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Magnesium (Mg2+) is indispensable for several vital functions, such as neurotransmission, 
cardiac conductance, blood glucose, blood pressure regulation, and proper function of 
more than 300 enzymes. Thus, Mg2+ homeostasis is subject to tight regulation. Besides 
the fast and immediate regulation of plasma Mg2+, a major part of Mg2+ homeostasis 
is realized by a concerted action of epithelial molecular structures that tightly control 
intestinal uptake and renal absorption. This mechanism is provided by a combination 
of para- and transcellular pathways. Whereas the first pathway provides the organism 
with a maximal amount of vital substances by a minimal energy expenditure, the latter 
enables controlling and fine-tuning by means of local and regional regulatory systems 
and also, hormonal control. The paracellular pathway is driven by an electrochemical 
gradient and realized in principal by the tight junction (TJ), a supramolecular organization 
of membrane-bound proteins and their adaptor and scaffolding proteins. TJ determinants 
are claudins (CLDN), a family of membrane spanning proteins that generate a barrier or 
a pore between two adjacent epithelial cells. Many insights into molecular mechanisms 
of Mg2+ handling have been achieved by the identification of alterations and mutations in 
human genes which cause disorders of paracellular Mg2+ pathways (CLDN10, CLDN14, 
CLDN16, CLDN19). Also, in the distal convoluted tubule, a basolateral protein, CNNM2, 
causes if mutated, familial dominant and also recessive renal Mg2+ wasting, albeit its true 
function has not been clarified yet, but is assumed to play a key role in the transcellular 
pathway. Moreover, mutations in human genes that are involved in regulating these pro-
teins directly or indirectly cause, if mutated human diseases, mostly in combination with 
comorbidities as diabetes, cystic renal disease, or metabolic abnormalities. Generation 
and characterization of animal models harboring the corresponding mutations have fur-
ther contributed to the elucidation of physiology and pathophysiology of Mg2+ disorders. 
Finally, high-end crystallization techniques allow understanding of Mg2+ handling in more 
detail. As this field is rapidly growing, we describe here the principles of physiology 
and pathophysiology of epithelial transport of renal Mg2+ homeostasis with emphasis on 
recently identified mechanisms involved.
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iNTRODUCTiON

Magnesium (in its ionized and biologically active form: Mg2+) belongs to the group of alkaline 
earth metals and is the second most abundant intracellular divalent cation. It is the eleventh most 
abundant element by mass in the human body. Mg2+ is indispensable for several vital functions, such 
as neurotransmission, cardiac conductance, blood glucose control, and blood pressure regulation. 
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FigURe 1 | Routes of epithelial transport. (A) Epithelial transport is performed by two different routes. Paracellular (left) and transcellular (right) as indicated by the 
vertical arrows. (B) The paracellular transport is realized through the tight Junction (TJ) which is composed of several Proteins mainly by Claudins. Together with their 
adaptor and scaffolding proteins, they make up as hetero- or homodimers dimers the main part of the TJ. (C) Paracellular transport is realized by apical uptake (red), 
intracellular buffering and transport (yellow), and basolateral extrusion (green).
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In muscle, Mg2+ regulates contraction by antagonizing calcium 
(1–4). Mg2+ has also been identified as a second messenger, e.g., 
in T-Cells, where mutations in the gene MAGT1 have been 
linked to human immunodeficiency. There, mutations disable 
transient Mg2+ influx induced by the activation of the T-cell 
receptor (5).

Adenosine triphosphosphate (ATP) is the major source of cell 
energy, and must bind Mg2+ in order to be biologically active. 
The resulting complex, Mg2+-ATP is vital for the stability of all 
polyphosphate compounds in cells, including those associated 
with synthesis of DNA and RNA. More than 300 enzymes are 
dependent on Mg2+ for their biocatalytic function, including those 
that utilize or synthesize ATP, or those that use other nucleotides 
to synthesize DNA and RNA (6). In plants, Mg2+ is the central ion 
of chlorophyll and, therefore, vital for photosynthesis. In higher 
organisms, hemoglobin, the essential O2 carrier, has high struc-
tural similarities with chlorophyll but here, Fe2+ replaced Mg2+ as 
the central ion. Magnesium is an essential mineral nutrient (i.e., 
element) and is present in every cell type and in every organism. 
In the blood and serum, Mg2+ is mostly bound to serum albumin 
(like the most abundant divalent cation, Ca2+) and stored in mus-
cle fibers and in bone. The biologically active form is the ionized 
form and dietary sources rich of magnesium are plants [Almonds, 
Cashews, Cocoa, Pumpkin Seeds, Spinach, and Fish (Halibut, 
Mackeral)]. Clinically, deficiency of Mg2+ causes nausea, appetite 
loss, fatigue, and general weakness. At a later stage, patients pre-
sent with numbness, tingling, muscle cramps, cerebral seizures, 
and cardiac arrhythmias. Moreover, Mg2+ deficiency can lead to 
hypocalcemia and hypokalemia (7). On the other hand, little is 
known about the consequences of hypermagnesemia as can be 
encountered, e.g., in patients with end stage renal disease (8). 
However, Mg2+ complexes are involved in the development of 
vascular calcifications, a major cause of morbidity and mortality 
of patients with chronic kidney disease (9).

