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Group B Streptococcus (GBS) colonizes the gastrointestinal and vaginal epithelium of a 
significant percentage of healthy women, with potential for ascending intrauterine infec-
tion or transmission during parturition, creating a risk of serious disease in the vulnerable 
newborn. This review highlights new insights on the bacterial virulence determinants, 
host immune responses, and microbiome interactions that underpin GBS vaginal 
colonization, the proximal step in newborn infectious disease pathogenesis. From the 
pathogen perspective, the function GBS adhesins and biofilms, β-hemolysin/cytolysin 
toxin, immune resistance factors, sialic acid mimicry, and two-component transcriptional 
regulatory systems are reviewed. From the host standpoint, pathogen recognition, 
cytokine responses, and the vaginal mucosal and placental immunity to the pathogen 
are detailed. Finally, the rationale, efficacy, and potential unintended consequences of 
current universal recommended intrapartum antibiotic prophylaxis are considered, with 
updates on new developments toward a GBS vaccine or alternative approaches to 
reducing vaginal colonization.

Keywords: group B Streptococcus, neonatal sepsis, vaginal colonization, postpartum disease, virulence factors, 
intrapartum antibiotic prophylaxis

Summary: This review provides an update on group B Streptococcus factors promoting maternal 
colonization and considerations for current and developing neonatal disease prevention strategies.

iNTRODUCTiON

Streptococcus agalactiae [group B Streptococcus (GBS)] is an encapsulated Gram-positive bacterium 
that colonizes the lower gastrointestinal tract, and in females, the urogenital tract, of 20–30% of 
healthy human adults (1). GBS utilizes multiple adhesins and stress response mechanisms, defenses 
against other microbes, and immune evasion strategies to achieve persistent or intermittent vaginal 
colonization. During the peripartum period, GBS gains access to a new host, the immune-deficient 
neonate, where GBS can again serve as a commensal organism or transition to an invasive pathogen 
resulting in sepsis or meningitis. GBS displays an arsenal of virulence factors, including a potent 
hemolytic toxin and multiple surface proteins to invade host tissues, as well as molecular mimicry 
and proteases to impede host immune recognition and responses. Maternal screening and antibiotic 
therapy during labor are the current preventive measures against GBS neonatal disease. However, 
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this early exposure to broad-spectrum antibiotics alters the infant 
gut flora and may be accompanied with life-long consequences. 
This review provides a collection of recent findings on the epi-
demiology, molecular pathogenesis and host immune responses 
related to GBS vaginal colonization, and an outlook on emerging 
alternative prophylactic strategies to limiting maternal vaginal 
colonization and neonatal exposure.

eMeRGeNCe OF GBS AS A HUMAN 
NeONATAL PATHOGeN

In the 1970s, GBS emerged as the leading cause of mortality 
and morbidity in human neonates, causing over 7,000 cases of 
invasive neonatal infections annually in the U.S. at that time (2). 
Early-onset GBS disease (EOD) results from ascending infection 
of the womb or by neonatal acquisition during vaginal passage 
and manifests on days 0–6 of life with pneumonia or respira-
tory distress commonly advancing to sepsis. Late-onset disease 
(LOD) is classified with onset from days 7 to 90, arising from 
maternal, nosocomial, or community sources, and presents with 
bacteremia with a high complication rate of meningitis (3, 4). Of 
the children developing GBS meningitis, almost 50% will have 
consequences of neurological disability (5). An estimated four 
million newborns die each year within the first 4 weeks of life 
globally, and one in four of these deaths stems from severe infec-
tion including sepsis or pneumonia with 99% of neonatal deaths 
occur in low- and middle-income countries (6). In developed 
countries, GBS and E. coli combined cause approximately 70% 
of early-onset neonatal sepsis of both term and preterm infants 
(7). Neonatal colonization occurs in approximately 40–75% of 
births from GBS colonized mothers, with 1–2% of cases leading 
to invasive disease (8–11). Risk factors for neonatal colonization 
include intrapartum fever and heavy maternal colonization, lack 
of intrapartum antibiotic prophylaxis (IAP) exposure, and also 
African ethnicity (12). Risk factors for neonatal infection include 
preterm delivery <37  weeks, prolonged rupture of membranes 
(>18 h), intrapartum fever temperature of at least 38°C or 100.4°F, 
a prior infant with GBS infection, or exposure but not infection 
with HIV (13, 14). Infants born to GBS-positive mothers are also 
three times more likely to be transferred to the neonatal intensive 
care unit (15). GBS exposure or colonization may also impact 
health later in childhood, as maternal GBS colonization has been 
associated with a significant increased risk of childhood asthma 
(16). Increasing in immune-compromised adults, including preg-
nant women, diabetics and the elderly, GBS is recognized as an 
invasive pathogen, with reports of sepsis, urinary tract infections, 
soft tissue infections, and meningitis (3).

GBS PHYLOGeNY AND HOST RANGe

Until the 1930s, GBS was considered primarily bovine in origin 
and recognized as a frequent etiologic agent of mastitis (17). 
GBS has since been readily isolated from various mammals, 
reptiles, and fishes, both as a commensal and pathogen (18). 
GBS is now a rising concern in aquaculture, particularly the 
tilapia industry, causing an estimated 40 million dollar in losses 

annually, and serving as a potential additional route of zoonotic 
infection (19). Little is known about the dissemination of GBS 
across species; however, a cross-sectional cohort study revealed 
that cattle exposure was a predictor of human GBS colonization 
indicating interspecies transmission can occur (20). Phylogenetic 
analysis of bovine and human invasive GBS strains suggests that 
hyperinvasive human neonatal isolates have recently diverged 
from a bovine ancestor (17). In the 1930s, Dr. Rebecca Lancefield 
described two polysaccharide antigens: the conserved Group B 
carbohydrate, and the diverse S substance that generates type-
specific antisera (21). Since then, 10 variants of the capsule have 
been described (Ia, Ib, and II–IX), with serotypes Ia, Ib, II, III, 
and V most commonly isolated from humans (4, 22, 23). More 
recently, GBS has been classified by sequence type (ST) based on 
an allelic profile of seven different loci, with the majority of GBS 
human isolates being ST-1, ST-17, ST-19, or ST-23 (24). Diversity 
of the GBS polysaccharide capsule may allow for its broad range 
of hosts, in part through the establishment of biofilms (25).

