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Background: Diagnosis of rare Wilson disease (WD) in pediatric patients is difficult, in

particular when hepatic manifestation is absent. Genetic analysis of ATP7B represents

the single major determinant of the diagnostic scoring system in WD children having mild

symptoms.

Objectives: To assess the impact of molecularly expressed ATP7B gene products in

order to assist diagnosis of Wilson disease in pediatric patients having a novel mutation

and subtle neuropsychiatric disease.

Methods: The medical history, clinical presentation, biochemical parameters, and

the genetic analysis of ATP7B were determined. Due to ambiguous clinical and

biochemical findings and identification of a novel compound ATP7B mutation with

unknown disease-causing status, a molecular analysis of the ATP7B gene products in a

previously well characterized cell model was performed.

Results: The ATP7B variants were transgenically expressed and the respective gene

functionmolecularly characterized. Despite normal mRNA expression, low ATP7B protein

expression of the mutants p.L168P and p.S1423N was observed (34.3 ± 8% and 66.0

± 8%, respectively). Copper exposure did not result in decreased viability of transgenic

cells as compared to wild type. Intracellular copper accumulation was reduced (≤47.9

± 8%) and intracellular protein trafficking was impaired.

Conclusion: Our report suggests that functional characterization of novel ATP7B

mutants can assist diagnosis; however mild functional impairments of ATP7B variants

may hamper the value of such approaches.

Keywords: delay of diagnosis, copper, neuropsychiatric, WD scoring, rare disease, cell model

INTRODUCTION

Wilson disease (WD; MIM#277900) is a rare, autosomal recessive, monogenetic disorder with a
frequency of approximately 1:30,000 (1). Diagnosis of WD represents a challenge to doctors,
including pediatricians (2–4). The disease manifests at various times throughout life with children
representing a major portion of patients. Commonly, disease is diagnosed between 5 and 18 years,
however some children below 5 years and elderly (> 60 years) can show first symptoms (5, 6).
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WD results from mutations in the ATP7B gene. The gene
encodes a large membrane-spanning P-type ATPase (7, 8).
ATP7B is predominately expressed in hepatocytes where it has
two main functions: it is responsible for transfer of copper to
apoceruloplasmin, which is secreted into the blood for copper
supply to other organs, and—in case of excess copper—excretion
from the body into the bile (9). Clinical presentation with pure
neurological symptoms in childhood, e.g., tremor or movement
disorder, is rare, and most children show hepatic disease due to
copper overload of the liver (10). When left untreated, a severe,
life-threatening disease evolves, including liver cirrhosis and/or
severe neurodisability. Of note, effective, low-cost therapy has
been established with copper chelators, mostly D-penicillamine
(DPA) and trientine, or zinc (11). However, therapy has to be
taken lifelong and may result in side effects in a portion of the
patients. An early start of the treatment in childhood is suggested
to be of clinical benefit.

There is no single biochemical test for diagnosis of WD.
A combination of individual assessments is indicative for
diagnosis. Respective scores for diagnosis that includes various
parameters of liver, including elevated levels of transaminases,
and neurological disease have been developed (3, 12, 13). One
hallmark of the disease is the presence of a Kayser-Fleischer
ring (KF) which is however absent in a significant portion
of patients (14, 15). Low serum ceruloplasmin and high liver
copper are also highly suggestive but could be missed in patients
with predominant neurological or psychiatric symptoms (16).
Significant delay of WD diagnosis is therefore not uncommon.

The only single assay to confirm WD is by genetic testing
of ATP7B. Detection rates of up to 98% have been reported
(17, 18). More than 650 disease-causing mutations are currently
known and novel SNPs are continuously reported. For novel
mutations the prediction of penetrance is difficult. Most mutants
of ATP7B are missense mutations which are proposed to reduce
the function of the protein. To assess ATP7B function, primary
specimens derived by biopsy from the patient are limited and
also ethically restricted. Consequently, several cellular models
reflecting the activity of ATP7B were established to predict the
disease-causing impact of a givenmutation. Such systems include
yeast and several mammalian cell lines (19–22). In this work we
describe a case report of a child with a novel compound ATP7B
mutation and relatively mild symptoms, where we have used a
previously well characterized cell model to classify the functions
of ATP7B for improved diagnosis of WD (23).