Compared to Ca2+ storage (around 1000  g in adults), the 
whole body content of Mg2+ only sums up to 20 g. In addition, 
Mg2+ stores are not as readily accessible as Ca2+ stores by, e.g., 
PTH action. Therefore, the organisms’ intra- and extracellular 
Mg2+ levels are kept tightly within narrow limits. Likewise, 
the available, ionized, biologically active and relevant form 
(Mg2+) is dependent on a more or less a continuous nutritional 
supply. Mg2+ serum concentrations in adults range from 0.7 
to 1.1  mmol/l, while newborns and toddlers can have lower 
limit serum concentrations (e.g., from 0.45  mmol/l on). The 
daily need of Mg2+ in adults is around 300–350  mg/day and 
fractional intestinal uptake varies depending on the amount 
of intake. Fine et  al. found that intestinal Mg2+ absorption 
increases with intake but also that fractional Mg2+ absorption 
fells progressively (from 65% at low to 11% at high intake) (10). 
The authors described the intestinal absorption by an equation 
containing a hyperbolic function plus a linear function. They 
concluded that Mg2+ absorption must, therefore, be realized 
by a twin-mechanism that simultaneously reaches an absorp-
tive maximum, and in addition a mechanism that endlessly 
absorbs a defined fraction (7%, as the authors concluded) (10). 
Although the molecular mechanisms have not been identified at 
that time, their and the findings of other groups later, predicted 
the coexistence of two distinct mechanisms of Mg2+ absorption, 
the trans- and paracellular transport in the intestine. Moreover, 
as we know nowadays, the same holds true for the kidney.

In both organs, the intestine and the kidney, Mg2+ is absorbed 
via paracellular as well as by transcellular routes. Whereas the 
first pathway is in principal driven by an existing electrochemical 
gradient, the latter requires energy-consuming mechanisms in 
order to conduct apical uptake, buffering, transport, and basolat-
eral extrusion (Figure 1). The paracellular route guarantees the 
organism to retrieve a considerable amount of vital substances 
with a minimal energetic expenditure. On the other side, the 
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TABle 1 | Protein classification based on the role played by each molecule in 
renal magnesium handling.

Category Role in Mg2+ handling Proteins

1 Direct transport of Mg2+ Claudin-16a; Claudin-19a; TRPM6b; 
CNNM2c,b; SLC41A3c,b

2 Regulation of a direct 
transporter/channel of Mg2+

Claudin-14a; EGFb; CNNM2c,b

3 Contribution to Mg2+ 
homeostasis by indirect means

NKCC2a, Claudin-10a; ROMKa,b; 
PCBDa,b, HNF1Ba,b, Barttina,b; Na+-
K+-ATPasea,b/FXYD2a,ba,b; CaSRa,b; 
ClC-Kba,b; Kir4.1b; Kv1.1b; NCCb

aProteins expressed in the TAL.
bProteins expressed in the DCT.
cProteins which role is under debate.

3

Giménez-Mascarell et al. Novel Aspects in Renal Mg2+ Handling

Frontiers in Pediatrics | www.frontiersin.org April 2018 | Volume 6 | Article 77

energy-consuming transcellular route provides a fine-tuning at 
the several steps of transport and is, therefore, subject to precise 
local, regional, or global regulation. This can be realized by hor-
mones such as 1,25(OH)D2 or parathyroid hormone according to 
the basic but also the actual needs of the organism (e.g., growth).

In the kidney, the driving force of transepithelial Mg2+ absorp-
tion is provided by a continuously maintained electrochemical 
gradient between the apical (tubular fluid) and the basolateral 
(blood) compartment. This process is realized by a battery of 
transcellular (and apical to basolateral) and paracellular transport 
mechanisms. As a principle, paracellular transport mainly takes 
place where the transepithelial concentration gradient is high, 
i.e., the proximal jejunum in the gut and in the proximal tubule 
(PT) as well the thick ascending loop of Henle in the kidney. By 
contrast, transcellular transport takes place in the late ileum, 
colon, and the distal part of the renal tubule (11, 12).

MAgNeSiUM HANDliNg AlONg THe 
NePHRON

After glomerular filtration, the non-protein-bound fraction, 
Mg2+ is absorbed along the nephron before it is finally lost 
irretrievable for the organism within the urine. Under normal 
conditions (Glomerular filtration rate >90  ml/min/1.73  m2), 
more than 95% of filtered Mg2+ in the pro-urine is reabsorbed 
along the tubular system by several coordinated transport 
processes (13). Besides their anatomical localization, regulatory 
mechanisms of renal Mg2+ homeostasis can also be classified by 
their involvement in the hierarchy of transport. Therefore, we 
classify here the mechanisms of Mg2+ transport and homeostasis 
according to their involvement in the network of Mg2+ handling 
(Table 1). The first category comprises proteins or elements that 
transport Mg2+ by itself, e.g., a direct Mg2+ transport mechanism. 
The second category includes proteins and mechanisms that 
regulate elements of category 1. The third category comprises 
members that influence Mg2+ handling in a more remote way, 
e.g., by regulating ions, other than Mg2+ but thereby influence 
Mg2+ handling. To the latter category belong also proteins that 
influence Mg2+ homeostasis, e.g., by causing polyuria and thereby 
a “wash out” of Mg2+ by reducing the time of contact of absorbing 
mechanisms with the corresponding substance (as can be seen 

by the treatment with furosemide). With this newly proposed 
classification, we aim to focus on the current knowledge on Mg2+ 
handling toward a more interactive model, the magnesiome, and 
the Mg2+ interactome.