ePiDeMiOLOGY OF GBS vAGiNAL 
COLONiZATiON

A broad range of GBS vaginal colonization rates during 
pregnancy have been reported, and this variance depends on 
the regions or populations of individual studies as well as the 
method of sampling and culturing. The most recent report of 
global vaginal GBS colonization estimates a prevalence of 18%, 
after adjusting for sample collection and methodology, with 
the lowest regional prevalence in Southern and Eastern Asia 
(11–13%) and highest prevalence in the Caribbean (35%) (26). 
Previous global estimates were similar, falling in the range of 
8–18% (27–29). Numerous risk factors for GBS vaginal coloniza-
tion have been identified both biological and socioeconomic in 
nature. Biological factors include a history of premature rupture 
of membranes (PROM) (30), gastrointestinal GBS colonization 
(31), and increased maternal age. In one study, maternal age 
>36  years of age was associated with persistent colonization 
(32), and another demonstrated a higher GBS colonization rate 
in women >40 years of age (33). Ethnicity, obesity, low vitamin 
D intake, hygiene, sexual activity, health care occupation, and 
illiteracy have also been associated with GBS vaginal carriage 
(31, 34–36). During pregnancy, GBS vaginal colonization may be 
continuous, intermittent, or transient among individual women 
(37). The majority of GBS-positive women are stably colonized 
during the peripartum period; however, changes in serotype 
or ST or subsequent loss of specific STs have been documented 
(32). Many studies have examined the most common serotypes of 
colonizing strains in the United States and are in agreement that 
serotypes Ia, III, and V are the most represented serotypes (32, 
38, 39) with serotype III being more likely to result in persistent 
colonization than Ia or V (40). Given the possibility of capsular 
switching, more recent studies have determined GBS STs and 
found STs 1, 23, and 19 the most abundant colonizing strains 
(32, 41). Strong biofilm formation was recently determined to 
be a trait of asymptomatic colonizing strains, with weak biofilm 
capacity present in invasive strains (42).
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FiGURe 1 | Host and bacterial factors contributing to group B Streptococcus (GBS) vaginal colonization. Within the vaginal tract, GBS interacts with other vaginal 
flora. Lactobacillus and GBS both possess antagonistic activity against each other, likely through production of antimicrobial peptides and niche competition. GBS 
produces countermeasures such as the protease NSR, which degrades the lantibiotic Nisin produced by Lactococcus. Other flora, such as C. albicans, facilitate 
GBS vaginal colonization in part through the GBS adhesion BspA. GBS binds to host vaginal epithelial cells and extracellular matrix proteins through surface 
adhesins including pili, Srr-1 and Srr-2, BsaB, BspA, and BibA. Upon interaction with the epithelium, GBS elicits host cytokine responses such as IL-1β, IL-8, 
CXCL1, and CXCL2, the latter two of which can be degraded by the serine protease CspA. The vaginal epithelium can also generate antimicrobial peptides, such as 
LL-37 or β-defensins, which GBS deflects with lipoteichoic acid-anchored d-alanine, or possibly degrades through yet unidentified peptidases. GBS further thwarts 
innate immune mechanisms by blocking capsular deposition of C3b or through degradation of C5a via ScpB. GBS uses multiple two-component systems to sense 
environmental conditions and regulate virulence and survival factors via response regulators such as CovR and CiaR.
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BACTeRiAL DeTeRMiNANTS OF GBS 
vAGiNAL COLONiZATiON

The transient nature of GBS vaginal colonization likely reflects 
a combination of GBS determinants, antagonism by commen-
sal flora, host immune responses, and changes in pregnancy 
status, vaginal pH and estrous cycle, among other factors 
which are summarized in Figure  1. One of the most critical 
steps in successful GBS colonization of the mucosal surface is 
adherence to luminal epithelial cells and/or surface host pro-
teins. Increased GBS adherence to vaginal epithelial cells and 
extracellular matrix (ECM) proteins has been observed in vitro 
as pH shifts from acidic to neutral, suggesting a propensity 
for tissue attachment at vaginal pH (43). Several specific GBS 
surface-expressed determinants have been shown to contribute 
to vaginal and cervical epithelial cell adherence, including sur-
face serine-rich repeat (Srr) proteins, Srr-1 and Srr-2 (44, 45), 
alpha-like proteins (46), the pilus protein PilA of the GBS pilus 
island (PI)-2a (44), bacterial surface adhesins BsaB (47), BspA 
(48), and BibA (49). In addition, GBS pili, and other surface 

proteins, promote adherence to ECM constituents such as 
collagen (50), fibrinogen (51–53), fibronectin (52, 54–56), and 
laminin (57, 58), all of which have been identified in multiple 
vaginal proteome studies (59). Of note, GBS possesses metal-
lopeptidases capable of cleaving all four of these ECM proteins 
(60), which may aid in local tissue contact and invasion, or 
niche establishment. GBS constituents apart from surface 
adherence proteins can influence cervicovaginal adherence 
or vaginal persistence, including particular capsular serotypes 
(61, 62), expression of β-hemolysin/cytolysin (β-H/C) toxin 
and carotenoid pigment (63, 64), and MntH, an H+-dependent 
manganese transporter (65).

