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Despite continued advances in neonatal medicine, sepsis remains a leading cause of

death worldwide in neonatal intensive care units. The clinical presentation of sepsis

in neonates varies markedly from that in older children and adults, and distinct acute

inflammatory responses results in age-specific inflammatory and protective immune

response to infection. This review first provides an overview of the neonatal immune

system, then covers current mainstream, and experimental preventive and adjuvant

therapies in neonatal sepsis. We also discuss how the distinct physiology of the perinatal

period shapes early life immune responses and review strategies to reduce neonatal

sepsis-related morbidity and mortality. A summary of studies that characterize immune

ontogeny and neonatal sepsis is presented, followed by discussion of clinical trials

assessing interventions such as breast milk, lactoferrin, probiotics, and pentoxifylline.

Finally, we critically appraise future treatment options such as stem cell therapy, other

antimicrobial protein and peptides, and targeting of pattern recognition receptors in an

effort to prevent and/or treat sepsis in this highly vulnerable neonatal population.

Keywords: neonatal sepsis, preterm infant, adjuvant sepsis therapy, immunomodulation, pentoxifylline,

lactoferrin, probiotics, human milk

INTRODUCTION

Despite advances in neonatal care leading to improved survival rates and reduced complications in
preterm infants (1), there has been little improvement in the prophylaxis, treatment, and adverse
neurodevelopmental outcomes associated with neonatal sepsis over the last three decades (2–5).
The incidence of neonatal sepsis is inversely correlated with gestational age (GA) and birth weight
(BW). While ∼20% of very low BW (<1,500 g; VLBW) infants suffer from one or more systemic
infections during their hospital stay (6, 7), the rate may reach up to 60% in the most immature
infants (8). Inflammatory conditions such as neonatal sepsis and necrotizing enterocolitis (NEC)
are associated with persistently high morbidity and mortality rates in these infants (9, 10).
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DEFINITION AND CLINICAL COURSE OF
NEONATAL SEPSIS

While a consensus definition of pediatric sepsis exists, defined
as a systemic inflammatory response syndrome (SIRS) in
the presence of suspected or proven infection (11), no such
consensus definition has yet been published for neonatal sepsis
(12). Although a positive blood culture defines bacteremia
and has been included in some proposed definitions of
neonatal sepsis, such an approach does not take into account
that in most cases of neonatal sepsis clinical signs are not
associated with positive blood cultures (13). Recent studies
included a combination of laboratory tests, clinical findings
and/or the duration of antimicrobial treatment (≥5 days),
reflecting complexity and heterogeneity in neonatal sepsis
(3). Thus, in clinical practice, diagnosis of neonatal sepsis is
complicated by the absence of a consensus definition, non-
specific symptoms, and low sensitivity of the low volume
bacterial blood cultures typically obtained (12). Furthermore,
established diagnostic tests to predict severity and to guide
treatment are lacking (3). Complete blood counts, including
immature to total neutrophil ratios, C-reactive protein (CRP),
interleukin (IL)-6 or CXCL-8 (IL-8), and procalcitonin (PCT)
have some clinical utility (14). Cell surface markers on circulating
cells, such as soluble CD14, CD64, and HLA-DR, offer some
diagnostic value (15–17). However, much remains to be learned
regarding optimal diagnostics and research in this area, including
the application of systems biology approaches for biomarker
discovery (18).

Early empiric treatment with antibiotics is essential
for neonatal bacterial sepsis. Rapid clinical deterioration,
however, may still ensue even if antibiotic treatment is started
promptly. Possible life-threatening complications include
the development of disseminated intra-vascular coagulation,
pulmonary hypertension, congestive heart failure and shock
(19). These complications can result from phases of excessive
inflammation as well as immunosuppression (20–22). Until
recently, the immunological basis of sepsis was thought to be
a biphasic process with an initial hyperinflammatory phase
followed by a later anti-inflammatory phase manifesting as
functional immune suppression (23). However, genome-wide
transcription profiling in human sepsis of term neonates,
children, and adults demonstrates that phases of pro-
and anti-inflammatory mechanisms occur during variable
times over a sepsis episode and that patients may cycle
through each phase multiple times during the course of sepsis
(22, 24–28).

