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Kidney stone disease is an increasingly prevalent condition with remarkable clinical het-
erogeneity, with regards to stone composition, age of manifestation, rate of recurrence, 
and impairment of kidney function. Calcium-based kidney stones account for the vast 
majority of cases, but their etiology is poorly understood, notably their genetic drivers. 
As recent studies indicate, hereditary conditions are most likely underestimated in prev-
alence, and new disease genes are constantly being identified. As a consequence, there 
is an urgent need of a more efficient documentation and collection of cases with under-
lying hereditary conditions, to better understand shared phenotypic presentation and 
common molecular mechanisms. By implementation of a centralized patient registry on 
hereditary kidney stone disease in Germany, we aim to help closing the vast knowledge 
gap on genetics of kidney stone disease. In this context, clinical registries are indispens-
able for several reasons: first, delineating better phenotype–genotype associations will 
allow more precise patient stratification in future clinical research studies. Second, iden-
tifying new disease genes and new mechanisms will further reduce the rate of unknown 
nephrolithiasis/nephrocalcinosis etiology; and third, deciphering new molecular targets 
will pave the way to develop drugs for recurrence prevention in severely affected families.

Keywords: nephrolithiasis, hereditary, nephrocalcinosis, kidney stone disease, monogenic, registry

Incidence and prevalence of kidney stone disease continues to rise in the general population. With 
a lifetime prevalence of up to 10%, nephrolithiasis (NL) and nephrocalcinosis (NC) are therefore 
major health burdens, especially in the Western World (1). NL and NC are associated with sig-
nificant morbidity and progression to chronic kidney disease due to recurrence, repetitive surgi-
cal/endoscopic intervention, and concomitant inflammation. On a simplified level, kidney stone 
formation results from an imbalance of urinary inhibitors (e.g., citrate, magnesium, uromoduline, 
and pyrophosphate) and promoters (e.g., oxalate, calcium, phosphate, urate, and cystine) of crystal-
lization, exceeding supersaturation with consecutive aggregation, nucleation, and stone growth at 
Randall’s plaque (Figure 1). This imbalance can be due to altered enteral and/or renal handling of 
either promotors or inhibitors, such as enteral malsecretion of oxalate or renal malreabsorption of 
calcium (Figure 1).

The underlying etiology of NL is thought to be multifactorial with an environmental, notable 
dietary, hormonal, and genetic component. In twin studies, the heritability of kidney stones has 
been estimated at 56% (3), and up to two-thirds of hypercalciuric stone formers have relatives with 
NL (4). Although calcium-containing kidney stones account for more than 80% of all, the genetic 
basis of such stones remains largely unknown (5). Except for variants in CLDN14, TRPV5, SLC34A1, 
ALPL, CASR, and UMOD, genome-wide association studies have yet to yield substantial genetic 
factors (6–8). However, risk alleles have been identified within genes that were also found to transmit 
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FiGUre 1 | Imbalance of urinary inhibitors and promotors of crystallization leading to kidney stone formation. Concentration of urinary inhibitors and promotors is 
influenced and controlled by both intestinal and renal transporters (GI–kidney axis). These transporters and exchangers, such as SLC26A1, are responsible for 
secretion and absorption. With regards to oxalate, enteral hyperabsorption but malsecretion, and/or renal hypersecretion but malabsorption leads to urinary oxalate 
levels exceeding supersaturation and thereby promoting crystallization and consecutive stone formation [adapted from Ref. (2)].
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the disease on a Mendelian basis, such as CASR, SLC34A1, and 
SLC2A9 (9, 10). To date, more than 30 single genes with an Online 
Mendelian Inheritance in Man-defined phenotype have been 
identified to be implicated in NL/NC, if mutated (Table 1).

Modes of inheritance in monogenic forms include autosomal-
dominant, autosomal-recessive, and X-linked transmission. Inte-
restingly, in several of these genes, both recessive and dominant 
modes of inheritance have been reported: SLC7A9, SLC34A1, 
SLC34A3, SLC2A9, SLC22A12, and SLC4A1. While most of the 
syndromic and severe congenital disorders exhibit a recessive 
inheritance pattern (Bartter, Lowe, Dent, FHHNC, and distal 
renal tubular acidosis with sensorineural deafness), milder 
conditions are rather associated with mutations in dominant 
genes. The majority of encoded proteins constitute renal solute 
transporters (e.g., SLC34A1, SLC34A3, and SLC9A3R1), but 
also chloride channels (CLCN5), tight-junction proteins (e.g., 
CLDN16/CLDN19), and metabolizing enzymes (e.g., AGXT, 
APRT, and CYP24A1) have been found defective in patients 
with NL/NC. Hence, the underlying defect is mostly located 
in the tubular system of the kidney itself and can therefore be 
attributed as tubulopathy. Conversely, a priori extrarenal condi-
tions, as in primary hyperoxaluria (PH) where dysfunction of 
liver enzymes (AGXT, GRHPR, and HOGA1) cause oxalate 
accumulation with secondary renal affection, are conceivable 
causes of NL/NC. Although each disease phenotype is thought 
to represent a relatively rare entity, single-gene causes may 
account for a significant number of patients by their broad 
genetic heterogeneity (42). Apart from genetic heterogeneity, 
there is also an allelic variation, where truncating variants 