BiOFiLM FORMATiON AND GBS vAGiNAL 
COLONiZATiON

Group B Streptococcus biofilm development appears to support 
vaginal tract colonization by affording protection from harsh 
environmental factors and host defenses (66). Acidic conditions 
characteristic of the vaginal tract may promote GBS biofilms  
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(67, 68), although some studies have yielded contradictory 
results (69). Under acidic conditions, some hypervirulent ST-17 
strains show heightened biofilm production compared with other 
sequences types (67), whereas in neutral conditions, neonatal 
ST-17 and ST-19 strains formed weaker biofilms vs. coloniz-
ing isolates (42). In addition, GBS surface proteins PI-2a and 
FbsC have been implicated in the formation of biofilms in vitro  
(66, 70, 71). GBS vaginal biofilms using in  vivo models, or in 
human clinical observations, have not been demonstrated and 
future development of such models would increase our under-
standing of GBS colonization at the mucosal surface.

iNFLUeNCe OF vAGiNAL MiCROBiOTA 
ON GBS COLONiZATiON

In contemporary schema, the healthy human vaginal microbiome 
has been clustered into five different communities. Four com-
munities are dominated by Lactobacillus species that are believed 
to lower the environmental pH through lactic acid production, 
helping protect the host from various microbial pathogens 
(72). During pregnancy, there is a reduction in species diversity 
within the vaginal microbiota, with a dominance of Lactobacillus 
species and the orders Lactobacillales, followed by Clostridiales, 
Bacteroidales, and Actinomycetales, which drive a further lower-
ing vaginal pH to protect both mother and fetus from infection 
(73, 74). Whether or not GBS should be considered a native 
component of the vaginal microbiota is still debated. A number 
of recent reports have described a relative reduction of vaginal 
Lactobacillus populations in GBS-positive women (75–77), 
although other studies have failed to establish such changes  
(37, 78). Furthermore, an absence of Lactobacillus within the gut 
has been established as a risk factor for GBS vaginal colonization 
(31). Interestingly, an inverse relationship between Lactobacillus 
and GBS has also been observed in cows with subclinical mastitis 
(79). Certain Lactobacillus strains have the capacity to inhibit GBS 
adherence to vaginal epithelial cells (80, 81), and antimicrobial 
activity of Lactobacillus against GBS has been documented in vitro 
(82) and reduction of colonization seen in vivo (83, 84). Although 
the full complexity of the vaginal microbiome is only now being 
characterized, preliminary in vitro studies have begun to probe 
GBS communication and cooperation with other microbes in this 
host microenvironment. In pregnant women, GBS is frequently 
co-isolated with C. albicans (28, 76, 85), whereas co-isolation 
with other pathogens such as Chlamydia trachomatis, Ureaplasma 
urealyticum, Trichomonas vaginalis, and Mycoplasma hominis 
has not been observed (28). In a recent study in non-pregnant 
women, GBS colonization was positively correlated with vaginal 
Prevotella bivia, and increased rates of GBS colonization were 
observed in the non-Lactobacillus dominated vaginal com-
munity state type IV-A (86). GBS binds directly to C. albicans, 
in part through interactions facilitated by the surface-anchored 
BspA protein, which also assists in epithelial cell adherence (48). 
GBS also utilizes products derived from vaginal microbes, such 
as exogenous 1,4-dihydroxy-2-naphthoic acid, to stimulate its 
own respiratory metabolism (87). Moreover, in vitro studies sug-
gest GBS may exchange quorum sensing molecules with other 

Streptococcus species to reciprocally influence each other’s gene 
expression (88). The presence of GBS may also affect the virulence 
properties of other reproductive tract pathogens. For example, 
GBS culture supernatants increase production of toxic shock syn-
drome toxin 1 in Staphylococcus aureus (89), and these two organ-
isms are frequently co-isolated from vaginal swabs (90, 91) as well 
as the infant nasopharynx (92). GBS possesses several resistance 
mechanisms for competing with the dominant Lactobacillus spp. 
and other native flora. These include the manganese transporter 
MntH that supports GBS growth during lactic acid exposure 
(65). GBS is inherently resistant to the antimicrobial activity of 
nisin, a lantibiotic produced by Lactococcus lactis, through the 
action of SaNSR, a nisin-degrading enzyme that cleaves off the 
terminal six amino acids of the peptide to dramatically reduce 
(100-fold) its bactericidal activity (93, 94). GBS can also inhibit 
the growth of groups A, B, C, and G streptococci, Gardnerella 
vaginalis, lactobacilli, and diphtheroids under in vitro coculture 
conditions (95). Interestingly, GBS was never isolated with other 
β-hemolytic streptococci in a clinical study of vaginal swabs (90) 
or infant nasopharyngeal swabs (92). However, more studies are 
required to fully elucidate the molecular mechanisms governing 
GBS persistence and competition among the normal vaginal 
microbiota.