Anatomically, the major sites of renal Mg2+ reabsorption are, 
besides the PT (10–20%), the thick ascending loop of Henle (TAL, 
65–70%) and the distal convoluted tubule (DCT, 10%) (Figure 2). 
Beyond the DCT, no significant mechanisms of Mg2+ absorption 
have been described so far (11, 12).

PT and Thick Ascending Part of Henle’s 
loop
Mg2+ absorption in the PT and TAL occurs mainly via paracellular 
route and in the DCT the transcellular route (13). The paracellular 
route is mainly determined by the Tight Junction (TJ), a supra-
molecular organization of membrane-bound proteins and their 
intracellular adaptor- and scaffolding proteins. The major proteins 
of the TJ comprise Claudins (from lat. claudere: to seal), a protein 
family consisting of at least 24 members in Eukaryotes enabling 
the TJ to function as either (a) barrier, (b) fence, or (c) channel 
(Figure 3). The Barrier function of the TJ enables the organism to 
increase transepithelial resistance (TER; Ω × cm2) where needed. 
As such, the PT has a low resistance (6–10 Ω ×  cm2) whereas 
downstream, toward TAL (11–34 Ω × cm2) and the Collecting 
Duct (60  Ω  ×  cm2; MDCK cells) TER is constantly increasing 
(14, 15). The bladder, in order to fulfill its function of a tight res-
ervoir, has the highest epithelial resistance [>300 kΩ × cm2 (16); 
Figure 3A]. The Fence function of the TJ is a key element that 
contributes to the apical-to-basolateral orientation of epithelial 
cells. In order to guarantee a coordinated, regulated transcellular 
transport, membrane-bound proteins must be oriented stable at 
either apical or the basolateral side. This principal requirement 
of all epithelial tissues is mainly realized by the TJ (17). Likewise, 
the loss of the apical-to-basolateral orientation, i.e., the loss of 
polarity and even cell-to-cell contact is an early event in tumor 
development. Several claudins have been shown to be potential 
markers of gastrointestinal tumors and their progression (18). 
Moreover, other Claudins (e.g., Claudin-3) have been demon-
strated to be involved, in men and animals in tumor invasiveness 
and in autoimmune disorders (18, 19). Also, several Claudins 
are vital for teeth development in mice and humans (20). A 
great step toward the determination of the role of Claudins has 
been achieved by the resolution of the crystal structure of the 
Claudin protein Claudin-15 (21, 22) (Figure 3B). Although their 
contribution to human disease has been demonstrated, proteins 
that directly interfere with Claudins have only been preliminarily 
characterized (23, 24). The Channel function of the TJ is crucial 
for ions (like Mg2+ and Ca2+) and H20 absorption and is depend-
ent on an existing electro-chemical gradient (17). The Channel 
function is realized by a surplus of one charge on one side of the 
epithelial layer than on the other side (e.g., apical vs. basolateral 
or vice versa) or on the surplus of a molecule or substance over 
the epithelial layer. Although the TJ does not possess pumps or 
antiporters, transport can nevertheless be selective by the vari-
ation and regulation of TJ composition and protein expression 
(25). Thus, the expression of different Claudins along epithelial 
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FigURe 3 | Transcellular transport. Tight junctions (TJs) and Caudins are responsible for different functions (A) Barrier, i.e., no transit in any direction, (B) Fence, 
enabling a cell apical-to-basolateral orientation, (C) Channel function, allowing molecules to pass from apical to basolateral and vice versa, and (D) depending on 
the composition of the TJ.

FigURe 2 | Mg2+ absorption along the nephron: Uptake along the nephron is realized by the proximal tubule (PT) (10–20%), the TAL (65–70%) and the distal 
convoluted tubule (DCT, 10%).
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tissues and their regulation and expression can determine Mg2+ 
spatial and temporal reabsorption (26) (Figure 4).

Although our knowledge on Mg2+ handling in the more distal 
nephron has increased significantly, little is known about Mg2+ 
transport in the PT, where it is believed to be transported by the 
paracellular way. There, terminus “bulk reabsorption” is used 

widely although this phenomenon has not been elucidated in 
detailed molecular or physiological context.

Bartter’s Syndrome, first described by the endocrinologist 
Frederick Bartter, is characterized by renal wasting of Na+, K+, 
and polyuria. Clinically, hyperaldosteronism in preterm borns, 
polyhydramnion and prematurity became a hallmark. The 
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FigURe 4 | Mg2+ handling network along the TAL and distal convoluted 
tubule (DCT). In the TAL (bottom), Mg2+ and Ca2+ are absorbed via the 
permeable channel formed by Claudin-16 and Claudin-19, which is inhibited 
by Claudin-14 (light brown). Claudin-10b is a cation-selective channel with 
high preference for Na+. The apical force needed for Mg2+ reabsorption is 
created by the cooperative activities of the basolateral Na+ K+ ATPase pump, 
the Chloride channels ClC-Ka and ClC-Kb, and the apical Na+ K+ 2Cl− 
cotransporter (NKCC2) and the K+ extruder, ROMK. (up) In the DCT, Mg2+ is 
mainly absorbed by transcellular routes. The Mg2+ ions enter into the cell 
through the apical TRPM6 channel and are then extruded by either CNNM2 
and/or SLC41A3 (still under debate). The apical force needed for Mg2+ 
transport is created by the cooperative action of the basolateral Na+ K+ 
ATPase, the Cl- channel ClC-Kb, the K+ transporter Kir 4.1 and the apical Na+ 
Cl− cotransporter (NCC) and the K+ extruders, ROMK and Kv 1.1 (5, 27).