IMMUNOLOGICAL RISK FACTORS FOR
NEONATAL SEPSIS

Little is known regarding the sepsis phases in preterm human
neonates, but recent findings indicate that both gestational and
postnatal age are significant factors affecting immune responses
during the critical window of immune adaptation (20, 29, 30).
During this window, pathogen-associated molecular patterns

(PAMPs) and damage-associated molecular patterns (DAMPs)
are potent inducers of inflammation and might shape immune
responses early in life (31). Stimulation of pattern recognition
receptors (PRRs) in human preterm blood by exogenous PAMPs
induces T helper (Th) and anti-inflammatory profiles with
impaired Th1 and pro-inflammatory cytokines (32). In this
context, innate immunity in newborns has often been alluded to
as “impaired,” “defective,” or “immature.” However, it is more
accurately described as “distinct” since the fetus/preterm neonate
is well-equipped for life in utero and the term newborn immune
system appropriately mediates the transition from in utero to
ex utero life. For maintenance of tolerance to maternal antigens
and to avoid inflammation-triggered preterm delivery, neonatal
immune responses are in general T helper (Th)-2 and Th-17
cell biased (33). However, such polarization also corresponds
to GA-dependent susceptibility to invasive infections (32, 34).
In addition, decreased complement-mediated/phagocytic
activity (35, 36), reduced absolute neutrophil counts and
functions (37), as well as altered phenotype and function
of professional antigen-presenting cells (APCs) (38–40) in
response to most Toll-like-receptor agonists (TLRAs) have
been described. Moreover, the distinct composition of neonatal
plasma, including high concentrations of adenosine (41–44),
prostaglandins (45), placental hormones such as cortisol (46),
estradiol, and progesterone (47), inhibits the production of
Th1 cytokines. In addition, adenosine may also contribute
to impaired neutrophil responses by inhibiting neutrophil-
endothelial adhesion molecules (48). In contrast, high perinatal
levels of cytokines such as the migration inhibitory factor (MIF)
(49) and d-dopachrome tautomerase (DDT, also known as
MIF-2) (50) counter regulate the activity of adenosine and
prostaglandin E2 and together with interleukin-18 (51) further
shape immune responses early in life. Taken together, a tightly
regulated distinct balance of pro- and anti-inflammatory
mediators in neonates shapes early life innate immune
responses.

Of note, with respect to human in vitro assays, whereas
responses to most pure TLRAs are reduced in early life, live
organisms such as Group B streptococcus (GBS) may signal
robust inflammatory responses including TNF production (52).
GBS signals in part via TLR8 (53), a TLR pathway that
recognizes microbial viability (54). GBS in human newborn
blood potentially acts via vita-PAMPs, that is a subset of
PAMPs expressed specifically by live microorganism (55), and
TLR8 that detects bacterial RNA (52, 54, 56) and might
therefore contribute to an exaggerated inflammation in bacterial
neonatal sepsis in vivo (20). In addition, pro-inflammatory IL-
1β responses are impaired in cord blood of preterm infants,
but are restored to adult levels during the neonatal period,
indicating rapid maturation of these responses after birth (57).
Systemic inflammation characterized by high concentrations
of proinflammatory cytokines are associated with poor long-
term outcomes, and preterm infants are especially vulnerable to
inflammatory injuries (10).

A non-inflammatory profile with mature immunoregulatory
capacities is acquired in an age—dependent manner and a
delayed adjustment of regulatory signaling pathways might in
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part explain the preterm infants’ susceptibility to inflammatory
conditions. Neonatal cord blood of term neonates contains
extremely high concentrations of alarmins that act as endogenous
DAMPs (58). In utero, alarmins induce an “endotoxin-like
state” by altering MyD88-dependent pro-inflammatory gene
programs with corresponding low Th1 responses (30). After
birth, alarmin-levels decrease and regulatory TIR-domain-
containing adapter-inducing interferon-β (TRIF)-dependent
genes gradually increase (30, 58). A disruption of this critical
sequence of transient alarmin programming and subsequent
reprogramming of regulatory pathways, as occurs in preterm
birth, increase the risk of hyperinflammation and neonatal
sepsis (30). Of note, alarmins are increased in intra-amniotic
infection/inflammation (59) and histologic chorioamnionitis
correlates with a decreased risk of LOS (60) indicating that
perinatal inflammation may enhance the immunoregulatory
and/or functional maturation of the preterm immune
system.