ReGULATORY SYSTeMS iNFLUeNCiNG 
GBS PATHOGeNiCiTY

Group B Streptococcus has several genetically encoded regulatory 
systems in place that impact the transition from a commensal 
niche (e.g., vaginal or gastrointestinal tract) to invasive niches 
(e.g., blood, lungs, or brain). Like many bacterial pathogens, GBS 
respond to changes in environmental stimuli using two-component 
systems (TCS), which typically consist of a membrane-associated 
histidine kinase, with a sensor or input domain and an intracel-
lular kinase domain, and a cytoplasmic transcriptional response 
regulator (96, 97). Sequence analyses reveal that GBS strains 
typically have 17–21 TCS (98–100), a curious abundance com-
pared with the related important human streptococcal pathogens  
S. pneumoniae (~14 TCS) and S. pyogenes (~13 TCS), suggesting 
that GBS may have a more nuanced capacity to sense and respond 
to various environmental conditions within the host (98). GBS 
TCS have important roles in controlling virulence, adherence, 
resistance to host defenses, and bacterial metabolism. The most 
well-characterized GBS TCS to date is the sensor histidine kinase 
CovS (Cov = control of virulence) coupled to response regula-
tor CovR, which coordinately regulate up to 27% of the entire 
genome (101). CovR/S has largely inhibitory effects on virulence 
gene expression, including downregulation of fibrinogen-binding 
proteins A, B, and C (FbsA, FbsB, and FbsC), multiple non-pilus 
adherence factors, genes involved in iron uptake, and the cyl 
operon implicated in production of the β-H/C toxin and antioxi-
dant carotenoid pigment (43, 66, 102–104). TCS RgfA/C controls 
expression of the GBS C5a peptidase, which inactivates a critical 
host complement-derived chemokine, as well as expression of sev-
eral surface proteins including fibrinogen-binding proteins FbsA 
and FbsB (99, 105, 106). The recently characterized TCS HssRS 
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senses and regulates heme utilization and metabolism critical for 
colonization of blood-rich organs (107). TCS CiaR/H promotes 
GBS oxidant resistance and intracellular trafficking, and by regu-
lating several putative peptidases may enhance GBS resistance 
to endogenous host antimicrobial peptides (AMPs) (108, 109). 
Likewise, TCS LiaR/S responds to host AMPs acting on cell wall 
integrity to modulate cell wall synthesis (110), and TCS DltR/S 
maintains levels of d-alanine in GBS cell wall lipoteichoic acid 
(LTA) to increase AMP resistance (111). By coordinately regulat-
ing virulence factors, stress response, and AMP sensitivity, GBS 
mutants deficient in several of the above TCS (with the exception 
of RgfA/C) have been shown to have attenuated virulence in vivo. 
Conversely, mutation in one TCS BgrR/S that controls expres-
sion of the β-antigen (bac gene) is associated with increased GBS 
virulence in a mouse sepsis model (112). With respect to GBS 
vaginal colonization, only the CovR/S system has been proven to 
regulate vaginal epithelial cell attachment and promote vaginal 
persistence in vivo (43, 63, 99). Recently identified TCS FspS/R 
regulates fructose metabolism and plays a role in GBS vaginal 
colonization (99), but its effect on vaginal epithelial cell attach-
ment per se has not been studied. Likewise, TCS NsrR/K senses 
and regulates resistance genes involved in lantibiotic resistance, 
which theoretically could enable GBS to better compete against 
lantibiotic-producing mucosal flora (113), although this has not 
yet been confirmed in vivo.

GBS iNTeRACTiON wiTH HOST iNNATe 
iMMUNe ReCePTORS

Immediate host recognition of invading bacterial pathogens 
includes complement deposition and engagement of receptors 
for pathogen-associated molecular patterns (PAMPs), including 
toll-like receptors (TLRs) (114). GBS has a number of factors 
to counteract the opsonizing effects of complement, including 
its surface polysaccharide capsule, which prevents C3b deposi-
tion (115, 116), and lessens host production of C5a (117); C5a 
levels are further degraded by the specific GBS peptidase ScpB  
(118, 119). GBS also thwarts the complement system through 
a secreted complement interfering protein (CIP) (120), surface 
protein BibA (49), and binding of inhibitory complement factor H 
to the surface-expressed β-protein (Bac) (121) and streptococcal 
histidine triad (122). TLRs implicated in GBS recognition includ-
ing TLR2 and TLR6 which engage cell wall LTA and lipoproteins 
(123, 124), and processes of intracellular sensing by endosomal 
TLR7 (125) and the murine endosomal TLR13 (124, 126). TLR 
signaling activates adaptor protein MyD88 and GBS-induced 
NF-κB translocation, and phagocyte generation of reactive 
oxygen species (though not phagocytosis itself) is significantly 
impaired in MyD88−/− mice (127). In macrophages, MyD88 
and fellow TLR adaptor UNC-93 signaling elicit the production 
multiple cytokines in response to GBS (128). Compared with 
WT mice, TLR2- and MyD88-deficient animals were less able 
to control systemic GBS infection at lower doses, but conversely, 
were protected from cytokine storm induced by lethal GBS chal-
lenge, highlighting the importance of MyD88 in the magnitude 
to host cytokine response to the pathogen (129). In contrast to 

other pyogenic bacterial pathogens such as S. aureus, intracellular 
NOD2 receptor signaling was not critical in host defense against 
GBS (130, 131).

GBS SiALiC ACiD MOLeCULAR MiMiCRY 
AND SiGLeCS

Another unique mechanism by which GBS evades innate immu-
nity is through molecular mimicry of a critical host glycan. All 
GBS capsular polysaccharide serotypes present a prominent α2,3-
linked terminal sialic acid in their repeat units, which is precisely 
identical to a common host cell epitope present on glycolipids and 
glycoproteins decorating the surface of all mammalian cells (132). 
A family of inhibitory leukocyte receptors, the sialic acid-binding 
immunoglobulin-like lectins (Siglecs), plays an important role in 
immune homeostasis by recognizing sialic acid as a “self ” epitope, 
and GBS molecular mimicry allows inhibitory Siglec engagement 
to downregulate macrophage and neutrophil responses includ-
ing phagocytosis, oxidative burst, cytokine release and bacterial 
killing (133–138). Interestingly, the surface-anchored β-protein 
present in some GBS strains can engage inhibitory Siglec-5 on 
human macrophages in a sialic-acid-independent manner but 
still elicit promote inhibitory signaling to suppress innate immune 
responsiveness (135). Transgenic mice expressing a soluble form 
of human Siglec-9, that competitively inhibits GBS engagement 
of the inhibitory Siglec-9 to downregulate neutrophil function, 
demonstrated improved survival, suggesting a potential novel 
therapeutic avenue (139).

