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Shock in newborn infants has unique etiopathologic origins that require careful assess-
ment to direct specific interventions. Early diagnosis is key to successful management. 
Unlike adults and pediatric patients, shock in newborn infants is often recognized in 
the uncompensated phase by the presence of hypotension, which may be too late. 
The routine methods of evaluation used in the adult and pediatric population are often 
invasive and less feasible. We aim to discuss the pathophysiology in shock in newborn 
infants, including the transitional changes at birth and unique features that contribute 
to the challenges in early identification. Special emphasis has been placed on bedside 
focused echocardiography/focused cardiac ultrasound, which can be used as an 
additional tool for early, neonatologist driven, ongoing evaluation and management. An 
approach to goal oriented management of shock has been described and how bed side 
functional echocardiography can help in making a logical choice of intervention (fluid 
therapy, inotropic therapy or vasopressor therapy) in infants with shock.
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BACKGROUND

The key to the management of shock in the newborn period is early identification and determination 
of etiology to provide appropriate care. American College of Critical Care Medicine (ACCM) pub-
lished clinical guidelines and practice parameters to promote “best practices” and to improve patient 
outcomes in pediatric and neonatal septic shock in 2002, with a subsequent update in 2007 (1).  
In addition to emphasizing early recognition and instituting goal oriented, time sensitive interven-
tions, these guidelines also support the use of hemodynamic parameters, specifically central venous 
oxygen saturation and cardiac index, in ongoing management of shock in the neonatal intensive 
care unit (NICU).

Despite widespread dissemination of such guidelines, management of neonatal shock continues 
to rely on traditional methods of monitoring and management. We aim to discuss the unique patho-
physiology associated with shock in newborns, with a focus on the very low birth weight (VLBW) 
infants, in addition to discussing newer modalities for hemodynamic monitoring, and the role of 
bedside functional echocardiography in management of neonatal shock.

DeFiNiTiON OF SHOCK

Shock is a pathophysiologic state characterized by an imbalance between oxygen delivery and oxygen 
demand in the tissues leading to tissue hypoxia. The initial compensated phase is characterized 
by neuroendocrine compensatory mechanisms with increased tissue oxygen extraction, leading to 
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TABle 1 | Showing mechanisms of neonatal shock leading to poor tissue 
perfusion.

Mechanism 
for poor tissue 
perfusion

Types of neonatal 
shock

Causes of shock

Abnormalities 
within the 
vascular beds

Distributive shock Sepsis, endothelial injury, and 
vasodilators

Defects of the 
pump

Cardiogenic shock Congenital heart disease, heart failure, 
arrhythmia, cardiomyopathy, and post-
cardiac surgery/post-patency of the 
ductus arteriosus ligation

Inadequate blood 
volume

Hypovolemic shock Blood loss from infants or placenta 
around birth of infants

Flow restriction Obstructive shock Cardiac tamponade, pneumothorax, 
high pulmonary vascular resistance 
restricting blood flow such as in 
persistent pulmonary hypertension of 
the newborn, pulmonary hypertension

Inadequate 
oxygen-releasing 
capacity

Dissociative shock Methemoglobinemia and severe 
anemia

2

Singh et al. Managing Hemodynamic Instability in Neonatal Shock

Frontiers in Pediatrics | www.frontiersin.org January 2018 | Volume 6 | Article 2

maintenance of blood pressure (BP) in the normal range. The 
blood flow and oxygen supply to vital organs are maintained at 
the expense of non-vital organs. The compensated phase may have 
additional signs such as tachycardia, prolonged capillary refill 
time (CRT) and decreased urine output. In adults, these features 
are commonly seen early in compensated shock. However, these 
features may be missed in neonates, in whom shock is mostly 
recognized in the uncompensated phase. This is in part due to 
the lack of data on normal BP ranges that would ensure adequate 
organ perfusion in the premature infant. The uncompensated 
phase of shock is characterized by a decrease in vital and non-
vital organ perfusion, which may be evident by the development 
of lactic acidosis. This will eventually lead to cellular disruption 
with irreversible damage, clinically characterized by multiorgan 
failure and death.

PATHOPHYSiOlOGY OF  
NeONATAl SHOCK

Myocardial dysfunction, abnormal peripheral vasoregulation and 
hypovolemia leading to decreased delivery of oxygen and nutri-
ents to tissues are often the primary sources of neonatal shock. 
This is often complicated by relative adrenal insufficiency often 
seen in the premature infant. The causes and types of neonatal 
shock are described in Table 1.

The neonatal myocardium has fewer contractile elements com-
pared with older children and adults (2). In particular, immature 
myocardium has a higher basal contractile state and has higher 
sensitivity to changes in afterload (3). This is especially important 
in the context of the removal of placenta which is low vascular 
resistance state and transition to the higher vascular resistance 
state at birth. This is further evidenced by the low superior vena 
cava (SVC) flow seen in a large proportion of infants in the first 
6–12 h of life (4). Other features such as higher water content, 

greater surface-to-volume ratio, immature sarcoplasmic reticu-
lum and reliance on extracellular calcium stores further render 
neonatal myocardium incapable of adapting adequately to the 
changes at birth. This can be further complicated by factors lead-
ing to fetal hypoxia and perinatal depression leading to metabolic 
acidosis and poor myocardial function (5).

