyses
Demographic and clinical outcome data were compared between 
the high target and the control target group by Mann–Whitney 
U-test or Fisher’s exact test as appropriate. TA concentrations 
were compared by mixed model two-way (factors being time and 
target group) analyses of variance (ANOVA) with a heterogene-
ous unstructured covariance structure SAS software 9.4 (MIXED 
procedure, SAS, Cary, NC, USA). In the figures, the effect of 
postnatal age (time) is denoted below the x-axis and the target 
group effects on each single day at the respective time points.

rESUlTS

During the enrollment period from 2008 to 2012, TAs were col-
lected from 62 infants being allocated equally to the high PCO2 
target and the control target group. Demographic data were simi-
lar between both groups with respect to the number of patients, 
gestational age, gender, birthweight, prenatal steroids, and infant 
age at intubation (Table 1).

Mixed model ANOVA of target group and postnatal age 
yielded the p-values shown in Table 2. Furthermore, the influ-
ence of PCO2 was determined for each measured time point 
separately from PD 2 to PD 21. Nitrotyrosine TA levels were 
below the limit of detection (data not shown). Nitrite TA levels 
were similar between infants assigned to the high target and 
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FigUrE 1 | Nitrite tracheal aspirates (TA) concentration in infants treated with 
high PCO2 target levels compared to control target levels. Serial TA samples 
were obtained from PD2 to PD21. Number (n) of analyzed TA for each 
postnatal day and group (high PCO2 target group/control target group): PD2 
n = 27/25, PD4 n = 24/28, PD7 n = 14/17, PD14 n = 11/15, PD21 
n = 11/11. Data are displayed as the mean of TA levels and SD on a 
logarithmic scale. Nitrite TA levels decreased with advancing postnatal age in 
both groups (###p < 0.001). On PD2, PD4, PD7, and PD14, nitrite TA levels 
were not significantly affected by high PCO2 target levels compared to mild 
hypercapnia, but on PD21 the high target group demonstrated lower nitrite 
TA levels (↔p < 0.05). PD, postnatal day.

TaBlE 2 | Mixed model analyses of variance (p-values).

Target group Postnatal age

Nitrite p = 0.1504 p < 0.0001
Interleukin (IL)-6 p = 0.1436 p = 0.0382
IL-1β p = 0.1075 p < 0.0001
Transforming growth factor-β1 p = 0.6798 p = 0.0007
IL-10 p = 0.2414 p = 0.0788
IL-8 p = 0.4268 p = 0.1318
Macrophage inflammatory protein-1α p = 0.4445 p = 0.0008
Leukotriene B4 p = 0.1067 p = 0.0036
Neuropeptide Y p = 0.5218 p = 0.0486
Acid sphingomyelinase p = 0.9408 p = 0.0011
Albumin p = 0.4095 p = 0.8114
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control target groups from PD 2 to PD 14 (Figure 1). On PD 21, 
the high target group showed significantly lower nitrite TA levels 
with 1.61 ± 1.45 µM (mean ± SD) compared to 3.84 ± 2.95 µM 
in the control group (p < 0.05). Furthermore, nitrite TA levels 
markedly decreased in both groups over the study period from 
PD 2 to PD 21 (p < 0.001).

Postnatal age also affected IL-6 TA concentration since levels 
of both, the high target group and the control target group, sig-
nificantly increased over the study period from PD 2 to PD 21 
(Figure 2A; p < 0.05). The different PCO2 target levels, however, 
did not affect IL-6 TA levels from PD 2 to PD 21. Similarly, IL-1β 
TA levels were not affected by the PCO2 target group (Figure 2B), 

but postnatal age strongly increased IL-1β TA levels in both 
groups from PD 2 to PD 21 (p < 0.001). Furthermore, TGF-β1 
TA levels increased with advancing postnatal age (Figure  2C; 
p < 0.001), but no difference in TGF-β1 TA levels was observed 
between the high target group and the control target group. IL-10 
TA levels were neither affected by the PCO2 target group nor 
postnatal age, as no significant differences were detected during 
the study period (Figure 2D). In addition, different PCO2 target 
levels did not affect NPY TA levels, while postnatal age decreased 
NPY TA levels over the study period from PD 2 to PD 21 (Table 2; 
p < 0.05).