PATTeRNS OF GBS CYTOKiNe 
STiMULATiON

Group B Streptococcus cytokine stimulation has been examined 
in many human immune, epithelial, and endothelial cells that 
comprise host barriers and defenses including dendritic cells 
(140), monocytes (141), lung epithelial cells (142), urinary blad-
der epithelial cells (143), vaginal and cervical epithelial cells (63), 
brain microvascular endothelial cells (144), astrocytes (145), and 
coronary artery endothelial cells (146). Intravenous or intraperi-
toneal GBS infection in mouse models induced robust produc-
tion of TNF-α, IL-1β, and IL-6 (147, 148); and these cytokines 
as well as IFN-γ, IL-8, and IL-10 were activated upon intraperi-
toneal challenge of humanized mice (149). Although important 
for control of GBS in sublethal challenge doses, TNF-α may be 
detrimental to the host during GBS septic shock as anti-TNF-α 
antibody treatment reduced mortality upon high-dose GBS 
challenge (129, 150). IL-1β contributes to CXCL1 and CXCL2 
chemokine signaling resulting in neutrophil recruitment to GBS-
infected tissues (151, 152), and neutrophils themselves are a key 
producer of IL-1β in an amplification loop for innate immunity 
and inflammation (153). IL-1 receptor signaling contributes to 
host clearance of GBS, even at sublethal doses (152). IFN-γ, as 
well as IFN-γ inducers IL-12 and IL-18, protects the host during 
GBS infection (154–156). Recent studies have shown that block-
ing IL-10, or IL-10 deficiency, promotes resistance to GBS sepsis 
in part by restoring neutrophil recruitment to sites of infection 
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(157, 158). The role of particular GBS bacterial components in 
modulating cytokine responses has been a subject of recent stud-
ies. The GBS protease CspA cleaves multiple CXC chemokines, 
but not CC chemokines (159). GBS single-stranded RNA facili-
tates macrophage recognition of GBS and subsequent cytokine 
responses via MyD88 (128). Furthermore, GBS RNA and β-H/C 
induce IL-1β in macrophages through activation of the NLRP3 
inflammasome (153, 160). β-H/C is also responsible for increased 
anti-inflammatory IL-10 production in macrophages, concurrent 
with decreased IL-12 and NOS2 expression (161). GBS GAPDH 
has also been linked to host immune modulation through 
induction of IL-10 (162). Neonatal mononuclear cells produce 
significantly less of the critical IFN-γ inducing cytokines IL-12 
and IL-18 (163), which may be involved in protecting the host as 
demonstrated by increased survival and reduced GBS load with 
recombinant IFN-γ treatment in a neonatal sepsis model (154). 
Furthermore, presence of serum IFN-γ at 20 weeks gestation was 
more common in women clearing GBS by 37  weeks gestation 
compared with women who were still colonized (164). Recently, 
CD4+ T cells were recognized as a source of IFN-γ during GBS-
induced sepsis (165).

vAGiNAL iMMUNiTY TO GBS 
iNFeCTiON

Studies examining potential host immune responses resulting 
from asymptomatic GBS vaginal colonization, or from other 
tissues of the female reproductive tract, are few in number. One 
study comparing phagocyte engulfment of GBS in colonized 
and non-colonized pregnant women observed that monocytes 
from colonized women engulfed significantly more GBS but 
released more superoxide extracellularly suggesting impaired 
or insufficient immune function may contribute to GBS vaginal 
persistence (166). Another work demonstrated that vaginally 
colonized women possessed elevated levels of IgG and IgA 
antibodies to GBS in cervical secretions compared with non-
colonized women (167). In addition, increased levels of mater-
nal serum IL-1β have been associated with increased risk of 
GBS neonatal infection and early term birth (168). Vaginal 
fluid collected from GBS-positive pregnant women contains 
higher concentrations of MMP-8 and neutrophil gelatinase-
associated lipocalin compared with GBS-negative samples 
(169). Rectal inoculation of GBS in mice stimulated vaginal 
secretion of IgA (170).

Until recently, GBS induction of host responses of the vaginal 
epithelium had not been examined. In vitro analyses of vaginal 
and cervical epithelial cells demonstrate robust induction of 
inflammation including IL-1β production and epithelial dis-
ruption by matrix metalloproteinases (MMP) and VEGF, and 
neutrophil recruitment through IL-8, CXCL1, and CXCL2, as 
well as inflammatory mediators such as IL-6 and IL-36γ (62, 63).  
In murine models of vaginal colonization, GBS was found to 
stimulate IL-1β, IL-6, IL-17, CXCL1, TNF-α, and GM-CSF 
(62–64, 84). In addition, IL-17+ neutrophils and T  cells, and 
mast cells have been implicated in GBS clearance from the 
vaginal tract (62, 171).

PLACeNTAL iMMUNe ReSPONSeS  
TO GBS iNFeCTiON

Since GBS is capable of crossing placental barriers in utero, the 
final physical barrier to the developing fetus, the host responses to 
GBS within these tissues is actively investigated. Ascension of GBS 
from the vaginal tract has been observed in both non-pregnant 
(62) and pregnant mice (172) suggesting this is the main route 
by which GBS compromises placental tissues. GBS stimulates 
HBD-2, IL-1β, IL-8, IL-10, and TNF-α in human extraplacental 
or chorioamniotic membranes ex vivo (103, 173–175). In a 
rhesus monkey GBS infection model, increased amniotic fluid 
TNF-α, IL-1β, and IL-6 occurred before uterine contractility or 
any clinical signs of infection, suggesting a direct role for infec-
tion in triggering preterm labor (176). Additional non-human 
primate GBS chorioamionitis studies demonstrated increased 
amniotic fluid TNF-α, IL-8, IL-1β, IL-6, and fetal IL-8 along with 
fetal lung injury (177), combined with reduced cytokeratin and 
other cytoskeletal genes which may compromise fetal membrane 
integrity (178). In an in utero infection model, GBS β-H/C was 
implicated in GBS-mediated fetal injury through both NLRP3 
inflammasome-dependent and -independent pathways (179). 
In a non-human primate model, a hyperhemolytic GBS mutant 
induced inflammatory cytokines IL-6 and IL-8 in the amniotic 
fluid compared with non-hemolytic and uninfected controls 
(180). In a rat model of GBS-induced chorioamnionitis, IL-1β 
increased in both placental tissues and fetal blood followed by 
neutrophil invasion into the placenta (181). Up to one-fourth 
of invasive GBS infection during pregnancy end in stillbirth or 
abortion (182). Furthermore, recent work suggests that not only 
can GBS cause placental dysfunction but also maternal inflamma-
tion may affect offspring brain development and neurobehavioral 
traits particularly in male offspring (181, 183, 184).