FigURe 4 | Continued
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(28–33) Here, Mg2+ wasting is not caused by a direct mechanisms, 
and likewise Mg2+ wasting is a clinical hint, but not a mandatory 
feature of Bartter’s syndrome. Mg2+ wasting in Bartter’s Syndrome 
is also believed to be secondary to polyurias (and polydipsia) 
present in these patients. Thus, all the proteins are classified into 
Category 3 (Table 1) supported by the fact that also mice with a 
targeted deletion of NKCC2 show a Bartter-like phenotype but no 
hypomagnesemia (34). Interestingly, a transient form of Bartter’s 
syndrome has been described in several patients recently. Patients 
displayed the prenatal (Polyhydramnion, Prematurity) and post-
natal (Hyponatrimia, Hypokalemia) clinical hallmarks of Bartter’s 
syndrome. The authors have shown that these disorders are 
caused by mutations in the gene encoding melanoma-associated 
antigen D2, explaining that fact that only males were affected (35, 
36). Although the authors have not reported on Mg2+ levels, it is 
intriguing that this disorder is a more common cause of neonatal 
hypomagnesemia than anticipated that far.

The TAL is separated anatomically but also by its functional 
elements in the medullary and the cortical part (mTAL and cTAL). 
An important driving force in epithelial tissues and, therefore, 
also in the TAL, in order to maintain a transepithelial gradient 
is generated by the basolateral Na+ K+ ATPase. Mutations in the 
gene (FYXD2) coding for the γ-subunit of this protein have been 
shown to cause dominant familial Hypomagnesemia. Thus, it 
has been shown that this protein is a “conditio-sine-qua-non” for 
generating the necessary transepithelial gradient for transport 
systems and, thus, also for renal Mg2+ handling (11, 12, 37), this 
protein can be classified into the Category 2.

During the last years, several proteins have been shown to 
be involved in renal paracellular ion transport. However, a clear 
phenotype–genotype correlation has established in some but not 
in all of the genes and proteins involved. An example is provided 
by CLDN14. Mutations in CLDN14 cause non-syndromic deaf-
ness in men and mice (38, 39). Affected human individuals do 
not display overt renal abnormalities and the same holds true for 
mice with targeted deletions in CLDN14 (38). On the other hand, 
genome-wide association studies identified CLDN14 variants as 
a major risk gene associated with hypercalciuric stone disease 
(4, 40, 41). Furthermore, in the TAL, mutations in human genes 
(CLDN10, CLDN14, CLDN16, and CLDN19), that define the 
paracellular pathway (Figure  4) of Mg2+ absorption have been 
shown to cause rare human disorders. In the TAL, where signifi-
cant Mg2+ and Ca2+ transcellular transport is absent, paracellular 

seminal work of the Lifton and Hildebrandt groups showed that 
mutations in the genes that code for the apical transport in the 
TAL of Na+, K+ and Cl− (NKCC2, ROMK2) as well as the basolat-
eral extrusion mechanisms (ClC-Ka, Barttin) are essential for Na+ 
K+ and Cl− handling in the TAL (Bartter’s Syndrome types 1–4) 
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transport is of vital importance and is driven by a lumen-positive 
potential. Mutations in CLDN16 cause an autosomal-recessive 
disorder called “Familial Hypomagnesemia with Hypercalciuria 
and Nephrocalcinosis” (FHHNC) (42). Patients affected display 
renal Mg2+ and Ca2+ wasting accompanied by nephrocalcinosis. 
This disorder causes in most of the cases end stage renal disease, 
leading in many, but not all cases to the need for renal transplan-
tation (43). A clinical significant problem is given by the fact that 
there currently is no general screening procedure at the neonatal 
stage or later for toddles and schoolchildren on hypercalciuria 
or hypermagnesemia. Thus, if such patients are referred to a sec-
ondary or tertiary center, respectively, chronic renal insufficiency 
and calcifications have often already progressed to a severe and 
often, irreversible state. In contrast to the human situation, mice 
with targeted deletion of CLDN16 recapitulate human renal 
Mg2+ and Ca2+ wasting, but do not show any signs of overt renal 
calcifications and, moreover, no signs of apparent or progressing 
renal insufficiency (44). There is currently no explanation for 
this significant difference; however, it is intriguing that solving 
this striking difference, a possible route for treatment of patients 
may be opened. A novel recent finding was that the absence of 
CLDN16 in ameloblasts explains the clinical finding of amelo-
genesis imperfecta in FHHNC patients and mice with CLDN16 
deficiency (45). A similar finding was reported for patients with 
mutations in the genes coding for CLDN19 and similar for mice 
(CLDN3) (20, 46).

In 2006, Konrad et  al. reported that mutations in human 
CLDN19 also lead to renal Mg2+ and Ca2+ wasting, clinically 
an almost phenocopy of patients with CLDN16 mutations (47). 
Although still a matter of debate, it is believed that CLDN16 and 
CLDN19 interact and form a heteromeric paracellular channel, 
with a cation selectivity including Ca2+ and Mg2+ (48) (Figure 4). 
However, they could also show that patients harboring CLDN19 
mutations suffer from severe ocular involvement, as Claudin-19, 
but not Claudin-16 is expressed in the retinal pigment epithelium 
TJs, leading besides the renal Mg2+ and Ca2+ wasting to major 
vision problems (47, 49).