No differences in IL-8 TA levels between the target groups 
were observed on PD 2 to PD 7 (Figure  3A), but on PD 14, 
the high target group showed significantly lower IL-8 TA levels 
with 1.499 ± 1.792 pg/ml compared to 8.480 ± 11.107 pg/ml in 
the control target group (p  <  0.05). However, the subsequent 
measurement on PD 21 showed no differences of IL-8 TA levels 
between both target groups. In addition, postnatal age did not 
affect IL-8 TA levels. In contrast to IL-8, postnatal age strongly 
affected MIP-1α TA levels, which significantly increased from PD 
2 to PD 21 in both target groups (Figure 3B; p < 0.001). The PCO2 
target group did not significantly alter MIP-1α TA levels, as no 
difference was observed between the groups. Similarly, LTB4 TA 
levels were not affected by PCO2 target levels from PD 2 to PD 21 
(Figure 3C). However, postnatal age strongly increased LTB4 TA 
levels in both groups (p < 0.01).

Finally, the PCO2 target levels did not alter the ASM TA lev-
els, as no significant difference was observed between the high 
target group and the control target group from PD2 to PD21 
(Figure 4A), while postnatal age significantly increased ASM TA 
levels in both target groups (p < 0.05). Albumin TA levels were 
not affected by postnatal age or the target group from PD 2 to PD 
21 (Figure 4B).

Day-by-day mean values of PCO2 (high PCO2 target group: 
54.07 ± 8.36 mmHg and control target group 48.94 ± 7.05 mmHg) 
and pH (high PCO2 target group: 7.23 ± 0.06 and control target 
group 7.25 ± 0.04) differed significantly between study groups, as 
intended in the study protocol (Figures 5 and 6). In summary, no 
pronounced differences in TA mediator levels of preterm infants 
between the high PCO2 target group and the control target group 
from PD 2 to PD 21 were observed.

Daily mean values for the PIP were significantly lower in 
patients randomized to the high target group as compared to 
the control target group (linear mixed effects regression model, 
p = 0.01), suggesting increased weaning efforts in the high target 
group (Figure 7).

DiSCUSSiOn

In contrast to our initial hypothesis, high PCO2 target levels did 
not result in lower inflammatory activity concerning the analyzed 
factors IL-6, IL-1β, LTB4, TGF-β1, NPY, MIP-1α, albumin, and 
ASM. Nitrite TA levels were reduced in the high target group on 
PD 21. Since PCO2 targets were discontinued on PD 14 accord-
ing to the study protocol, a difference observed only on PD 21 
is not convincing. The anti-inflammatory mediator IL-10 was 
also not affected by high PCO2 target levels. Only IL-8 showed a 
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FigUrE 2 | Cytokine tracheal aspirates (TA) concentrations in infants treated with high PCO2 target levels compared to control target levels. Serial TA samples were 
obtained from PD2 to PD21. Data are displayed as the mean of TA levels and SD on a logarithmic scale. (a) Interleukin (IL)-6: number (n) of analyzed TA for each 
postnatal day and group (high PCO2 target group/control target group): PD2 n = 27/25, PD4 n = 24/28, PD7 n = 17/17, PD14 n = 11/15, PD21 n = 11/11. IL-6 TA 
levels were not affected in the high PCO2 target group from PD2 to PD21, but increased with advancing postnatal age in both groups (#p < 0.05). (B) IL-1β: number 
(n) of analyzed TA for each postnatal day and group (high PCO2 target group/control target group): PD2 n = 27/25, PD4 n = 24/28, PD7 n = 17/17, PD14 
n = 11/15, PD21 n = 11/11. IL-1β TA levels strongly increased with advancing postnatal age in both groups (###p < 0.001). High PCO2 target levels did not affect 
IL-1β TA levels from PD2 to PD21. (C) Transforming growth factor (TGF)-β1: number (n) of analyzed TA for each postnatal day and group (high PCO2 target group/
control target group): PD2 n = 26/25, PD4 n = 23/27, PD7 n = 15/17, PD14 n = 11/15, PD21 n = 11/11. TGF-β1 TA levels were not altered by the treatment group 
from PD2 to PD21, but demonstrated elevated TA levels with advancing postnatal age in both groups (###p < 0.001). (D) IL-10: number (n) of analyzed TA for each 
postnatal day and group (high PCO2 target group/control target group): PD2 n = 27/25, PD4 n = 24/28, PD7 n = 17/17, PD14 n = 11/15, PD21 n = 11/11. IL-10 
TA levels were not affected by the target group or postnatal age. PD, postnatal day.
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significantly reduced TA level on PD 14 in the high target group, 
which did not persist until the next measured time point, PD 21.