This is distinct to the myocardial dysfunction beyond the 
transitional period when immature myocardium may have a 
lesser role to play. Hemodynamically significant PDA (hsPDA) 
is a common cause of hypotension in VLBW infants. The pres-
ence of an hsPDA with resultant decrease in diastolic BPs can 
also theoretically affect the perfusion of the myocardium, which 
primarily takes place during diastole. However, studies show no 
significant change in contractility with an hsPDA (6, 7). On the 
contrary, there may be an initial increase in the left ventricular 
output secondary to an increase in left ventricular preload in the 
presence of left to right shunt. The failure of such compensatory 
mechanisms in the infant may, however, ultimately lead to sys-
temic hypoperfusion. Following ligation, the acute changes in the 
myocyte fiber length due to the change in left ventricular preload 
can also affect myocardial contractility before the myocardium 
adapts to the new loading condition. Finally, any condition 
leading to asphyxia and/or inadequate perfusion to the myo-
cardium can further compromise the function. Examples in the 
NICU may include structural heart conditions, arrhythmia, or 
cardiomyopathies.

The vascular smooth muscle tone and its complex regulation 
play a key role in pathogenesis of neonatal shock. A balance of the 
vasodilating and vasoconstricting forces regulates the tone. These 
factors may involve autocrine, endocrine, paracrine, and neuronal 
factors. Commonly described factors include vasopressin, nitric 
oxide, eicosanoids, catecholamines, and endothelin (8–12). A key 
effect may involve alteration in cytosolic calcium concentration. 
The role of adenosine triphosphate dependent K channels in the 
vascular smooth muscle tone has been recently studied (13). The 
immaturity of the autonomic nervous system of infant also affects 
the circulatory function and vascular tone (14, 15).

Unlike in the pediatric or adult population, hypovolemia is not 
a very commonly encountered etiology of shock in the first few 
days of life. Causes of hypovolemia in newborns would include 
history of in utero blood loss such as with maternal abruption, 
fetomaternal or fetoplacental hemorrhage or tight nuchal cord. 
Postnatally, acute blood loss may be associated with gut perfora-
tion following necrotizing enterocolitis, sub-galeal bleeding or 
intracranial hemorrhage. In addition to this, relative hypovolemia 
can be seen with capillary leak and vasodilatory shock in severe 
sepsis.

Pathophysiology of shock in newborns is unique since it is 
associated with physiologic transition from fetal circulation to 
neonatal circulation at birth. Suprasystemic pulmonary vascular 
resistance (PVR) in the prenatal period may remain elevated, 
especially in the presence of ongoing hypoxia and acidosis from 
sepsis, leading to persistent pulmonary hypertension of the 
newborn (PPHN). The latter contributes to right ventricular 
failure, and as such may need therapies directed to decrease right 
sided pressures. In addition to PPHN, newborn shock may be 
associated with closure of ductus arteriosus in a ductal dependent 
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FiGURe 1 | Relationship between heart rate (HR), cardiac filling, and cardiac 
output (CO). Excessive tachycardia may decrease CO by decreasing preload 
and hence stroke volume. It may also impair cardiac function from decreased 
coronary perfusion in shortened diastole.
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congenital heart lesion, as such requiring prostaglandin infusion 
to open and maintain patency of the ductus arteriosus (PDA).

In addition, there is plenty of evidence suggesting low cortisol 
levels in sick term, late preterm, and preterm infants (16–19). Both 
adrenal insufficiency and decreased vascular responsiveness to 
catecholamines can contribute to vasopressor resistant shock (20). 
Low dose steroids have been found to improve cardiovascular 
status in infants with vasopressor resistant shock, further sup-
porting the role of relative adrenal insufficiency (21–23).

ASSeSSMeNT OF CARDiAC OUTPUT (CO) 
AND TiSSUe PeRFUSiON

Adequacy of the systemic and peripheral blood flow and thus 
oxygen delivery to the tissues can be measured by monitoring 
BP, CO, and/or systemic vascular resistance (SVR).

Direct yet invasive measures of cardiovascular function such 
as CO measurement via thermodilution or pulse induced contour 
cardiac output, pulmonary wedge pressure, or central venous 
pressure providing accurate assessment in adults or older children 
may be impractical in the premature infant. In addition to the 
difficulty associated with intracardiac shunt placement in VLBW 
infants, the dye dilution and thermodilution methods may not 
be accurate due to the presence of intracardiac and ductal shunts.