rather result in a loss of function and missense variants (hypo-
morphs) may cause rather subtle defects, which can be clinically 
overseen, especially in adult stone formers. Another recently 
appreciated phenomenon is about gene dosage effects in several 
of the aforementioned kidney stone genes. In SLC34A3 for 
instance, encoding one of the main phosphate transporters in 
the proximal tubule (NaPiIIc), it was shown that heterozygous 
individuals can no longer be merely regarded as healthy carriers, 
as they display renal calcifications and/or bone manifestation 
significantly more frequent than wild-type individuals; but still 
to a lesser degree than biallelic (homozygous and compound 
heterozygous) individuals (43). Similar observations were 
reported for families with mutations in CYP24A1 (44). The 
contribution of monogenic disorders to the overall prevalence 
of kidney stone disease has not been studied comprehensively 
in the past. Especially, genetic evidence based on broad screen-
ings of a multitude of causative genes in large patient cohorts 
is lacking. Comprehensive genetic testing has been too costly 
and inefficient in the past. For most individuals with NL/NC, 
mutation analysis for a causative genetic defect has therefore not 
been accessible, despite the fact that knowledge of the molecular 
cause of NL/NC may have important consequences for progno-
sis, prophylaxis and/or treatment. Only rough estimates have 
been derived from clinical observation studies: based on a huge 
data collection of stone composition analysis, it was concluded 
that monogenic causes do not exceed 9.6% in children and 1.6% 
in adults (45). In the last decade, however, this situation has 
begun to change, with the advent of high-throughput sequenc-
ing techniques.
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FiGUre 2 | Mutation analysis of 30 known monogenic nephrolithiasis (NL)/nephrocalcinosis (NC) genes in 268 patients with NL/NC. (a) Fraction of monogenic 
causes in pediatric and adult subcohort. (b) Number of monogenic causes across genes (red denotes adults; orange denotes pediatric patients). Of note, SLC7A9 
was found most frequently mutated, especially in young adults.
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HiGH-tHrOUGHPUt MUtatiON 
aNalYsis iN PatieNts WitH Nl/Nc

To investigate patients with kidney stone disease for the presence 
of pathogenic mutations in known disease genes, we established a 
gene panel based on microfluidic multiplex-PCR and consecutive 
NextGen sequencing (Fluidigm™/NGS) (46, 47).

In a “pilot-study,” we consecutively recruited 268 genetically 
unresolved individuals from typical kidney stone clinics; 102 
pediatric and 166 adult probands. As a result, we identified 50 
deleterious variants in 14 out of 30 analyzed genes, leading to a 
molecular diagnosis in 15% of all cases. In the pediatric subgroup, 
we detected a causative mutation in 21%, while among adults, del-
eterious variants were present in 11% (Figure 2A) (48). Mutations 
in the cystinuria-gene SLC7A9 were found most frequently in 
the adult cohort (Figure 2B). Two follow-up studies were able to 
confirm these results. First, in an exclusively pediatric cohort of 143 
NL/NC patients, 17% of cases were explained by mutations in 14 
different genes (49). Second, in a cohort of 51 families with age of 
NL/NC manifestation before 25 years, targeted WES was used to 
detect a genetic cause in almost 30% (50). Not surprisingly, reces-
sive mutations were more frequently found among neonates and in 
cases of congenital disease, whereas dominant conditions usually 
manifested later in life. These data indicate that genetic kidney stone 
disease is an underdiagnosed condition, despite the fact that the 
molecular diagnosis will potentially influence prognosis, prophy-
laxis, and/or treatment. A limitation worth mentioning, however, is  
a potential selection bias due to recruitment from specialist kidney 
stone clinics in all of the three aforementioned studies.

iDeNtiFicatiON OF NOvel HUMaN 
Disease GeNes bY caNDiDate-GeNe 
aPPrOacH

High-throughput mutation analysis is also used to screen for 
pathogenic variants in various candidate genes. One of the most 

interesting recent findings was the discovery of human mutations  
in SLC26A1 (32). Since the first description of Ca-oxalate (CaOx) 
kidney stone formation and NC in Slc26a1 (Sat1)-knockout 
mice by Dawson et al. in 2010, SLC26A1 has been a bona fide 
NL-candidate gene (51). SLC26A1 encodes an anion exchanger 
expressed at the basolateral membrane of proximal renal tubules, 
ileum, and jejunum. Consequently, by using a candidate-gene 
approach, pathogenic variants were identified in humans with a 
history of early onset CaOx-NL, namely, two unrelated individu-
als with biallelic missense variants (32). Functionally, pathogenic-
ity of the identified variants was demonstrated in vitro, leading 
to intracellular mis-trafficking and impaired transport activity 
(32). Defective SLC26A1 therefore constitutes a new cause of 
CaOx-NL and should be considered when testing individuals for 
causes of recurrent CaOx-stone formation.