Overall, the data demonstrate that inflammatory mediators in 
TA of preterm infants are not affected by different PCO2 targets 
as used in this trial, which has not been addressed before. These 
results are consistent with the results of the PHELBI multicenter 
trial showing neither a reduction of BPD incidence nor BPD 
severity in the high target group and may thus help to explain 
the clinical results of the PHELBI trial (42). Since inflammatory 
processes are a main factor in the pathogenesis of BPD (21), we 
assume that the comparable levels of inflammatory mediators 
observed in our study indicate that inflammatory processes 
were of similar strength in both study groups leading to an equal 
incidence and severity of BPD.

Inflammatory mediators are thought to have various effects 
on lung tissue and contribute to lung pathology. Elevated TA 
cytokine levels indicate pathologic immune responses leading 
to inflammatory processes in the lung. Different studies sug-
gest that IL-1β, IL-6, IL-8, MIP-1α, LTB4, and TGF-β1 levels are 
associated with subsequent BPD development and promote lung 
fibrosis (24, 27–29, 48–52). Notably, TGF-β1 was demonstrated to 
inhibit alveolar fluid clearance by downregulating β2-adrenergic 

receptors (52, 53). In addition, pro-fibrotic TGF-β1 stimulates 
collagen synthesis and epithelial–mesenchymal transition, con-
tributing to interstitial thickening in vivo (54). In contrast to our 
results, mouse pups exposed to chronic hypercapnia exhibit an 
altered lung matrix composition with decreased collagen levels 
(55), suggesting beneficial anti-fibrotic effects of high PCO2 levels. 
However, we did not observe an effect of high PCO2 levels on TGF-
β1 TA concentrations in preterm infants. Furthermore, IL-8 and 
LTB4 (24, 56), as well as IL-6 and NPY (23, 29, 57, 58) contribute 
to lung edema by increasing microvascular permeability in vitro. 
Elevated microvascular permeability is commonly associated 
with increased albumin concentrations in TA (24). We neither 
observed effects on LTB4, IL-6, and NPY induced by moderate 
permissive hypercapnia nor on albumin concentrations, sug-
gesting no difference in microvascular permeability between the 
study groups. In contrast to our results, hypercapnia reduced IL-6 
and IL-1β expression in murine lung tissue of a paraquat-induced 
acute lung injury model accompanied by decreased numbers of 
neutrophils in lung tissue and inflammatory infiltration in alveolar 
septa compared to normoxia (59). However, results of this study 
were obtained after 1 h of mechanical ventilation and preclude 
assessment of long-term effects. Although reduced TA levels of 
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FigUrE 4 | Acid sphingomyelinase (ASM) and albumin tracheal aspirates (TA) concentrations in infants treated with high PCO2 target levels compared to control 
target levels. Serial TA samples were obtained from PD2 to PD21. Data are displayed as the mean of TA levels and SD on a logarithmic scale. (a) ASM: number 
(n) of analyzed TA for each postnatal day and group (high PCO2 target group/control target group): PD2 n = 27/25, PD4 n = 24/28, PD7 n = 17/17, PD14 
n = 11/15, PD21 n = 11/11. ASM TA levels were not affected in the high PCO2 target group from PD2 to PD21, but increased with advancing postnatal age in 
both groups (#p < 0.05). (B) Albumin: number (n) of analyzed TA for each postnatal day and group (high PCO2 target group/control target group): PD2 
n = 27/25, PD4 n = 24/28, PD7 n = 17/17, PD14 n = 11/15, PD21 n = 11/11. Albumin TA levels were not affected by the target group or postnatal age. PD, 
postnatal day.