Another Claudin (Claudin-10) that contributes to Mg2+ 
handling exists at least in two principal forms. Claudin-10a 
and -10b, both confer different electrophysiological properties 
(anion-selective channel vs. cation-selective channel with a 
high preference for Na+) and their tissue distribution (Kidney 
and Uterus for Claudin-10a and ubiquitously for Claudin-10b) 
(50–52) (Figure 4). The expression of the Claudin-10b in almost 
every epithelial tissue might explain that mice with a targeted 
deletion die soon after birth. In sharp contrast, the generation 
of a kidney specific CLDN10-KO mouse (by the use of a ksp-Cre 
deleter strain) led to a vital mouse model. However, these mice 
displayed hypermagnesemia, hypocalciuria, nephrocalcinosis, 
and polyuria (53). Isolated mouse tubules of the TAL demon-
strated a decreased paracellular Na+ permeability as well as higher 
expression of Claudin-16. Interestingly, recently four independ-
ent groups have reported mutations in human CLDN10 (54–57). 
Bongers et  al. reported on two non-related patients presenting 
with alkalosis, hypokalemia, hypocalciuria, and hypercalcemia 
and a serum Mg2+ in the upper range of normal. They identified 
heterozygous mutations (P149R, Glu157_Tyr192del, and D73N) 

in two unrelated families. Hadj-Rabia et al. reported mutations in 
six patients from two unrelated families (S131L, M1T), resulting 
in an absence of CLDN10 at the plasma membrane. Affected 
members had high serum Mg2+ levels and renal loss of K+, Na+ 
and Cl−. Of interest is that patients also suffered from a variety of 
skin and teeth disorders (hypolacrymia, ichthyosis, xerostomia, 
and severe enamel wear). A similar renal phenotype was reported 
by Klar and colleagues (55). They identified a CLDN10 Mutation 
(N48K) in two distantly related families with 13 affected indi-
viduals presenting with anhidrosis and the inability to produce 
tears. Although serum levels of Na+ and K+ were in the normal 
range, all patients present with high Mg2+ serum levels. All groups 
identified homozygous or compound heterozygous mutations in 
CLDN10 and demonstrated thereby unequivocally the impor-
tance of Claudin-10 for human Mg2+ homeostasis. However, the 
recently described homozygote mutation (G163A) in a patient by 
Terliesner was reported to have normomagnesemia (57). So far, 
several different mutations in human CLDN10 have been shown 
to cause a renal tubular disorder that is characterized by hypoka-
lemia, alkalosis, and hypermagnesemia. Moreover, as Claudin-10 
is expressed in skin tissues, and several different symptoms of 
disordered dermal Na+ homeostasis could, therefore, be attrib-
uted to this defect.

Interestingly, the full CLDN10 knock-out mouse dies a few 
hours after birth, indicating that one or more organs different 
than the kidney and skin must be, if deficient for Claudin-10, 
vital for survival. Thus, the fact that human mutation does not 
lead to a lethal phenotype are intriguing in terms of compensa-
tory mechanisms. However, the fact that Claudin-10 is expressed 
in the lung leads to spectate that the primary cause of postnatal 
death is caused by the absence of Claudin-10 in the lung (58, 59).

A corresponding mouse model has been generated by 
Breiderhoff and colleagues, by crossbreeding Claudin-16-
deficient mice with a kidney-specific Claudin-10-deficient 
mouse strain (44, 53). Combining a hypomagnesemic model 
(CLDN16−/−) with a hypermagnesemic model (kidney specific 
CLDN10−/−) resulted in a normomagnesemic mouse, thus a 
“restored” normal phenotype (60). These findings point at the 
high compensatory, and more than so far anticipated capacity 
of the DCT. Put in perspective, the development of a selective 
renal Claudin-10b blocking agent could be a therapeutic option 
for Claudin-16 patients, since obviously the block of a Na+ pore 
restores the capacity of Mg2+ and Ca2+ recovery more distantly, 
i.e., the DCT.

Distal Convoluted Tubule
In the DCT, Mg2+ reabsorption takes place mainly by transcel-
lular route. Here, apical uptake, intracellular buffering, transport, 
and the extrusion at the basolateral site is concerted by a highly 
defined and regulated (e.g., hormonal) molecular machinery 
that has been recently reviewed in Ref. (5, 27). Among the eight 
different types of Mg2+ transport factors identified in eukaryotes 
(TRPM6/M7, Mrs2, MMgT, MagT1, SLC41 family, NIPA, HIP14, 
and CNNMs) (61–67), only three are expressed at the DCT. The 
selected list includes (1) the transient receptor potential channel 
melastatin member 6 (TRPM6) (68), (2) the third member of the 
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solute carrier SLC41A family (SLC41A3) (69), and (3) the “Cyclin 
and CBS Domain Divalent Metal Cation Transport Mediator-2” 
(CNNM2), also referred to as ACDP2 (ancient conserved domain 
protein-2) (63, 65) (Figure 4).

These three proteins are classified in the first category of 
Table 1 as they are directly involved in Mg2+ transport or have 
been related to direct Mg2+ handling in the DCT.