MATERIALS AND METHODS

Clinical Presentation
Medical history, family medical history, clinical presentation,
and biochemical parameters were recorded in the Department
of Gastroenterology, Hepatology, Nutrition Disorders and
Pediatrics of the Children’s Memorial Health Institute Warsaw,
Poland. Alanine transaminase (ALT), asparganine transaminase
(AST), bilirubin, serum ceruloplasmin, rhodanine staining of

Abbreviations: WD, Wilson disease; DPA, D-Penicillamine; KF, Kayser-Fleischer

ring; Cu, copper.

hepatocytes, Kayser-Fleischer ring (KF), and 24 h urinary copper
excretion were determined as reported (24). After obtaining
written informed consent, genomic DNA was extracted from
peripheral blood samples and the complete open reading frame
and adjacent intron boundaries of ATP7B were sequenced at the
Medizinische Klinik B für Gastroenterologie und Hepatologie,
Universitätsklinikum Münster, Germany. WD was diagnosed
based on the Ferenci scoring system (25).

Cell Culture
HepG2 (human hepatocellular carcinoma) cells were purchased
from American Type Culture Collection (ATCC) and ATP7B
KO cells were derived as described (26). RPMI medium (Lonza)
containing 10% fetal bovine serum (FBS) was supplemented with
100 U/mL penicillin/streptomycin (PAA). Cells were maintained
in 5% CO2 at 37

◦C in a humidified chamber.

Site-Directed Mutagenesis And Generation
of Stable ATP7B Mutant Cell Lines
Wild type ATP7B cDNA was cloned into plasmid
pGCsamEN.ATP7B and site-directed mutagenesis was
performed using QuikChange II XL Site-Directed Mutagenesis
Kit (Agilent Technologies) (23). The primer sequences were:
p.L168P (5′-3′): GGCAAGGTCCGGAAACCGCAAGGAGTA
GTGAG /CTCACTACTCCTTGCGGTTTCCGGACCTTGCC
and p.S1423N (5′-3′): CCATGGGACCAGGTCAACTATGTCA
GCCAGGT / ACCTGGCTGACATAGTTGACCTGGTCCCAT
GG. Retroviral vector transduced HepG2 KO cells were selected
in media containing 6µg/ml blasticidin (Invitrogen).

Western Blot
A polyclonal anti-rabbit ATP7B antibody (kind gift of Dr. I.
Sandoval, Madrid, Spain) was used for Western blot. HSC70
(Santa Cruz Biotechnology, #sc-1059) staining was used as a
protein loading control. Relative expression was normalized to
HepG2 KO cells expressing wild type ATP7B (23).

MTT Assay
For cell viability assay triplicates of 104 cells per 96 well were
seeded and cultivated overnight in 100 µl RPMI media lacking
phenol red (Lonza). Cells were exposed to copper (CuCl2; Sigma
Aldrich) for 48 h. Viability was determined by MTT assay (26).
The percentage of viable cells was calculated and compared to
untreated (100%).

Copper Accumulation
For copper accumulation assay 105 cells were seeded per 12 well,
cultivated overnight and treated with 0.01mM CuCl2 for 4 h.
Cells were washed twice, trypsinized and lyzed in 65% nitric
acid (Merck). Bradford Assay (BioRad) was used to determine
total protein concentration. Analysis of copper accumulation was
performed via inductively coupled plasma mass spectrometry
(Thermo Fisher Scientific iCAP Qc).

Real-Time PCR Analysis
RT-qPCR analysis was performed using SYBR Green PCR Core
Plus (Eurogentec). Ct values were normalized to the expression of
the house-keeping GAPDH gene (11ct method). PCR analysis
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was conducted on the ABI Prism 7900 HT Sequence Detection
System (PE Applied Biosystems). Following primer sequences
were used: ATP7B (5′-3′): TCCTCTGTGTCTGTGGTGCTC / A
TGCGCCTGTGCCTCATAC and GAPDH (5′-3′): CCCACTCC
TCCACCTTTGAC / CCACCACCCTGTTCCTGTAG.