It is known that BP = CO × SVR. Both BP and CO can be meas-
ured. SVR is a derived value from the above equation. CO = heart 
rate (HR) ×  stroke volume (SV). SV depends on preload, myo-
cardial contractility, and afterload conditions. The relationship 
between HR, cardiac filling, and CO has been shown in Figure 1.

Measurement of myocardial contractility using load depend-
ent measures such as fractional shortening (FS) can be affected by 
the right ventricular dominance characteristic of fetal circulation. 
Appropriate assessment of myocardial activity requires measure-
ment of load independent measures such as relation between 
velocity of circumferential fiber shortening and left ventricle (LV) 
wall stress indices (24).

Blood pressure monitoring, preferably measured invasively 
can offer continuous real time assessment of the CO (25). 
However, lack of consensus definition of hypotension in the 
neonate continues to be a major hindrance to the use of BP as 
an adequate measure for such an assessment (26). BP may be 
affected by demographic factors such as birth weight, gestational 
age, and postnatal age; and coexistent clinical factors such as ante-
natal steroids, PDA, level of respiratory support, or therapeutic 
hypothermia. BP is directly affected by SVR, which in turn is 
regulated by multiple factors including drugs, sepsis, temperature, 
and hormonal changes. Hence, it may not be the best measure of 
tissue perfusion. In addition, presence of intra-atrial and ductal 
shunting may not allow the assumption that ventricular output 
is an accurate measure of systemic blood flow (27, 28). Mean BP 
value less than the gestational age in weeks is often considered 
adequate in the first few days of life (29–31), but this is rather 
simplistic since thresholds may vary between different patients, 
and at different time points in the same patient. Hence, attention 
must be paid to additional measures of perfusion.

Arguably, flow is a better indicator of perfusion than the BP 
that drives the flow to the organs. However, flow measures such as 
LV and right ventricle (RV) output may not be accurately depictive 
of organ blood flow in VLBW infants due to the presence of above 
mentioned shunts in the transitional period. SVC flow may be 
used as a valid indicator of cerebral blood flow (CBF) (32–34). In 
fact, low SVC flow has been shown to be strongly associated with 
subsequent IVH or neurodevelopmental impairment (33–35). 
However, recent studies have shown lack of sensitivity of SVC 
flow in predicting IVH (36). There remain concerns regarding 
significant intraobserver and interobserver variability in assess-
ing SVC flow and hence its repeatability. This makes it difficult to 
use in clinical practice, although trend can be useful. Adequate 
SVC flow is used as one of therapeutic endpoints per the ACCM 
guidelines (1).

The relation between mean BP and systemic blood flow is a 
complex one in a VLBW infant, especially in the first few days of 
life. Autoregulation ensures adequate perfusion to vital organs in 
states of hypoperfusion. However, cerebral autoregulation may be 
lacking in the VLBW transitionally at birth or during period of 
illness. 30 mm Hg has been proposed as the cutoff for mean BP 
below which cerebral perfusion may not be adequate; however, 
this relation may not be entirely accurate given differing findings 
from various studies (37–39).

Other indirect clinical measures of cardiovascular function 
include CRT, urine output, HR, and presence of lactic acidosis.  
A combination of such measures rather than individual assessments 
may offer increased specificity for detecting low flow states (40).

Central venous pressure approximates right atrial pressure 
and can give valuable information regarding the preloading 
conditions and in assessing response to volume in critically ill 
patients. Normal numbers have been described for term and 
preterm infants, with special emphasis on the trend pattern. 
However, feasibility in the newborn infants remains questionable 
owing to the invasive nature of the procedure (41–43).

Mixed venous oxygen saturation (SvO2) is considered as the 
balance between oxygen demand and delivery and has been used 
as a determinant for tissue hypoxia. It is one of the key targets  
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TABle 2 | List of the parameters used for assessment of neonatal shock.

Conventional parameters (commonly used in 
standard practice)

Capillary refill time
Urine output
Heart rate
Blood pressure
Presence of lactic acidosis
Central venous pressure
Mixed venous saturation
Arterio venous oxygen difference

New parameters (now being used in clinical 
practice)

Functional echocardiography
Near infrared spectroscopy

Novel parameters (research tools at this time, 
not being used in clinical practice)

Electrical cardiometry
Visible light spectroscopy
Perfusion Index
Functional cardiac MRI
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(in addition to the determinants for preload and contractility) for 
goal directed management in severe sepsis and septic shock (44). 
Values both below normal and supranormal have been associated 
with poor outcomes (45, 46). Normal values for central venous 
oxygen saturation (ScVO2) in preterm infants have also been 
described, but widespread use is limited by the invasive nature 
of the procedure along with the effect of persisting fetal shunts in 
the newborn period (47). ScVO2 is another therapeutic end point 
as suggested by ACCM guidelines.