TRPM6 was the first molecularly identified protein involved 
in active Mg2+ reabsorption (68). This channel, which associates 
in homotetramers, and may also interact with its closest homolog 
TRPM7 to form heterotetrameric species (70), is five times more 
permeable to Mg2+ than to Ca2+, and permits the reabsorption of 
these cations through the apical membrane of the epithelial cells 
(68). The three-dimensional structure of TRPM6 still remains 
unsolved, but its domain distribution is known and includes a 
cytosolic N-terminus followed by a transmembrane region of 
six α-helices and a long intracellular C-terminus that contains a 
serine-threonine active kinase domain similar to that present in 
α-kinases. The ion pore is putatively located between the fifth and 
sixth α-helices of the transmembrane section (71). Interestingly, 
mutations that impair the phosphorylation of threonine at 
position 1851 (72) decrease the protein transport activity. These 
findings have led to propose that autophosphorylation is a key 
step in the regulatory mechanism of Mg2+ transport through 
this channel (73). Clinical or genetical disturbances in TRPM6 
are linked to different diseases. For example, mutations in its 
amino acid sequence cause the rare autosomal-recessive familial 
hypomagnesemia with secondary hypocalcemia (74–76). Other 
variants have been linked to hypoparathyroidism (77) and breast 
cancer (78). Of note, genetic ablation of the TRPM6 gene in mice 
results in early embryonic lethality (79). Interestingly, TRPM6± 
mice showed reduced expression of the channel in kidney and 
colon, resulting in mild hypomagnesemia with no hypocalcemia 
(80).

A set of other mutations in genes that are not primarily associ-
ated with Mg2+, but relevant for the establishment of the apical 
membrane potential to drive Mg2+ entry through TRPM6 (and, 
therefore, classified in categories 2 and 3 in Table 1), have been 
identified causing secondary Mg2+ wasting. The corresponding 
genes code for transcriptional factors (HNF1B and PCBD1), 
growth factors (EGF), (co)-transporters (NCC, encoded by gene 
SLC12A3), or even ion-channels (Kir4.1 encoded by KCNJ10)  
(66, 81–84) (Figure  4). According to the gene mutated, the 
resulting phenotype comprises cystic kidney disease, diabetes, 
electrolyte disturbances other than Mg2+, or seizures. Clinically, 
hypomagnesemia is, compared to coexisting diabetes (MODY5), 
the chronic kidney disease and the hyperphenylinaemia a 
subordinated problem to the patient. However, identifying 
hypomagnesemia might be of value to identify the comorbidities 
at an early stage (85). Furthermore, elucidating the mechanisms 
that contribute to the disordered handling of Mg2+ in these 
patients may also enable a better understanding and treatment of 
diabetes, cyctic kidney disease, and hyperphenylinemia.

Inactivating mutations in SLC12A3 cause Gitelman syn-
drome, the most frequent cause of hereditary hypomagnesemia 
and characterized by hypokalemic metabolic alkalosis with 
hypomagnesemia and hypocalciuria. It has been proposed that a 

decrease activity of the NCC protein affects the membrane poten-
tial necessary for Mg2+ reabsorption in the apical membrane of 
DCT by TRPM6 (86–89).

SLC41A3 was originally described by Quamme as part of the 
solute carrier family 41 (65), which encompasses three integral 
cytoplasmic membrane putative Mg2+ transporters (SLC41A1, 
-A2, and -A3) (90). Mutations in this family are linked to 
Parkinson’s disease (91), diabetes (92), and nephrolithiasis (93). 
As in the case of TRPM6, the three-dimensional structure of these 
transporters remains unsolved, but is known to be built up of 10 
or 11 transmembrane α-helices (94). SLC41A3, whose molecular 
function and interaction partners remain also elusive, is the 
highest enriched member in the DCT. Recently, de Baaij et  al. 
found that, a Slc41a3−/− knockout mice suffer from hypomagne-
semia and normomagnesiuria, accompanied by upregulation of 
TRPM6 and SLC41A (69). These results underlined the relevant 
role played by SLC41A3 in Mg2+ reabsorption.

The third identified Mg2+ transport mediator expressed in the 
DCT is CNNM2, which belongs to the Cyclin M family. This fam-
ily encompasses four different members (CNNM1-4). Mutations 
in CNNM2 cause dominant familial hypomagnesemia (67), and 
have been linked to brain development anomalies (95), hyper-
tension, diabetes, and obesity (96, 97). Moreover, the CNNM2 
locus has been linked by GWAS to neuro-psychiatric disorders 
(e.g., Schizophrenia) (98, 99). In 2014, Arjona et al. found that 
knockdown of CNNM2 orthologs in zebrafish results in brain 
abnormalities, increase of spontaneous contractions, and Mg2+ 
waste (95). These authors also identified five new families with 
mutations in CNNM2 that suffered hypomagnesemia with men-
tal retardation and seizures. These findings suggested an essential 
role of CNNM2 in Mg2+ homeostasis and brain development. The 
relevant role of CNNM2 is underlined by the fact that mice lacking 
CNNM2 are embryonic lethal (100). Heterozygous (Cnnm2+/−) 
mice show lower Mg2+ levels in serum, thus suggesting defects in 
Mg2+ reabsorption in kidney. In addition, these animals showed 
lower blood pressure than compared to control mice. These 
results highlighted the importance of Mg2+ and its reabsorption 
in the kidney to maintain blood pressure (100).

The CNNMs represent the least-studied members across 
the mammalian transporters and share with MgtE and with the 
CLC family of chloride channels the presence of a cystathionine 
β-synthase (CBS) domain pair in their amino acid sequence 
(101–103). The four CNNM family members were first identified 
in 2003 by Wang et al. (61, 104) and show very strong homology 
to the bacterial CorC protein [which is involved in Mg2+ and 
cobalt (Co2+) efflux (63)], and with the Mam3p proteins (67, 
105). It was initially suggested that CNNMs might be involved in 
cell-cycle regulation (61), as they contain a cyclin box-like motif 
and are located in the plasma membrane. However, the cyclin M 
function has that far not been proved in vivo.