Confocal Staining
For confocal microscopy, cells were maintained in RPMI basal
cell culture media or treated by addition of 100µM copper for
3 h. Primary antibody staining was performed using anti-ATP7B
(kind gift of Dr. I. Sandoval, Madrid, Spain) and anti-lamp2
(Santa Cruz Biotechnology, #sc-18822). Three independent
experiments were performed. Microscopic images were recorded
with an Observer Z1 microscope with Apotome, Axiocam MRm
(Zeiss) (27).

Statistical Analysis
Statistical analysis was performed by Kruskal-Wallis 1-way
ANOVA and Student’s t-test using SPSS 22.0 software. Data are
given as mean± standard error (SE).

RESULTS

Patient History
The clinical characterization of the patient is illustrated in
Table 1. At the age of thirteen, the boy was hospitalized following
episodes of paranoia, uncommon tics, Tourette syndrome and
three attempted suicides. MRI was performed, showing typical
images according to age. Serum transaminases were within
normal thresholds. Ceruloplasmin was low (0.13 g/L) at one
occasion, while a second determination showed normal values
(0.22 g/L). Liver biopsy was performed indicating micro- and
macrovesicular steatosis with no signs of necrosis, fibrosis
or cholestasis. Liver copper was in the normal range. Urine
copper concentration was highly elevated (>5 fold) after
cuprenil challenge (28). A previously reported, disease-causing
heterozygous p.L168P (c.503T > C) mutation was detected in
ATP7B (29). A second, unknown heterozygous ATP7B variant
p.S1423N (c.4268G > A) was observed. The parents were shown
to be asymptomatic heterozygotic carriers (Figures 1A–D).

Genetic analysis of the patient also revealed a p.TA7/7 mutation
in UGT1A1 indicating Gilbert syndrome. DPA and zinc acetate
treatment lead to no further reports of neurological and hepatic
disease. According to the diagnosing of WD using the Ferenci
scoring system an overall score of 4 was determined (25).

Expression Profile of Novel ATP7B Variants
Since functional characterization of ATP7B mutants is not
possible using patient materials and biopsy represents a risk
especially for children, a previously established cellular model
was used to functionally characterize the mutations of the patient
(23). While mRNA expression of the ATP7B variants p.L168P
and p.S1423N was in the same range as observed for wild
type (Figure 1E), protein expression/stability was significantly
affected in both mutants of the mutants p.L168P and p.S1423N
(34.3 ± 8% and 66.0 ± 8%, respectively) (Figures 1F,G).
Incubation at low temperature (30◦C) could marginally increase
protein stability for mutants p.L168P and p.S1423N (factor of
≈1.4 and≈1.2, respectively).

Characterization of ATP7B Mediated
Copper Transport
ATP7B activity of both mutants as judged by viability of cells was
similar to wild type at most copper concentrations (Figure 2A).
IC50 values calculated for p.L168P and p.S1423N were similar
(0.87 ± 0.06mM and 0.89 ± 0.05mM, respectively) and close to
wild type ATP7B. The accumulated cellular copper concentration
was significantly reduced (≤47.9 ± 8%) in both ATP7B mutants
as compared to wild type (Figure 2B). Values of both mutants
were in the same range as observed in ATP7B knockout cells.
Confocal microscopy was used to analyze ATP7B trafficking
relative to wildtype cells (Supplementary Figure S1). For mutant
p.L168P, ATP7B staining was dispersed cytoplasmically at both
copper concentrations (Figure 3). A broad co-localization with
anti-lamp2, a late endosome-lysosome marker, as observed
before for wild type was not detected (23). For p.S1423N, a
co-localization of ATP7B and lamp2 staining was found at low
copper concentrations. The ATP7B staining pattern obtained
with this mutant moderately responded to elevated copper.

TABLE 1 | Patient characteristics.