NeW cliNical PatieNt reGistrY FOr 
HereDitarY KiDNeY stONe Disease

Most epidemiological data on increasing prevalence in Western 
countries are derived from US databases. Although urgently 
needed, centralized European databases are not available at 
the time. As aforementioned genetic studies on prevalence 
of hereditary kidney stone disease were executed with small 
cohorts from specialized centers in both Europe and the US, 
a translation to the general situation in Europe is not valid. 
While in the US, the Rare Kidney Stone Consortium constitutes 
a platform that integrates and coordinates registry, basic sci-
ence, and clinical research activities for rare conditions such 
as cystinuria, PH, APRT deficiency, Dent and Lowe disease, no 
comparable data collection on patients with hereditary kidney 
stone disease has been implemented neither in Europe nor in 
Germany today. In collaboration with the existing European PH 
registry, OxalEurope (Prof. Bernd Hoppe, University of Bonn), 
and through funding by Deutsche Forschungsgemeinschaft and 
Else Kröner-Fresenius Stiftung, we recently established a clinical 
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patient “Registry for hereditary kidney stone disease” at the 
University of Leipzig. The registry is nationally supported by the 
German Societies of Adult Nephrology (DGfN) and Pediatric 
Nephrology (GPN). It is further enrolled at the German Clinical 
Trials Register (DRKS-ID: DRKS00012891). As a fundamental 
part of study recruitment, high-throughput mutation analysis 
for known and novel kidney stone genes is offered on a research 
basis for patients without an established molecular diagnosis 
but with a clinical picture that points to an underlying genetic 
susceptibility: e.g., early age of onset (<40 years), positive family 
history, indicative phenotypes such as NC, cystinuria, or RTA, 
and severely recurrent NL (>3×) (Table 2). While patients with 
an already established genetic diagnosis are generally enrolled, 
cases with secondary NL/NC causes, such as malignancy, sar-
coidosis, and primary hyperparathyroidism, do not get included 
in genetic analysis. To actively enroll patients, a clinical center 
will usually need approval by the local Institutional Review 
Board; a process for which we offer our help and assistance by 
providing respective templates. Upon ethics approval, consent 
form and clinical data sheets (e.g., clinical questionnaire) can 
be downloaded from our registry website (http://www.mks-
registry.net). To ensure thorough clinical phenotyping, we will 
be asking for substantial patient information such as ethnicity, 
consanguinity, family history, age of onset, recurrence (defined 
as every putatively new kidney stone event), daily fluid intake, 
surgical interventions, and extrarenal involvement among 
others. The documents can be filled in by the patient with the 
help of the enrolling physician. In addition, biochemical serum 
parameters, including creatinine, eGFR, PTH, vitamin D, 
electrolytes, uric acid, and urinalysis (pH, calcium, phosphate, 
magnesium, uric acid, citrate, oxalate, and cystine, preferably 
from 24-h urine, if not spot urine), as well as data on stone 
composition analysis will be requested upon enrollment. Taking 
into account that 24-h urine collection and stone composition 
analysis is not routinely performed at all institutions, we include 
these parameters upon availability. 2-yearly clinical follow-up 
visits of enrolled patients are desirable but not mandatory. After 
registration, recruiting clinical centers will be provided with a 
personalized login to enter patient data via our registry website 

(http://www.mks-registry.net). Alternatively, we offer enter-
ing the data electronically when sent to us on paper. Entered 
data will be stored on a secured server and can be accessed by 
participating clinical centers to view their own patient data. The 
following websites provide further information:

https://www.dgfn.eu/hereditaere-nierensteinleiden.html
https://www.drks.de/drks_web/navigate.do?navigationId=trial.
HTML&TRIAL_ID=DRKS00012891

In summary, kidney stone disease is an increasingly prevalent 
condition which is clinically heterogeneous and poorly under-
stood, notably its genetic drivers. As a series of recent studies 
indicated, monogenic conditions are most likely underestimated 
in prevalence. By implementation of a centralized patient reg-
istry on hereditary kidney stone disease, we will contribute to 
overcome, at least in part, the vast knowledge gap on genetics 
of kidney stone disease. In this context, clinical registries are 
valuable sources for several reasons: first, delineating better 
phenotype–genotype associations will be crucial for more precise 
patient stratification in future clinical research studies. Second, 
identifying new disease genes with new disease mechanisms 
will diminish the gap of unknown NL/NC etiology; and third, 
deciphering new molecular targets helps to pave the way for 
developing drugs of recurrence prevention in severely affected 
families.
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table 2 | Inclusion criteria for mutation analysis in clinical patient registry.

clinical criteria

Pediatric age of onset or onset during early adulthood (<40 years) plus 
Positive family history or
Recurrence (>3×) or
Indicative phenotype (e.g., RTA, cystinuria, and NC) or
Established molecular genetic diagnosis
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