The second member of the Cnnm family, CNNM2, is abun-
dant in brain and kidney (64, 65), and shows a complex modular 
architecture composed by four structural domains (Figure  5) 
(106). The N-terminal section (likely to be an extracellular 
compoment) consists of a β-stranded enriched region (residues 
1–250) and precedes a DUF21 domain (residues 251–400, Pfam 
code PF01595) with three or four transmembrane α-helices (107). 
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FigURe 5 | Domain distribution of CNNM2. CNNM2 is a 97 kDa protein of 875 amino acid residues, formed by four different domains: (i) the N-terminal extracellular 
region is enriched in β-strands and presents a large cleavage signal peptide of approximately 65 residues. This zone is preceded by a transmembrane α-helix (TM1); 
(ii) the following DUF21 domain includes 3 or 4 transmembrane helices (TM1-4) that are putatively responsible for Mg2+ transport across the membrane; the 
intracellular part includes two domains: (iii) a Bateman module consisting of two consecutive CBS domains and (iv) a cyclic nucleotide monophosphate (cNMP)-like 
domain. CNNM2 shows two isoforms (Iso1 and Iso2). Iso2_CNNM2 lacks residues 721–742.
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The following intracellular region includes a CBS domain pair 
(so called “Bateman” module; Pfam code PF00571) (106) and a 
C-terminal cyclic nucleotide monophosphate (cNMP) like bind-
ing domain (Pfam code PF00027) (106) (Figure  5). Although 
the concrete function of each domain remains unknown, recent 
biophysical and structural data supports a regulatory role for the 
Bateman module.

Mechanisms of Mg2+ Transport in the DCT 
and CNNM2
Despite the universally recognized relevance of magnesium 
in maintaining key life processes as mentioned above, current 
knowledge about the CNNMs and their role in the DCT, as 
well as the molecular mechanisms involved in its transport 
across the cellular membranes remain still to be explored. This 
is largely due to the scarce structural information available on 
Mg2+ transporters and channels, that so far was limited to the 
crystal structures of two prokaryotic proteins: (i) CorA from 
Thermotoga maritima (108–111) and (ii) MgtE from Thermus 
thermophilus (112–115). These proteins are homologs of two 
eukaryotic Mg2+ transport mediators: the mitochondrial Mg2+ 
channel Mrs2 and the solute carrier (SLC) family 41 members 
(homologs of CorA and MgtE, respectively). CorA represents 
the major transport machinery responsible for Mg2+ uptake in 
bacteria and it translocates Mg2+ by using an inwardly biased 
electrochemical gradient that serves as the driving force for 
Mg2+ permeation (108, 109, 111, 116).

MgtE is a dimeric Mg2+ selective channel (117) that permeates 
Mg2+ ions and maintains the intracellular Mg2+ homeostasis in 
bacteria. MgtE shares with CNNM2 (but not with SLC41) the 
presence of an intracellular CBS domain pair (101, 102). An 
ATP/Mg-dependent open-to-close gating process that involves 
binding of the nucleotide at this region defines the threshold 
of intracellular Mg2+ for the channel inactivation and provides 
sensory capacity to this protein (113, 114, 118).

The recent elucidation of the crystal structure of the Bateman 
module of CNNM2 (119, 120) has shed new light on the molecu-
lar mechanisms underlying Mg2+ transport through the basolat-
eral membrane of the DCT (Figure 6). We and others recently 
confirmed that this region may host ATP in a Mg2+-dependent 
manner, as well as independent Mg2+ atoms that interact with 
some acidic clusters located in the CBS1 motifs (106, 119). 
The fact that the Mg2+ independent sites are far away from the 
nucleotide suggest that, as observed in MgtE (114), binding of 
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FigURe 7 | Mechanism of Mg2+ transport at the distal convoluted tubule 
(DCT). (A) Mg2+ enters into the DCT epithelial cells through the apical 
membrane with the help of TRPM6/7 channels. At low Mg2+ concentrations, 
the cystathionine β-synthase (CBS) module of CNNM2, located at the 
basolateral membrane, remains in its twisted conformation. (B,C) Upon 
increasing the intracellular concentration of Mg2+, binding of these cations 
and of MgATP to CNNM2, triggers the progression of the CBS module 
toward its flat state, and the transport of Mg2+ through the basolateral 
membrane toward the blood torrent. In addition, an increased intracellular 
Mg2+ concentration inhibits apical transport by TRPM6.