ALT

AST

(U/L)

CP

(g/L)

Liver Cu

(µg/g)

Liver

Rhodanine

Urine Cu

Normal/

DPA

(µg/24h)

Neuro-

psychiatric

ATP7B KF Therapy

2011 <40

<35

– – – ND Tourette1

Paranoia1

Suicide1

– – –

2013 <40

<35

0.131

0.22

20 absent 1,501

4,251
– – absent DPA

2016 <40

<35

– – – – – L168P1

S1423N

– Zinc

WD score2 – 1 −1 0 2 1 1 0 (total 4)

1 indicating WD. 2scoring according to Ferenci et al. (25); –, not determined/applicable; DPA- d-penicillamine.
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FIGURE 1 | Identification and expression of ATP7B mutants p.L168P and p.S1423N. (A,B) Sequence analysis of the patient shows a compound heterozygote

p.L168P (A) and p.S1423N (B) mutation. (C,D) The respective sequences derived from the father (C) and mother (D) are also depicted. (E) ATP7B mRNA expression

of both variants was determined by RT-qPCR analysis. Mean/SE are given (n = 3). (F) Densitometry determination of ATP7B protein expression relative to wild type is

shown. Mean/SE are given (n = 3). *P < 0.05. (G) One typical Western blot is shown.

DISCUSSION

We here report on the diagnosis of a boy who has a novel

compound heterozygote ATP7B mutation, no family history of

WD, and subtle neuropsychiatric symptoms without hepatic
disease. In this and other cases, WD diagnosis can be delayed due
to highly variable symptoms and low awareness of the disease.
Symptoms are rarely observed before the age of 5 years (5, 30, 31).
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FIGURE 2 | (A) Cell viability was determined after exposure to copper. Viability of cells relative to untreated (100%) is shown. Mean/SE are given (n = 3). *P < 0.05.

(B) Analysis of intracellular Cu accumulation. Mean/SE are given (n = 3). *P < 0.05.

In the first decade, the majority of children present with
hepatic symptoms. Liver disease is often accidentally revealed
by routine analysis of serum showing elevated levels of hepatic
transaminases which represent important first-line indicators
of WD. However, the detection rate of elevated transaminases
in children having WD is variable (32, 33). While the Ferenci
scoring system for diagnosis of WD includes parameters, e.g.,
Kayser-Fleischer rings, which are rarely observed in young
children, some of the thresholds used for scoring have been
adapted to children (28). The only single parameter confirming
WD is by genetic analysis ofATP7B. Genetic testing was proposed
for children where liver disease of unknown origin is observed
(3, 5). Irrespective of the presence of liver disease, a family history
of WD is highly suggestive for genetic testing. Extrahepatic
presentation of WD as observed in the case described here is
uncommon at young age. In children presenting with dystonia,
tremor, dysarthria and/or impaired school performance, WD
should be however carefully taken into account.

The reported case is unusual with respect to a pure psychiatric
disease manifestation observed in childhood (34). All clinical,
biochemical, and histological findings considered, the diagnosis
of WD for the patient is tentative, since definite hallmarks of the
disease, like Kayser-Fleischer ring or elevated liver copper, are
missing and overall relatively mild symptoms are observed. One
determination of ceruloplasmin was indicative for WD, while a
second assay performed in the same year was above thresholds.
Of note, around 20% of diagnosed children (and adults) have
CP levels above the threshold of 20 mg/dL limiting the value of
this diagnostic parameter (35–39). Elevated urine copper after
penicillamine treatment corroborated WD diagnosis. It should
be mentioned however that this assay is constrained in children,
since collection of urine may be difficult. Tic syndromes are
rather uncommon in WD patients but have been occasionally
associated with the disease (40). In addition, the patient displayed
a mutation in UGT1A1 indicating Gilbert syndrome and total

and indirect bilirubin was elevated. However, jaundice was not
reported. Although we cannot fully rule out amultiple disorder of
the patient, the general clinical picture seems to be in agreement
with WD as the principal underlying disease. Our finding of a
borderline positive WD diagnosis score could be significantly
modulated by the young age of the patient which precludes a full
manifestation of the disease (6, 10).