FigUrE 3 | Chemokine tracheal aspirates (TA) concentrations in infants treated with high PCO2 target levels compared to control target levels. Serial TA samples 
were obtained from PD2 to PD21. Data are displayed as the mean of TA levels and SD on a logarithmic scale. (a) Interleukin (IL)-8: number (n) of analyzed TA for 
each postnatal day and group (high PCO2 target group/control target group): PD2 n = 25/25, PD4 n = 28/28, PD7 n = 17/17, PD14 n = 15/15, PD21 n = 11/11. 
IL-8 TA levels were not affected in the high PCO2 target group from PD2 to PD7, but on PD14, high PCO2 target levels significantly decreased IL-8 TA levels 
(↔p < 0.05). On PD21, no difference was observed between the target groups and postnatal age did not affect IL-8 TA levels. (B) Macrophage inflammatory protein 
(MIP)-1α: number (n) of analyzed TA for each postnatal day and group (high PCO2 target group/control target group): PD2 n = 27/25, PD4 n = 24/28, PD7 
n = 17/17, PD14 n = 11/15, PD21 n = 11/11. MIP-1α TA levels were not altered by the treatment from PD2 to PD21, but demonstrated elevated TA levels with 
advancing postnatal age in both groups (###p < 0.001). (C) Leukotriene B4 (LTB4) TA levels were not affected by the target group, but demonstrated elevated TA 
levels with advancing postnatal age in both groups (##p < 0.01). PD, postnatal day.
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FigUrE 5 | Daily mean values of the partial pressure of carbon dioxide (PCO2) in all patients who were intubated at the time of measurement. Error bars indicate 
SDs; lower bars indicate numbers of patients contributing data. Shaded areas indicate the target ranges of the high target and control target groups. The PCO2 
values were significantly higher in patients randomized to the high target group as compared to the control target group (linear mixed effects regression model, 
p < 0.0001), although the high target range was frequently not achieved owing to the patients’ own respiratory efforts. The main reason for absent data was 
extubation. PD, postnatal day.

FigUrE 6 | Daily mean values of the pH in all patients who were intubated at the time of measurement. Error bars indicate SDs; lower bars indicate numbers of 
patients contributing data. The pH values were significantly lower in patients randomized to the high target group as compared to the control target group (linear 
mixed effects regression model, p < 0.0001). The main reason for absent data was extubation. PD, postnatal day.
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IL-8 were detected in the high PCO2 target group on PD 14, the 
reduction of IL-8 levels did not persist until PD 21, question-
ing the physiological relevance of the observed effect. Another 
parameter contributing to lung edema is platelet-activating factor 
(PAF), which acts by activating the cyclooxygenase pathway and 
ASM. More recently, ceramide and ASM, the enzyme synthesizing  
ceramide, were shown to be involved in lung edema formation 
induced by PAF (37, 44). Furthermore, ceramide was shown to 
induce apoptosis in lung epithelial cells (35, 36). There has not yet 
been a study testing the association between ASM levels and the 

development of BPD. Taken together, levels of inflammatory and 
fibrotic mediators were similar in both study groups.

Although we speculated that high PCO2 target levels might 
reduce mechanical stress, PCO2 target levels did not seem to 
influence pulmonary inflammatory activity. This might be due 
to altered pH values, which possibly affects a large number of 
enzymes that are out of their pH optimum, thus counteracting 
any benefits. In contrast to our results, adult patients suffer-
ing from acute respiratory distress syndrome demonstrated 
beneficial reductions of pulmonary inflammatory cytokines 
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FigUrE 7 | Daily mean values for the peak inspiratory pressure (PIP) in conventionally ventilated patients. Error bars indicate SDs; lower bars indicate numbers of 
patients contributing data. The PIP values were significantly lower in patients randomized to the high target group as compared to the control target group (linear 
mixed effects regression model, p = 0.01). The main reason for absent data was the use of high-frequency oscillatory ventilation or proportional assist ventilation or 
extubation. PD, postnatal day.
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and neutrophils, which was achieved by lowering the intensity 
of mechanical ventilation and thus tolerating higher PCO2 (60). 
The reason for the difference of effects of high PCO2 target levels 
between adults and preterm infants remains to be determined.