GBS DiSeASe iN PReGNANCY AND  
IN UTERO COMPLiCATiONS

While notorious for its preeminent role in neonatal infections, 
GBS also causes various maternal infections, with pregnant 
women displaying an increased incidence of invasive GBS dis-
ease, both during gestation (0.04 cases per 1,000 woman-years) 
and postpartum (0.49 cases per 1,000 woman-years), compared 
with non-pregnant women (0.02 cases per 1,000 woman-years) 
(182). GBS carriage is increased in women presenting with 
vaginitis (185) and in some cases, GBS may even be the etiologic 
agent of the clinical syndrome (186). GBS bacteremia without 
focus is also exceptionally prevalent during pregnancy and the 
immediate postpartum period, accounting for 75% of cases in 
adults. GBS vaginal colonization, particularly heavy colonization, 
at the time of delivery has been associated with preterm birth and 
premature rupture of membranes (PROM) in several individual 
study populations (9, 187–190), but not in one systematic review 
(191). GBS ascension of the reproductive tract during pregnancy 
may result in intra-amniotic infection, chorioamnionitis, or 
stillbirth (13, 192–195), and GBS burden is increased in placentas 
from individuals with preterm birth and severe chorioamnionitis 
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(196). Recently, a number of research groups have developed 
animal models of GBS ascending in utero infection to study dis-
ease mechanisms. The GBS β-H/C toxin was identified as a key 
virulence factor contributing to in utero infection in several such 
models. In ascending GBS infection during pregnancy in mice, 
wild-type GBS instigated more preterm birth and fetal demise, 
along with increased placental inflammation and fetal bacte-
rial burdens, compared with isogenic β-H/C-deficient mutants 
(172). Upon direct intrauterine instillation of bacteria, β-H/C was 
implicated as a driver of GBS-mediated fetal injury in mice (179). 
Furthermore, in a non-human primate model, hyperhemolytic 
GBS initiated preterm birth more readily that non-hemolytic 
GBS controls (180). GBS hyaluronidase was another virulence 
determinant shown to contribute to bacterial ascension into the 
uterus, fetal demise, and preterm birth, and further acts to sup-
press uterine inflammatory responses when live GBS is recovered 
from uterine horns (197). These animal studies correlate well 
with human clinical observations regarding the GBS virulence 
mechanisms at play. Primary human amniotic epithelial cells and 
intact chorioamniotic membranes are more readily invaded or 
traversed by a hyperhemolytic ΔcovR mutant of GBS, compared 
with wild-type or β-H/C-deficient strains (103), and increased 
GBS hyaluronidase activity is observed in GBS clinical isolates 
from preterm birth cases compared with invasive neonatal or 
colonizing vaginal isolates (197).

GBS URiNARY TRACT iNFeCTiON, 
MASTiTiS, AND POSTPARTUM 
MATeRNAL DiSeASe

Group B Streptococcus causes approximately 160,000 cases of 
urinary tract infection (UTI) annually in the U.S. (198). In up 
to 3.5% of pregnancies, GBS is the etiologic agent of UTI or 
asymptomatic bacteriuria (199, 200). Left untreated, bacteriuria 
may advance to acute pyelonephritis, with GBS the leading Gram-
positive pathogen, representing 10% of cases in pregnancy (201). 
GBS bacteriuria during pregnancy is associated with increased 
risk of intrapartum fever, chorioamnionitis, preterm delivery, and 
PROM (202), and recently, was found to indicate intrapartum 
vaginal colonization independent of rectovaginal swab screen-
ing (203). Currently, the CDC recommends IAP treatment to 
all mothers with positive GBS urine cultures during pregnancy 
(2). The epidemiology, host response, and bacterial virulence 
factors influencing GBS UTI have been reviewed recently (198). 
Of note, multiparity is a risk factor for UTI during pregnancy 
(204), and this multiparous correlation has been demonstrated in 
GBS UTI model in aged mice (205). A contribution of β-H/C to 
UTI has been observed in some studies but not others (206, 207), 
suggesting variables such the GBS strains or murine infection 
model employed can influence the experimental outcome. In the 
postpartum period, GBS can cause symptomatic or asymptomatic 
mastitis in mothers and is proposed as a possible infection route 
for late-onset neonatal disease (192). GBS may be present in the 
breastmilk of 3–10% of lactating women, and in up to 20% of 
women with mastitis (208, 209) Interestingly, mothers who are 
positive for Lewis antigen system, a blood group which influences 

the types of human milk oligosaccharides within an individual, 
are less likely to be vaginally colonized by GBS and to have a colo-
nized infant (210). Whether breastmilk is a source of GBS infant 
transmission, or infant protection from GBS, is still controversial. 
Evidence exists for both associations; GBS LOD occurs in some 
infants from high bacterial loads in breastmilk, yet human milk 
oligosaccharides are antibacterial against GBS, highlighting the 
need for further studies to develop recommendations for women 
with GBS-positive breastmilk (211, 212). Severe maternal infec-
tions have also been reported including bacteremia, endometritis, 
sepsis, and meningitis (192, 213).