The genetic analysis of ATP7B in the patient revealed one
previously reported disease-causing mutation p.L168P (29),
while the second mutation p.S1423N was of unknown status.
Variant p.S12423N was not observed in healthy individuals and
could not be found in public data banks suggesting that this is
not a polymorphism (data not shown). Themutation p.L168P has
been reported in a 33 year old female in compoundwithmutation
p.H1069Q, the most frequent mutation found worldwide which
is associated with late-onset neurological disease (6). The
woman was diagnosed following the presentation of seizures
and episodes of unconsciousness shortly after a cesarean section
was performed. Neurological disease was not reported and zinc
sulfate treatment resulted in functional improvement suggesting
that mutation p.L168P may be associated with a relative mild
course of disease. However, apart from this report, a coherent
phenotype of p.L168P observed in homozygous WD patients has
not been reported.While mutation p.L168P, located in the second
copper binding domain of ATPase 7B, is predicted to alter the
function of the protein, such analyses gave unambiguous results
for p.S1423N (data not shown). The latter mutation is located in
the cytosolic portion of ATPase 7B close to the C-terminal end,
possibly important for protein trafficking (9).

To molecularly assess the function of the ATP7B gene
products, we have employed a hepatic cell model, since
hepatocytes represent the best studied cells where various
biological functions of the copper transporter have been
characterized (20, 26). Given the almost pure neuropsychiatric
symptoms of the patient, it would be interesting to re-address
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FIGURE 3 | Confocal microscopy before and after addition of copper. For mutant p.L168P, a dispersed cytoplasmically staining of ATP7B was observed at low and

high copper. For mutant p.S1423N, a co-localization with late endosome-lysosome marker lamp2 was observed at low copper concentrations. Elevated copper did

not show typical trafficking of this mutant. One representative experiment out of three is shown. Scale bar, 20µm.

our findings in neuronal cell lines, which are however less
established for assessment of WD to date. First, ATP7B-specific
protein expression of mutants p.L168P and p.S1423N was
found to be greatly reduced. The low protein expression could
only be marginally increased by low temperature suggesting
that in contrast to other mutations of ATP7B, a decreased
translation might be operative (41). Second, analysis of the
cell viability in the presence of toxic copper indicates that
mutants p.L168P and p.S1423N are mildly impaired with
only marginal functional losses as compared to wild type.
Of note, the viability assay employed here can detect various
degrees of ATP7B activity, as exemplified by the moderate or
deleterious loss-of-function mutations p.H1069Q/p.L795F and
p.C271∗, respectively (23). Third, the assessment of intracellular
copper accumulation revealed that both mutations have almost
completely lost the ability to store copper and showed similar

values as observed for knockout cells, whereas overexpression
of ATP7B resulted in an increase of copper previously also
observed in Chinese Hamster Ovary (CHO) cells (19). This
latter finding suggests that the copper accumulation assay and
the viability assay may rely on distinct functions of ATPase
7B. As suggested earlier, copper is translocated to intracellular
vesicles via ATP7B leading to increased copper concentrations
(19). Fourth, protein trafficking, a functional hallmark of the
ATP7B protein, was significantly disturbed in both mutants.
Mutant p.S1423N did not respond to high copper suggesting
that the amino acid change at position 1423 might affect the
nearby DKWSLL traffic signal that was found to be important
for regulation of the transport between the trans-Golgi network
(TGN) and the plasma membrane (42). Trafficking of mutant
p.L168P showed a copper dependent response, however lost
a specific trans-Golgi localization. Our analysis of protein
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trafficking is however restricted, since quantification of protein
localization relative to marker protein was not performed.
Such quantitative analyses awaits further standardization, while
different markers and experimental settings have been used
(43–45). Our molecular characterizations therefore indicate that
both mutants exhibit distinct, non-overlapping impairments
of ATP7B protein function which show different degrees
of impact depending on the functional assay used for the
determination.

Taken together, molecular characterization of novel ATP7B
variants may help to functionally categorize the mutation and
to assist in early WD diagnosis. The functional characterization
of ATP7B gene products is straightforward and can be achieved
within several weeks in order to initiate efficient therapy.
However, when the impairment of ATP7B function is relative
mild, as in the case reported here, such analysis can be
ambiguous. In addition, our molecular analyses has to be
subjected to further standardization by a large collection of
mutated proteins which is far from being achieved in our
and other studies (19–21, 23, 45). The case reported here
thus demonstrates current limitations of genetic analysis even
when combined with advanced functional characterizations
of ATP7B gene products. Given the evolving methodologies
of high-throughput mutagenesis, improved cellular models to
predict loss-of-function seem to be on the horizon, especially
for monogenetic, severe disorders of childhood where efficient
treatment is available.
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