Arterial venous (A-V) oxygen difference is the difference 
between the oxygen content of the arterial and venous blood. 
The normal numbers would be less than 5 ml/100 ml of blood or 
25%. In low output states, A-V extraction increases, decreasing 
the mixed venous saturation, and hence increasing the difference. 
In distributive shock, there is decrease in the oxygen extraction, 
leading to higher mixed venous saturation and hence a narrowed 
difference. This measure offers an excellent estimate of tissue 
oxygen delivery, however, limited again by the invasiveness of 
the procedure.

Electrical cardiometry (Aesculon; Cardiotronic; La Jolla, CA, 
USA) allows for assessment of CO by measuring the changes in 
thoracic electrical bioimpedance caused by the cardiac cycle. It is 
non-invasive, easy to apply, offers continuous assessment and has 
recently been validated against invasive methods of CO meas-
urements in hemodynamically stable newborns. However, more 
data are needed for validation in neonates with hemodynamic 
compromise before its widespread clinical applicability (48, 49). 
In addition, sicker infants on significant ventilator support  
(i.e., high frequency oscillation) may have poor correlation com-
pared with echocardiography derived COs (50).

Near infrared spectroscopy (NIRS) has been evaluated as a 
tool to assess cerebral and peripheral oxygenation and oxygen 
extraction. The benefit of this modality is the availability of con-
tinuous measurement. Among other measures, NIRS can provide 
values for cerebral oxygenation (rScO2) and cerebral fractional 
tissue oxygen extraction. Reference values with comparison with 
other modalities have now been published, but greater clinical 
applicability rests with trend monitoring rather than absolute 
numbers (51–53). There remains paucity of data in preterm 
infants and even in term infants there remain concerns regarding 
when intervention should be based primarily based on rScO2. 
Moreover, NIRS values remain quite non-specific and hence 
unreliable for the abdominal organs. The significance of studying 
NIRS of the kidney is being evaluated, and it may be used as a 
reflection of perfusion in future. In practice, with the available 
data NIRS can be useful for cerebral oxygenation monitoring in 
term infants but we need more convincing data for its use in pre-
term infants and for gut perfusion before it can be incorporated 
in clinical practice guidelines. Cerebral perfusion measured by 
NIRS can give a good idea about the adequacy of cerebral perfu-
sion. A recently completed multicentre trial comparing blinded 
versus unblinded NIRS did demonstrate a reduction in cerebral 
hyperoxia and hypoxia with a trend toward lower mortality in the 
unblended NIRS group (54).

The use of Visible Light Technology (VLS, T-Stat; Spectros, 
Portola Valley, CA, USA) has been described for continuous assess-
ment of capillary oxygen saturation in various organs (55, 56). 

Unlike pulse oximetry, VLS measurements are not affected by 
conditions of local ischemia, lack of pulsatile flow, vasoconstric-
tion, or hypothermia. More data are needed in newborns with 
hemodynamic compromise to validate the correlation between 
the changes in SVR and the hemoximetry findings with T-Stat.

The plethysmographic signal of pulse oximeter can be used 
to calculate ratio of the pulsatile and non-pulsatile components, 
described as Perfusion Index. This has been recently studied and 
is found to be reasonably predictive of low flow states, including 
patent ductus arteriosus (57–59). Reference values still need to 
be established in the preterm infant in whom PI is significantly 
affected by the transitional circulation, taking up to 72 h for the 
values to stabilize (59). Hence, limiting the utility of PI in preterm 
infants during early life.

Functional cardiac MRI has been recently evaluated as an 
additional feasible tool to evaluate cardiac hemodynamics, 
especially PDA. At this time it is deemed to be an insightful 
research tool while awaiting more studies (60, 61). Role of bedside 
echocardiography, especially Doppler ultrasonography is further 
discussed in one of the following sections. All the parameters 
used for assessment of neonatal shock are summarized in Table 2.

MANAGeMeNT OF NeONATAl SHOCK—
CliNiCAl eSSeNTiAlS iN MANAGeMeNT 
OF SHOCK

Key to the management is early recognition and identifying the 
underlying pathophysiology of shock. The earlier findings include 
pallor, poor feeding, tachycardia, tachypnea, and temperature 
instability. As discussed earlier, hypotension is a late finding 
in neonatal shock. In addition, other late features may include 
weak peripheral pulses, low ScvO2, signs of decreased peripheral 
perfusion such as acidosis, elevated lactate. In spite of being a late 
finding, hypotension is the most commonly used determinant of 
decreased perfusion in NICU given the ease of monitoring. The 
clinician must keep a keen eye on the other signs of symptoms 
discussed earlier before the “ischemic threshold” is reached for 
low BP. The other traditionally used clinical parameters such as 
clinical assessment, HR, CRT, urine output, and serum lactate are 
also proxy indirect markers of cardiovascular well-being. Early 
bedside focused echocardiography, described by some as focused 
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FiGURe 2 | Goal oriented targeted management and role of 
echocardiography in instituting specific intervention.
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cardiac ultrasound, can help in early identification of underlying 
pathophysiology and targeting specific therapy. The aim of focused 
echocardiography is not to rule out congenital heart defect but 
to gain physiological information which can help in delivering 
goal oriented time specific intervention. Interventions should be 
based after carefully considering the underlying pathophysiology 
(Figure 2). In addition to the modalities discussed earlier, func-
tional echocardiography and NIRS can give the neonatologist a 
unique skill to evaluate reliable measures of organ perfusion and 
monitor changes following intervention. This is further discussed 
in the next section.