FigURe 6 | Crystal structure of the Bateman module of CNNM2. (A) The 
Bateman module of CNNM2 consists of two consecutive cystathionine 
β-synthase (CBS) motifs (CBS1, residues 445–508; CBS2, residues 
509–578). A long extended loop links strands β5 and β6 in the CBS2 motif. 
The H0 helix connects CBS1 with the DUF21 transmembrane domain in the 
full-length protein. The H4 helix connects CBS2 with the cyclic nucleotide 
monophosphate domain. Nucleotides, ca. AMP (blue), ADP (green), or 
adenosine triphosphosphate (ATP) (orange) bind independently at the S2 site, 
thus disrupting the interactions formerly existing in the cavity between 
residues of the CBS1 and CBS2 motifs. This induces a displacement of 
helices H0, H1, and H4 in each Bateman subunit. The apo- and the 
nucleotide-bound Bateman module are represented in green and marine, 
respectively. The crystal structure of the T568I protein variant is in red. As 
shown, the T568I mutation mimics the structural effect of ATP binding; 
although in the first case, the structural change is irreversible, thus locking 
the protein in the nucleotide-bound like conformation. (B,C) Conformational 
changes induced by ATP. The Bateman module of CNNM2 associates in 
disk-like dimers known as “CBS modules,” which adopt a twisted (B) or a flat 
(C) state depending on whether the site S2 of each subunit is empty or hosts 
an ATP (or MgATP) molecule, respectively. Note that the H0 helices 
connecting the CBS2 motif with the DUF21 domain are differently oriented in 
each case, thus likely transmitting the transformation suffered by the 
Bateman module to the transmembrane region.
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position 568 (T568) as well as a salt bridge between R480 and 
E570 and causes the displacement the C-terminal helix of the 
CBS2 domain (helix H4) as well as of the long α-helix (helix 
H0) that connects the Bateman module with the DUF21 domain 
(Figure 5). These structural changes, which occur concomitantly 
in the two complementary subunits of the dimer, trigger an over-
all rearrangement of the CBS module that makes it to evolve from 

Mg2+ at concrete positions may not be directly coupled with ATP 
binding, although it may complement its effect in conformational 
transformations suffered by the whole module (106, 121).

The Bateman module of CNNM2 features two major cavities 
(named as S1 and S2) that are located at opposite ends of the 
central β-sheets of the CBS motifs. In contrast with S1, which is 
partially occluded and full of bulky residues, the site S2 is fully 
accessible and can accommodate phospho-nucleotides, such as 
AMP, ADP, or ATP (106, 121) (Figure  6). Site S2 is built by 
three different structural blocks: (i) the central residues from 
the linker preceding the first β-strand (β1) of the CBS1 domain, 
(ii) the C-terminal residues from the last β-strand (β6) of the 
CBS2 motif, and (iii) the first two turns of helix H4 of CBS2 
(Figure 6). The upper and right walls of the cavity are mainly 
hydrophobic and help accommodating the bulky adenine 
ring of ATP (106, 121). By contrast, the left wall of the cleft is 
hydrophilic and is built from the last β-strand and the following 
α-helix (H4) of the CBS2 motif. A conserved threonine (T568) 
and an aspartate residue (D571) from this helix are key in help 
orienting the ribose ring of the nucleosides inside the cavity, 
and if mutated, impede the allocation of ATP inside (106). 
Interestingly, the repulsive effect otherwise exerted by the 
acidic cluster formed by residues E570, D571, and E574 (at the 
first turn of α-helix H4 of CBS2) over the polyphosphate chain 
of ATP (106) is neutralized by the Mg atom that accompanies 
the ATP molecule. The positive dipole end of helix H4 and the 
nearby arginine residue, R480, complement the neutralizing 
effect (106). The Bateman module of CNNMs associates in 
head-to-head oriented disk-like dimers known as CBS modules 
(Figures 6B,C) (106, 121).

At low concentrations of Mg2+ and in the absence of MgATP, 
the CBS module adopts a “twisted” shape (Figure 6B), in which 
the CBS2 domains from complementary subunits remain in con-
tact while the CBS1 motifs are separated and retain only scarce 
hydrophobic interactions. Binding of MgATP at site S2 disrupts 
a network of H-bonds centered on the conserved threonine at 
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a “twisted” (Figure 6B) toward a “flat” disk structure (Figure 6C). 
The conformational effect of ATP is likely transferred to the 
DUF21 transmembrane domain through helix (H0) that con-
nects it with the CBS2 motif. This sequence of events has been 
postulated as the mechanism by which CNNM2 might regulate 
the gating of Mg2+ ions through the basolateral cell membrane 
(106, 121) (Figure 7).

CNNM2 and Mgte Differ in Their  
CBS-Domain-Mediated gating Mechanism
Interestingly, an ATP/Mg-mediated gating process ruled out by 
CBS domains has also been postulated as the mechanism by which 
the MgtE transporter senses and regulate the Mg2+ homeostasis in 
bacteria (114). In contrast with the twisted-to-flat transformation 
observed in CNNM, the rearrangement of the Bateman modules 
of MgtE responds to an open-to-close mechanism (113–115). 
In the absence of Mg2+ ions, the complementary CBS2 motifs of 
MgtE subunits remain apart in the dimer due to the repulsion 
exerted by acidic clusters located at the interfacial helices of the 
CBS2 domains. In this state, the CBS module impairs the trans-
port of Mg through the membrane and maintains the protein in 
an “open” state. While the intracellular concentration of Mg2+ is 
low, the CBS module remains open and allows the influx of Mg2+ 
ions toward the interior of the cell. Upon increasing the intra-
cellular concentration of Mg2+, the pre-existing repulsive acidic 
clusters become sequentially neutralized by newly bound Mg2+ 
ions, thus allowing the approximation of the CBS2 motifs. The 
sequential binding of Mg atoms progressively causes a closure of 
the CBS module that, when completed, adopts a “flat” disk-like 
arrangement as that observed in the MgATP/Mg2+ bound form of 
CNNM2 (106). The new state is transferred to the transmembrane 
region and results in the closure of the membrane pore (114).

CONClUSiON

The identification of mutations in human genes has led to a 
deeper understanding of Mg2+ handling in health and disease. 
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