RATiONAL AND eFFiCACY FOR GBS iAP

By the mid-1990s, the U.S. Centers for Disease Control and 
Prevention issued the recommendation for intrapartum (intra-
venous) antibiotic prophylaxis (IAP) to GBS-positive mothers, 
and in 2002, further recommended universal screening of 
pregnant women for vaginorectal colonization in weeks 35–37 
of gestation (2). Oral antibiotics are not recommended, as no 
reduction in maternal colonization or neonatal transmission 
has been observed (214, 215). Current recommendations for 
GBS neonatal disease prevention consists of universal maternal 
screening for GBS in the 35–37th week of gestation, with IAP 
given to GBS-positive mothers during labor (2). Unfortunately, 
even with screening women just before full term is still not a 
completely accurate depiction of colonization status at delivery. 
In one study, over 20% of 37th week GBS-positive women were 
GBS-negative at the time of delivery (216). In addition, hospital 
compliance with CDC guidelines confounds the efficacy of IAP 
with as little as 65% of GBS carriers receiving IAP (217). When 
given correctly, IAP reduces GBS vaginal colonization to 47% 
after 2 h of administration, and 12% after 4 h of administration 
(218). Four hours of IAP with a beta-lactam has been shown to be 
highly effective in preventing early-onset disease (219) yet there 
is evidence to support treating for longer than 4 h when possible 
(220). Another benefit of IAP is that neonates are less likely to 
be colonized with GBS at birth, although maternal transmission 
may occur in the months following (221, 222). Furthermore, the 
maternal vaginal flora, including GBS, does not appear to develop 
selective antibiotic resistance after IAP administration (223). IAP 
has led to a dramatic reduction in GBS EOD to approximately 
1,000 cases in the U.S. annually. Nevertheless, GBS remains the 
leading cause of early-onset neonatal sepsis in term infants, and 
late-onset occurrence remains unaffected, and may be on the 
rise (2, 224–226). The CDC Active Bacterial Core surveillance 
program currently estimates a total of 28,150 cases of GBS infec-
tion including neonatal and adult populations resulting in 1,865 
deaths annually in the U.S. (227).

POTeNTiAL UNiNTeNDeD 
CONSeQUeNCeS OF iAP

Whether or not IAP alters infection rates of other pathogens 
or increases GBS antibiotic resistance remains unclear. Some 
studies have alerted to the possibility of negative IAP effects 
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TABLe 1 | Benefits and considerations for maternal intrapartum antibiotic 
prophylaxis (IAP).

Reference

Benefits of iAP
Maternal Twofold to eightfold reduction in vaginal 

colonization at delivery
(218)

No increase in antibiotic resistance of vaginal flora (223)
Neonatal Drastic reduction (>80%) in early-onset disease (2, 219, 246, 247)

Reduction in colonization at birth (221, 222)

Considerations for iAP
Maternal Increased risk of fungal infection (236)

Altered vaginal flora (78, 237)
Neonatal Increased risk of fungal infection (236)

Potential increase in Gram-negative infections (228–230)
Altered transmission of maternal flora (231)
Altered gut flora (232, 233)
Increased risk of cerebral palsy (238)
Increased aortic intima-media thickness (241)
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including increased infections with Gram-negative bacteria such 
as ampicillin-resistant E. coli (228, 229), whereas others have 
not (230). A recent epidemiological study found an increase in 
GBS LOD from 1997–2001 to 2002–2010, but it is not known 
whether this is due to a shift in GBS pathogenicity, or due to an 
increase in survival of preterm infants, or delay in disease onset 
from IAP (226). As determined by oral swab, immediate vertical 
transmission of lactobacilli within hours of birth is reduced in 
neonates exposed to IAP (231). Several studies have recorded a 
reduction of fecal Bifidobacteria counts in IAP-exposed neonates 
at 1 week of age, but this difference may be nullified by 1 month 
of age (232, 233). Levels of gut lactobacilli are not altered by IAP 
exposure; however, and exclusively breastfed infants have higher 
Lactobacillus counts in the first month of life (233). A combina-
tion of IAP and emergency cesarean section may have even more 
pronounced effects on the infant microbiome (234). In one study, 
which adjusted for IAP use, infants born to GBS-positive mothers 
had increased abundance of Clostridiaceae, Ruminococcaceae, 
and Enterococcaceae at 6  months of age, suggesting that GBS 
exposure in and of itself may alter gut composition in early life 
(235). Furthermore, both mother and infant are more susceptible 
to fungal infections postpartum when IAP is administered (236), 
and maternal vaginal flora is altered with exposure to antibiotics 
(78, 237). Apart from altered infant microbiota, IAP exposure may 
also predispose neonates to various health and developmental dis-
orders. Children born to women receiving antibiotics for sponta-
neous preterm labor displayed increased functional impairment as 
well as an increased risk of cerebral palsy (238). Additional studies 
have examined antibiotic exposure later in infancy, where it can 
be speculated that at least some of the health impacts are similar. 
Infants exposed to prenatal antibiotics or receiving antibiotics 
within the first 6 months of life display increased risk of childhood 
obesity, or increased body mass by 2  years of age, respectively 
(239, 240). Maternal GBS colonization and IAP have also been 
associated with increased infant aortic intima-media thickness, 
an early marker for risk of cardiovascular disease (241). Risk of 
developing childhood asthma is increased with early exposure to 
antibiotics including administration during infancy, or in utero 
exposure from maternal UTI treatment (16, 242). A reduction in 
intestinal Bifidobacteria has been reported in children with atopic 
dermatitis (243), similar to the effect seen with IAP in the first 
6 months of life; however, no direct correlation has been made 
between allergy development and maternal IAP or GBS vaginal 
colonization to date (244). The heightened incidence of allergies 
and autoimmune diseases in modern Western cultures, particu-
larly with early childhood onset, merits further clarification of 
long-term impacts of IAP. In addition, adverse maternal and neo-
natal events resulting from IAP has been recently systematically 
reviewed (245). The current considerations for IAP to prevent 
neonatal GBS disease are summarized in Table 1 and highlight 
the need for more targeted or narrow spectrum prophylaxis.