The ACCM guidelines have established goals and therapeutic 
end points for the management of shock in both delivery room 
and subsequently in the NICU. The therapeutic end points in the 
first hour of resuscitation include CRT ≤ 2 s, normal and equal 
central and peripheral pulses, warm extremities, urine output 
>1  ml/kg/h, normal mental status, normal BP for age, normal 
glucose, and calcium concentrations (62).

Along with consideration of interventions to increase BP, atten-
tion should be paid to conditions contributing to hypoperfusion. 
These may include but not limited to patency of ductus arteriosus, 
sepsis, excessive mean airway pressure, pneumothorax, and 
adrenal insufficiency. These should be addressed accordingly. 
The common interventions used in NICU to improve BP include 
use of inotropes/vasopressors, volume resuscitation, and steroid 
administration.

There is no clear correlation between blood volume and BP in 
neonate (63). Hypovolemia is rarely the primary cause of hypo-
tension in the VLBW infant in the first few days of life, unless 
there is clear history of perinatal blood loss. Indeed, studies have 
shown that dopamine is more effective in correcting hypotension 
compared with fluid resuscitation in the immediate postnatal 
period (64). In addition, excessive fluid administration may be 
associated with adverse outcomes such as PDA, chronic lung 
disease, and mortality (65). Volume support can increase preload 
and hence CO. Hence, in the absence of hypovolemia, volume 
support of 10–20  ml/kg over 30–60  min may be reasonable. 
Functional echocardiography can be of assistance in determining 
volume status and following changes with intervention.

Abnormal vasoregulation is the major contributor to neonatal 
shock. Vasopressor–inotropes, inotropes, and lusitropes have been 
extensively used in the management of neonatal shock, surpris-
ingly without robust data directing such management. Dopamine 
and epinephrine are vasopressor–inotropes and as such, increase 
both SVR and myocardial contractility. Dobutamine is an ino-
trope with a variable peripheral vasodilatory action. Milrinone is 
also an “inodilator” that decreases peripheral vascular resistance 
but with variable inotropy in newborns due to its age depend-
ent hemodynamic effects (66). Its use has been described with 
coexistent pulmonary hypertension (67, 68). Phenylephrine and 
vasopressin are two pure vasopressors and can be of benefit in 
catecholamine resistant vasodilatory shock. Vasopressin has been 
recently discussed to have added benefit in the management of 
hypotension associated with persistent pulmonary hypertension 
given the pulmonary vasodilatory action mediated via V1 recep-
tors, but more data are needed before recommendations can be 
given for wider use (69).

Commonly used inotropes and vasopressor drugs used 
in neonatal shock are summarized in Table  3. It is prudent to 
understand their site of action and hemodynamic effects while 
managing critically ill infants with hemodynamic instability. The 
physiological information gained by bedside functional echocar-
diography may help in making a logical choice of medications 
depending upon the underlying physiology and the desired 
hemodynamic effects. For example, patients with shock may 
warrant use of vasopressor therapy while patients with impaired 
cardiac function may need more inotropic therapy. Recently, 
there has been interest in studying the effects of pentoxifylline in 
neonatal shock, and some studies have shown a positive effect of 
hemodynamic instability, decrease in hospital stay and mortality 
especially in infants with gram negative septicemia. However, 
currently, it is not being routinely used or recommended in 
clinical practice to improve hemodynamic instability and more 
studies are required to study its significance (70).

Beyond the first hour of stabilization, the updated ACCM 
guidelines emphasize the use of goal directed therapy with 
additional therapeutic end points, some involving the use of 
functional echocardiography. Few of the goals mentioned include 
central venous oxygen saturation of >70%, cardiac index between 
3.3 and 6.0 l/min/m2, SVC flow >40 ml/kg/min, and ruling out 
suprasystemic right sided pressures and right ventricular failure 
on echocardiography (1).

Early goal directed therapy (EGDT) has been well studied in 
adult population. From a single center study (2001), Rivers et al. 
reported that EGDT provides significant benefits with respect 
to outcome in patients with severe sepsis and septic shock (44). 
Following this study many centers adopted EGDT. However, recent 
muticenter trials (ProCESS trial, ProMISe trial, and ARISE trial) 
from North America, United Kingdom, and Australasia failed to 
show such benefits as compared with local resuscitation protocols 
(71–73). In fact, they reported an increased use of resources with-
out any improvement in the outcomes of adult patients with septic 
shock (71–73). In a patient-level meta-analysis, PRISM investiga-
tors reported that EGDT did not result in better outcomes than 
usual care and was associated with higher hospitalization costs 
across a broad range of patient and hospital characteristics (74).
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TABle 3 | Commonly used inotropes and vasopressor drugs in neonatal shock.