Other counter-inflammatory mechanisms, such as increased
numbers of regulatory T cells (61, 62), and myeloid-derived
suppressor cells (63, 64), as well as impaired phagocytosis-
induced cell death (65, 66) might further affect the outcome
of neonatal sepsis. However, the role of these mechanisms
in neonatal sepsis has not yet been fully delineated, mostly
because of limited access to neonatal peripheral blood samples
and difficulties in performing longitudinal studies to investigate
neonatal immune ontogeny.

EPIDEMIOLOGICAL RISK FACTORS OF
NEONATAL SEPSIS

In addition to GA-specific immunological characteristics, sex
(67), genetic predisposition (68, 69), the evolving microbiome/
microbial colonization (70), and underlying medical conditions
shape immune responses and impact the risk of developing
neonatal sepsis (4, 71). Given the number of cellular and
molecular factors involved, emerging systems biology offer new
avenues to monitor functional immune development in the near
future (72–74).

The high susceptibility of preterm infants to invasive
infections and associated poor long-term outcomes, have
prompted the exploration of alternative therapies for neonatal
sepsis. A number of interventions have been evaluated, and
some such as oral lactoferrin have demonstrated promise
(75), but beyond antibiotics and supportive care, there is
presently no approved drug for the treatment or prevention
of sepsis in preterm or term neonates (25, 76). This review
summarizes past and present immunomodulatory concepts
and outlines novel potential targets for the prevention and
treatment of neonatal sepsis. A literature search for published
meta-analyses, randomized controlled trials (RCTs), systematic
reviews, individual clinical studies and emerging work from
animal models was performed. A list of current approaches
discussed in this article is presented in Table 1 (treatment) and
Table 2 (prevention); the corresponding literature search strategy
is outlined in Supplementary Figure 1.

PRIOR STUDIES THAT HAVE NOT
DEMONSTRATED CLINICAL BENEFIT

Immunoglobulins
Preterm neonates born prior to 32 weeks gestation have
low levels of passively acquired antibodies, and endogenous
immunoglobulin (Ig) synthesis does not begin until 24 weeks of
life (93, 94). Immunoglobulins provide opsonic activity, activate
complement, and promote antibody-dependent cytotoxicity (95).
Given these biological effects and the observation of decreased Ig
levels in severe sepsis, several clinical studies have investigated
the use of intravenous immunoglobulins (IVIG) to prevent and
treat neonatal sepsis (78, 96–98).

A 2015 Cochrane Review, evaluating 9 IVIG studies and
including a total of 3,973 infants showed no reduction of in-
hospital mortality or in the combined outcome of death or major
disability at 2 years of age in preterm infants with suspected
or proven infection (Table 1) (78). Additionally, IgM-enriched
IVIG preparations, which may provide higher opsonization
activity and complement activation compared to IgG, did not
significantly reduce mortality during hospital stay in infants
with suspected sepsis (n = 66) (78). Based on these findings,
routine administration of IVIG or IgM-enriched IVIG to prevent
mortality in infants with suspected or proven neonatal infection
cannot be recommended.

Given that >50% of cases of late-onset sepsis (LOS)
in VLBW are caused by Staphylococcus spp., various type-
specific antibodies targeted at different antigenic markers of
Staphylococcus have been developed and studied in RCTs (82,
83). A 2009 Cochrane Review evaluated the effects of two
anti-staphylococcal immunoglobulins, INH-A21 (pooled generic
anti-staphylococcal immunoglobulin) and Altastaph (human
polyclonal immunoglobulin against capsular polysaccharide
antigens type 5 and 8), on the prevention of LOS in infants
≤32 weeks (82). No significant reduction in the risk of
infection or mortality was identified (Table 2). A third anti-
staphylococcal immunoglobulin, pagibaximab (anti-lipoteichoic
acid monoclonal antibody) was studied, but again no significant
reduction in sepsis or mortality was found (83, 84)(Table 2).

The reasons for these failed trials have not yet been
elucidated but one might speculate that distinct immune
responses in the preterm infant such as reduced complement
or leukocyte activity may play a role or that the correct
type or combination of antibodies has not yet been found
(83). Future studies need to identify antibodies that (i) target
optimal epitopes, (ii) have optimal bioactivity and/or (iii) can
be targeted to carefully defined populations that are most
likely to benefit from them. Studies of protective neutralizing
antibodies against neonatal pathogens are ongoing (99). Prior to
human studies, such investigations should evaluate the activity
of potential immunomodulating products in an age-specific
manner including in age-specific human in vitro platforms as well
as in preterm animal models.