STATUS OF GBS vACCiNe 
DeveLOPMeNT

In hallmark studies, Lancefield demonstrated that GBS elicits 
antibody production in the host in a strain-specific manner 

(21). For decades, we have known that humans generate serum 
antibodies against the GBS capsule, and these antibodies are 
specific to a particular serotype (248). Now recent work has 
attempted to identify all major GBS proteins that elicit the 
production of human serum antibodies (249). Antibodies 
mounted to GBS influence disease susceptibility in neonatal 
infection, as infants born to women with higher levels of anti-
GBS IgG were at lower risk for early-onset disease than women 
with low levels of anti-GBS IgG (250). A recent murine model 
suggests that mucosal immunization can result in vaginal IgG 
production combined with enhanced GBS vaginal clearance 
(251). Moreover, both IgG and IgM type antibody responses 
are present in infants surviving meningitis, suggesting that the 
neonatal immune response may also participate in protection 
(252). Work performed by Drs. Carol Baker, Dennis Kasper 
and colleagues in the mid-1970s examined production of 
maternal IgG to GBS capsular polysaccharide types laid the 
foundation for the development of a GBS vaccine (253). The 
vaccine strategy that has progressed the furthest is a Novartis/
GSK trivalent GBS conjugate vaccine (against serotypes Ia, 
Ib, and III), which has completed Phase II clinical trials in 
pregnant women (246), with Phase III trials proposed (254). 
This trivalent conjugate has achieved significantly higher 
GBS-specific titers (measured out to 90  days) in infants 
born to vaccinated mothers compared with placebo controls, 
without impacting antibody responses to diphtheria and 
pneumococcal vaccination (255). Furthermore, a recent study 
has demonstrated a striking negative correlation between GBS 
antibody titers in cord blood and infant colonization at birth 
through 90 days of life (256). GBS surface proteins have also 
been proposed as conserved antigens including pilus proteins 
(257), Srr-1 (258), alpha C protein (259), Sip, and ScpB (260). 
Analytic models have determined a GBS vaccine has compara-
ble cost-effectiveness to other pediatric vaccines (261), and a 
combination of a GBS vaccine with ≥70% efficacy, and IAP for 
unimmunized women, would prevent more GBS-associated 
disease than the current screening/IAP at a similar cost (262). 
The history of vaccine development, analysis of current can-
didates, obstacles especially within low- and middle-income 
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countries, and future development pathways have just recently 
been extensively reviewed and discussed (263, 264).

ALTeRNATive TARGeTeD PReveNTiON 
STRATeGieS AGAiNST GBS 
COLONiZATiON

Several alternative strategies to prevent or limit maternal GBS 
colonization, in place of the current IAP or proposed vaccine 
candidates, have been recently explored. The first type of strategy 
consists of applying purified or synthetic compounds with spe-
cific antimicrobial or inhibitory activity toward GBS. Potential 
agents suggested thus far come from various natural or synthetic 
sources and have not been explored beyond preliminary in vitro 
and animal studies. Multiple plant-derived crude extracts and 
phytochemicals hinder GBS growth in minimum inhibitory 
concentration assays (265). For example, plant-based lipids from 
Aristolochia longa and Bryonia dioïca show inhibitory activity 
against GBS in vitro (266), as does the vaginal microbicide octyl-
glycerol (267). Bacteriostatic synthetic polymers may represent 
a barrier for selectively blocking GBS adherence to the vaginal 
mucosa, while allowing normal constituents of the vaginal flora, 
such as lactobacilli, to persist (268). Recently, a synthetic peptide 
mimicking human C5a was shown to be directly bacteriocidal 
toward GBS and displayed therapeutic in  vivo activity in both 
peritonitis and vaginal colonization mouse models (269). 
Although these compounds show preclinical efficacy in control-
ling GBS in animal models, it has yet to be established if any of 
them are feasible or cost-effective for human use. As an alterna-
tive to antibiotic treatment, intrapartum chlorhexidine vaginal 
washes have been considered, but resulted in no significant 
reduction of EOD, but did significantly lower neonatal coloniza-
tion (270). Another alternative strategy explores the growing 
trend of probiotics agents to limit pathogen overgrowth while 
promoting healthy native vaginal flora (271, 272). To date, the 
most studied probiotic candidates for controlling GBS are within 
the Lactobacillus genus. Multiple studies have documented the 
inhibitory activity of lactobacilli on GBS growth in vitro including 
Lactobacillus rhamnosus, Lactobacillus plantarum, Lactobacillus 
gasseri, Lactobacillus salivarius, and Lactobacillus fermentum  
(82, 273–277). Pretreatment with L reuteri, but not a combination 
of L. gasseri and L. salivarius, reduced GBS vaginal colonization 
in a murine model (82, 83) indicating some probiotic strains 
may be more efficacious than others. In a recent human clinical 
trial, daily oral probiotic treatment of two Lactobacillus species,  
L. rhamnosus and L. reuteri, to GBS-positive women at the 

35–37th week screening visit was found to reduce GBS coloniza-
tion at the time of delivery (278). Other probiotic species such as 
Bifidobacterium, known to be reduced in the neonatal gut after 
IAP, have antibacterial activity against GBS (232). The efficacy 
of a mixture of Lactobacillus acidophilus, Bifidobacterium lactis, 
and Bifidobacterium longum has been examined in one small 
pilot study, and while potentially effective, results did not achieve 
significant due to modest sample size. Nevertheless, an inverse 
relationship of yogurt consumption and GBS vaginal coloniza-
tion was observed (279). Finally, an oral probiotic, S. salivarius, 
was found to inhibit GBS adherence and vaginal colonization in 
a mouse model (280).

CONCLUSiON AND PeRSPeCTive

Over the last 50 years, GBS has remained a prominent concern 
for mother and neonatal health. Although universal screening 
and IAP have reduced the incidence of early-onset GBS sepsis, 
maternal and infant colonization rates remain unchanged, and 
LOD and potential GBS-induced preterm birth are not impacted 
by IAP. Recent discoveries in the molecular and microbial 
determinants of GBS vaginal colonization and placental disease 
have given a better understanding of host–microbe interactions 
within the female reproductive tract. Furthermore, advances in 
GBS vaccines and human trials, as well as the emergence of novel 
targeted strategies to control GBS vaginal colonization, point to a 
new era beyond broad-spectrum antibiotics, and its detrimental 
consequences, to prevent neonatal GBS pathogenesis.
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