Hypercapnia in adult and newborn rodent models demon-
strated attenuation of lung neutrophil recruitment, pulmonary 
cytokine concentrations, cell apoptosis, and oxygen-derived and 
nitrogen-derived free radical injury (61). Neonatal rats exposed 
to 60% oxygen for 14 days showed phagocyte influx, interstitial 
thickening, and impaired alveolar formation, which was attenu-
ated by concurrent hypercapnia (5.5% CO2) (62). Thus, inhaled 
5.5% CO2 provided partial protection against parenchymal and 
vascular injury in a mouse model of chronic neonatal lung injury, 
although the authors acknowledge possible critical differences 
between permissive and therapeutic hypercapnia in their effects 
on the lung (62). More recent studies suggested that hypercapnia 
might also have undesirable effects on lung tissues (63–66). 
Hypercapnic acidosis impairs pulmonary epithelial wound heal-
ing (67), which is NF-κB dependent and involves inhibition of 
cellular migration. Thus, hypercapnic acidosis might attenuate 
injury pathways, but on the other hand, it possibly interferes with 
lung repair (68). Moreover, lung fluid clearance is impaired by 
hypercapnia independently of pH by triggering endocytosis and 
thus inhibition of Na,K-ATPase activity in alveolar epithelial cells 
(69). Another study demonstrated an association between higher 
PCO2 levels during the first few days of life and the subsequent 
incidence of BPD (13), further questioning the potential clinical 
benefit of hypercapnia in preterm infants.

Postnatal age of the infants affected almost every analyzed 
factor demonstrated by significant changes of TA nitrite, IL-6, 
IL1β, TGF-β1, MIP-1α, NPY, LTB4, and ASM levels. The inflam-
matory mediators IL-6, IL1β, TGF-β1, MIP-1α, LTB4, and ASM 
increased with advancing postnatal age, while nitrite and NPY 
levels declined during the study period.

Small differences in TA cytokine levels may be missed in our 
study because of the small sample size. However, we limited the 
collection of TA to the largest center of all participating centers 
of the PHELBI trial to counteract inter-center variations such as 
differences of tracheal suctioning procedures and clinical care. 
Therefore, even a multicenter TA sampling study may not yield 
more precise results and more statistically significant differ-
ences. Furthermore, if there are clinically important differences 
in a larger sample size, unequivocal trends should already be 
observed in analyses of inflammatory mediators alike. Thus, 
we assume that pulmonary inflammatory activity was indeed 
similar in both study groups and important differences would 
not have become detectable with a larger sample size. Moreover, 
the biochemical results go along with the clinical outcome in this 
study, which indicates that high target levels were as beneficial as 
control target levels in terms of ventilator-induced lung injury, 
lung inflammation, and the development of chronic lung disease 
(42). In addition, our results agree with the clinical results of 
other randomized controlled studies, which also did not observe 
a reduced incidence of BPD associated with permissive hypercap-
nia in preterm infants (16, 32, 70).

According to the definition, 12 of 62 infants suffered from 
BPD in our study, which were distributed statistical comparably 
in both treatment groups. Thus, similar cytokine levels in both 
groups were followed by a similar clinical outcome in the patients 
studied here as well as in the main multicenter trial (42), which 
might be viewed as a prediction of the main trial outcome by the 
observed cytokine levels. Differences in the rate of BPD in com-
parison to previous studies (24, 25, 28, 71) might be explained by 
different BPD definitions and the multitude of improvements that 
have been introduced into neonatal care.

A limitation of this study is the declining number of infants 
supplying TA with advancing postnatal age, because infants are 
extubated as soon as clinically possible to limit potential lung 
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damage from mechanical ventilation. Therefore, infants, who 
were more prone to develop BPD, remained longer in the study 
and supply more TA due to continuing invasive mechanical 
ventilation. Thus, after 14 or 21 days of life, the acquired TA 
may not be completely representative for the whole group, 
since TA was only available from infants who still received 
invasive mechanical ventilation at that time. Furthermore, 
normalization of TA to correct for dilution is still controversial. 
Different techniques have been proposed, including albumin 
content, urea, or secretory immunoglobulin A concentrations. 
However, no uniformly accepted correction factor is currently 
available. We did not correct our results for dilution and 
expressed the data per milliliter of TA, as recommended by the 
European Respiratory Task Force on Bronchoalveolar Lavage 
in children (45, 46).

COnClUSiOn

No differences in the levels of most cytokines were found when 
comparing infants with control or high PCO2 targets. In addition, 
there were no differences in the clinical outcome, which was in 
accordance with the results of the main multicenter PHELBI trial. 
We assume that higher PCO2 target ranges are as beneficial as 
the control target range. Indeed, high target levels may reduce 
mechanical stress for the pulmonary parenchyma, but possible 
suboptimal pH-values might impede enzymes, which may be 
further inhibited directly by high PCO2 concentrations. Overall, 
the positive effects of high target levels such as less bronchoal-
veolar damage may be abrogated by the negative effects. This 
corresponds to the results of the TA measurements.
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