Name of drug Dose Site of action Hemodynamic effects

Dopamine 1–4 μg/kg/min Dopaminergic receptors (1 and 2) Renal and mesenteric dilatation

4–10 μg/kg/min α receptors Inotropic effects

11–20 μg/kg/min β receptors Vasopressor, increase SVR and increase PVR

Dobutamine 5–20 μg/kg/min β1 and β2 receptors, some effect  
on α receptors

Inotropic effects; decrease SVR; increase  
cardiac output

Epinephrine (adrenaline) 0.02–0.3 μg/kg/min α1 receptors Inotropic effects; decrease SVR

0.3–1 μg/kg/min β1 and β2 receptors Vasopressor effects; increase SVR

Nor-epinephrine 
(nor-adrenaline)

0.1–1 μg/kg/min α1 and α2 receptors Vasopressor effects; increase SVR

Hydrocortisone 1–2.5 mg/kg; 4–6 hourly Enhance sensitivity to catecholamines Uncertain—enhance sensitivity to catecholamines

Vasopressin 0.018–0.12 U/kg/h Vasopressin 1 receptors Increase SVR; no inotropic effect

Milrinone 50–75 μg/kg/min bolus followed by 
0.25–0.75 μg/kg/min

Phosphodiesterase III inhibitor and  
produces effects at β1 and β2 receptors

Inodilator effects; lusitropic effects; increase  
contractility; and decrease SVR

Levosimendan 6–24 μg/kg/min bolus followed by 
0.1–0.4 μg/kg/min

Multiple action including Phosphodiesterase 
inhibitor effect on higher doses

Inodilator effects; increase contractility without increasing 
myocardial oxygen demand

SVR, systemic vascular resistance; PVR, pulmonary vascular resistance.

TABle 4 | Bedside focused echocardiography/focused cardiac ultrasound (FoCUS) in neonatal shock.

Fast cardiac ultrasound (FoCUS)/focused echocardiography in shock

Type of assessment echocardiographic assessment echocardiographic view(s)

Qualitative assessment of cardiac 
function and filling

Cardiac filling by “eyeballing” (Figure 3) Apical 4 chamber view (A4C) and 
parasternal long axis view (PLAX)

Assessment of inferior vena cava for collapsibility to assess hypovolemia (Figure 4) Subcostal view

Visual assessment of volume overloading (Figure 3) A4C and PLAX views

Cardiac function assessment on visualization A4C and PLAX views

Cardiac tamponade or pericardial effusion (Figure 5) Subcostal view, A4C, and PLAX views

Qualitative assessment of pulmonary 
hypertension

•	Hypertrophy and/or dilatation of right ventricle
•	Flattening of interventricular septum (Figure 6)
•	Right to left or bidirectional shunt across patent ductus arteriosus
•	Bidirectional shunt across foramen ovale

A4C and PLAX views
Parasternal short axis view (PSAX)
High left PSAX “ductal” view
Subcostal view

“Fast” quantitative assessment of 
pulmonary hypertension

•	Assessment of pulmonary artery systolic pressure (PAP) by assessing tricuspid valve 
regurgitation (Figure 7)

•	Right ventricle to left ventricle (LV) ratio
•	Eccentricity index

A4C view or modified PSAX
PSAX view

PSAX view

“Fast” quantitative assessment of  
cardiac function

•	LV fraction shortening (FS%)
•	Tricuspid annular plane systolic excursion

PLAX view
A4C view
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In contrast with adults, EGDT has not been well studied in 
neonates and children. The ACCM guidelines (2007) recom-
mended its use in neonatal shock; however, there is not wide-
spread use of EGDT in management of neonatal shock. This is 
partly due to the fact that septic shock accounts for only a small 
percentage of shock in the NICU and partly due to the lack of 
non-invasive measures for hemodynamic monitoring. There is 
limited evidence on use of central venous oxygenation, cardiac 
index, non-invasive CO monitoring, and assessing wedge pressure 
in neonates, and some the parameters are being evaluated in the 
research studies. However, at this stage, they have limited role 
in the clinical practice. Modern assessment modalities such as 
functional echocardiography and NIRS offer non-invasive meth-
ods of hemodynamic assessment. Functional echocardiography 

in particular can be a huge asset to the neonatologist in the initial 
stabilization and subsequent monitoring in intensive care unit. 
Various echocardiographic measures are discussed further in the 
next section.

ROle OF eCHOCARDiOGRAPHY  
iN SHOCK

Functional echocardiography refers to bedside point of care 
echocardiography that can provide real time hemodynamic infor-
mation by assessing cardiac function, loading conditions (preload 
and afterload) and CO (Table 4). It is non-invasive, portable and 
can give real time analysis of physiological information, which 
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FiGURe 4 | Physiological variation in inferior vena cava (IVC) diameter. Normal collapsibility of (A) IVC during inspiration (Dmin) and (B) expansion during expiration 
(Dmax). In hypovolemia, IVC may be collapsed while in hypervolemia there is minimal or no collapsibility.

FiGURe 5 | Pericardial effusion in (A) subcostal and (B) apical 4 chamber views. In large pericardial effusion and cardiac tamponade, there may be collapse of 
cardiac chambers—first seen collapse of right atrium followed by right ventricle.

FiGURe 3 | Assessment on cardiac filling on visual inspection “eyeballing.” Images (A,B) show under-filled heart in apical 4 chamber (A4C) and parasternal long axis 
(PLAX) views. Images (C,D) show volume overloading of left atrium (LA) and left ventricle (LV) in A4C and PLAX views.
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FiGURe 7 | Quantitative assessment of pulmonary artery systolic pressure (PAP) by measuring tricuspid valve regurgitation velocity [tricuspid regurgitation (TR) jet]. 
PAP = right atrial (RA) pressure + pressure gradient between RA and RV (estimated by TR jet). (A) TR jet on A4C. (B) TR Doppler.

FiGURe 6 | Interventricular septum (IVS) and left ventricle (LV) shape in pulmonary hypertension on visual inspection. Image (A) shows normal circular LV and IVS 
shapes. Image (B) shows right ventricular dilatation and hypertrophy of right ventricle, flattening of IVS and “D” shaped LV in pulmonary hypertension.
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in conjunction with clinical assessment, can help in guiding tar-
geted specific therapy. Various guidelines have been published to 
standardize the use of functional echocardiography in the NICU 
(75–78). Its use is especially vital in the intensive care setting 
where studies have shown that clinical management may change 
in 30–60% cases in response to echocardiography (79–81). Indeed, 
expert consensus statement has emphasized the importance of 
echocardiography in the management of shock (1, 82).

Assessment of etiology of Shock and 
Ruling Out CHD and PDA
An initial comprehensive echocardiographic study can aid in 
ruling out a congenital heart lesion, particularly pulmonary 
atresia and coarctation of the aorta. In addition to ruling out 
CHD, this should also include assessment of the PDA with its 
effects on cardiac hemodynamics. The size of the duct (>1.5 mm 
at the point of maximum constriction is considered significant), 
direction of shunting, left atrial to aortic root ratio (LA:Ao ratio, 
over 1.4 is significant), left pulmonary artery (diastolic velocity, 
>0.2 m/s is considered significant), and pattern of diastolic flow 
in the post ductal descending aorta can be used to determine 
hemodynamic significance of a PDA. Following this, the next 

step in management is identification of underlying pathophysi-
ology and categorization of shock as distributive, hypovolemic, 
obstructive, cardiogenic, or dissociative (Table 4).

Below is a brief description of echocardiographic assessment 
of preload/cardiac filling and cardiac function and evaluation 
of pulmonary hypertension. The detailed assessment of cardiac 
function and evaluation of hemodynamics on echocardiography 
has been published in Frontiers in Pediatrics (83) which is avail-
able via open access.

echocardiographic Assessment of Preload 
and Fluid Responsiveness
Preload assessment of the heart is crucial in management, but it 
can be affected by multiple factors such as changing lung compli-
ance and presence of mechanical ventilation. Such an assessment 
can be done by examining the LV, inferior vena cava (IVC), and 
the right heart. Qualitative assessment includes “eyeballing” the 
heart in apical four chamber view (Figure 3) while quantitative 
assessment involves measuring left ventricular volumes and col-
lapsibility index of the IVC (Figure 4).

Simpson’s biplane method can be used to assess the left 
ventricular end-diastolic area and volume. Neonates may have 
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physiologic right ventricle (RV) dominance, but in general, the 
right ventricular dimensions are smaller than those of the LV.  
A dilated right atrium (RA) may indicate volume overloading of 
the right side of the heart and in the presence of bowing of intra-
atrial septum toward the left atrium may indicate elevated right 
atrial pressure and hence pulmonary hypertension. By contrast, 
the triad of a “kissing” small LV cavity, RV size, and a normal or 
small RA is strongly associated with hypovolemia.

Serial quantitative assessments can be used to monitor “fluid 
responsiveness,” which can further aid in management. A varia-
tion of >15% in left ventricular outflow tract velocity time inte-
gral (VTI) during inspiration and expiration has been reported 
to have high predictive value with a sensitivity and specificity 
exceeding 90% (84, 85). Similarly, IVC collapsibility index >55%, 
calculated by measuring the maximum (Dmax) and minimum 
(Dmin) IVC diameter from the subcostal view also predicts fluid 
responsiveness (86). IVC distensibility index exceeding 18% may 
also be predictive of fluid responsiveness (86).

echocardiographic Assessment  
of lv Function
The qualitative measures include “eyeballing” of the contractility 
from the apical four chamber view, PLAX, parasternal short axis 
view (PSAX), or subcostal view (Figure 3). This may be prone 
to intra- and interobserver variability. Normal LV dimensions in 
term and preterm infants have been established (87). Quantitative 
assessments of ventricular function include FS, ejection fraction 
(EF), Doppler pattern of LV filling (E and A waves at the mitral 
valve), and tissue Doppler imaging. FS and EF can be obtained 
using M mode in PLAX or PSAX views or by using Simpson’s 
method in apical four chamber and apical two chamber views. 
FS can be affected by regional wall motion abnormalities. EF 
measurements can be affected by mechanical ventilation, relative 
tachycardia and non-elliptical LV shape in neonatal ICU. Normal 
FS in neonates and children is between 26 and 46% (88, 89). 
Normal EF is >55%, 41–55% is mild reduction, 31–40% is moder-
ate reduction, and 30% is considered marked reduction (79, 90).

The above measures may be affected by load conditions. Appro-
priate assessment of myocardial activity requires measurement of 
load independent measures such as relation between velocity of 
circumferential fiber shortening and LV wall stress indices (24).

Newer more accurate yet less feasible modalities at this time 
include speckle tracking, strain rate, and 3-D imaging.

echocardiographic Assessment of Rv 
Function and Pulmonary Hypertension
Persistent pulmonary hypertension of the newborn is a common 
condition in the NICU. A detailed assessment of RV function 
is out of scope of this review article and readers may refer to 
guidelines for assessment of RV function in neonates which have 
been published in American Journal of Echocardiography (91). 
Assessment of pulmonary artery pressures in the presence of 
tricuspid regurgitation (TR) jet (Figure 7), assessment of ductal 
or atrial shunt with the direction of flow, assessment of interven-
tricular septum and LV shape (Figure 6), tricuspid annular plane 
systolic excursion, and pulmonary artery acceleration time are 

some of the measures used in assessment of RV function. Similarly, 
RV myocardial performance index (MPI) may be used to assess 
the RV function, and its role in assessing pulmonary hyperten-
sion is pivotal in absence of TR. In preterm infants with persistent 
high PVR have reported to have high MPI values. However, using 
MPI as a sole marker of global RV function is currently not rec-
ommended by the American Society of Echocardiography, and 
it should be used in conjunction with other parameters (92, 93).

echocardiographic Assessment  
of Systemic Perfusion
This can be assessed through estimation of LV and RV outputs 
(RVOs) and systemic blood flow measures. RVO and LV output 
(LVO) can be easily measured using VTI proximal to the pulmo-
nary valve and the AV valve, respectively. The LVO is an estima-
tion of systemic blood flow, and RVO is an estimation of systemic 
venous return in the absence of cardiac shunts. However, both LV 
and RVOs may be affected by the presence of fetal shunts. In spite 
of limitations such as significant intra observer variability, effect 
of shunts and errors with high angle of insonation, biventricular 
output measures are commonly used due to reliability with 
experienced echocardiographer. These values can be trended to 
follow the impact of interventions in real time. SVC flow may 
be unaffected by such fetal shunting and has been discussed as a 
surrogate for CBF but with conflicting reports about association 
with impaired neurodevelopmental outcomes (4, 32, 34, 36).

eCHOCARDiOGRAPHiC PReDiCTiON OF 
HYPOvOleMiA AND FlUiD 
ReSPONSiveNeSS

One of the challenges with using diameters of vessels in newborns 
is the standardization of the size based on the infant. A ratio 
between vessels accounts for this. As an assessment of preload to 
the heart, the IVC is a useful marker for adequate fluid balance. 
Coupled with the descending aorta in cross section, the IVC/
Ao ratio is a useful age/size adjusted marker for assessing a low 
volume status. Chen et al. demonstrated that an IVC:Ao ratio 0.8 
was associated with dehydration (86% sensitivity) in pediatric 
patients with gastroenteritis. Further work needs to be done in 
the premature newborn population but the IVC/Ao ratio may 
have promise as an objective measure of fluid status (94).

CONClUSiON

Shock in the newborn period is associated with unique patho-
physiologic states that need careful assessment and individual-
ized approach for management. Early recognition of shock and its 
underlying pathophysiology is critical in instituting early target 
specific intervention, which may improve outcomes in patients 
with neonatal shock. A focused bedside functional echocardiog-
raphy can provide vital anatomic and physiologic information to 
such management. Widespread use is limited because of its lack 
of availability, structured training programs for neonatologists 
and data on clinical outcomes. This modality should be further 
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explored to generate data for therapeutic end points that can be 
used to standardize and protocolize the management of neonatal 
shock. We recommend that focused echocardiography in neonatal 
shock should be regarded as an extension of clinical examination 
and other traditionally used clinical parameters.
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