Glutamine
Endogenous glutamine, a conditionally essential amino acid,
is insufficiently biosynthesized in states of metabolic stress.
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TABLE 1 | Meta-analyses on adjunctive therapy for neonatal sepsis.

Intervention Population Outcome RR (95% CI) RCTs/infants References

Pentoxifylline All infants with confirmed or suspected

sepsis

All-cause mortality to discharge 0.57 (0.35–0.93) 6/416 (77)

All Infants with confirmed sepsis All-cause mortality to discharge 0.37 (0.19–0.73) 4/235 (77)

Preterm infants with confirmed or

suspected sepsis

All-cause mortality to discharge 0.38 (0.20–0.71) 4/277 (77)

IVIG (polyvalent or

IgM-enriched)

All infants with suspected infection All-cause mortality to discharge 0.95 (0.80–1.13) 9/2527 (78)

IVIG (IgM-enriched) All infants with suspected infection All-cause mortality to discharge 0.68 (0.39–1.20) 4/267 (78)

GM-CSF or G-CSF All infants with confirmed or suspected

sepsis

All-cause mortality to 14 days 0.71 (0.38–1.33) 7/257 (79)

All infants with confirmed or suspected

sepsis

All-cause mortality to discharge 0.53 (0.25–1.16) 5/178 (79)

Neutropenic infants with confirmed or

suspected sepsis

All-cause mortality to discharge 0.38 (0.16–0.95) 3/97 (79)

Granulocyte transfusion Neutropenic infants with confirmed or

suspected sepsis

All-cause mortality to discharge 0.89 (0.43–1.86) 3/44 (80)

Neutropenic preterm infants with

confirmed or suspected sepsis

All-cause mortality to discharge 0.94 (0.39–2.24) 2/33 (80)

Cochrane reviews or the most updated meta-analysis on the topic were selected for inclusion in the table. Outcomes were selected based on relevance. Statistically significant results are

marked in bold. CI, confidence interval; GM-CSF, granulocyte-macrophage colony stimulating factor; G-CSF, granulocyte colony stimulating factor; IVIG, intravenous immunoglobulin;

RCT, randomized controlled trial; RR, risk ratio.

Accordingly the supplementation with glutamine improved
clinical outcomes in critically ill adults (100). Glutamine is
abundant in human milk, but levels in formula are much lower
and it is not routinely supplemented in parenteral nutrition
solutions for neonates.

Despite its potential role in metabolic stress, a systematic
review of 12 RCTs including 2,877 VLBW did not find any
effect of preventive glutamine supplementation on mortality or
major neonatal morbidities (Table 1) (91). It remains unknown,
whether glutamine supplementation may be beneficial in the
recovery of critically ill infants, in particular, after gastrointestinal
inflammatory processes such as NEC.

Antioxidants: Selenium, Melatonin, and
Vitamin A
Preterm neonates are at increased risk of oxidative stress
due to lower basal levels of plasma antioxidants and metal-
binding proteins (ceruloplasmin, transferrin), reduced activity
of antioxidant enzymes, and higher potential for exposure to
reactive oxygen species (101–103). A 2003 Cochrane review
including 297 preterm neonates (<32 weeks of gestation and/or
BW ≤ 2,000 g) showed a significant reduction of sepsis episodes
associated with prophylactic selenium supplementation but no
difference in survival (Table 2) (92). A more recent RCT
confirmed these findings (104); an updated meta-analysis is
pending. Thus, selenium supplementation in preterm infants
might reduce the incidence of sepsis, but does not affect overall
mortality.

Melatonin has antioxidant, anti-inflammatory and anti-
apoptotic properties that may improve neonatal sepsis outcome,
in particular in mitochondrial injury (105). Three small single-
center studies investigated the use of melatonin as adjuvant

therapy in neonatal sepsis and results indicate a beneficial effect
of melatonin (106–108). However, so far no follow-up RCTs have
been conducted, thus, firm conclusions here are precluded.

No reduction of neonatal sepsis in vitamin A-treated patients
has been demonstrated so far (109), and a recent meta-analysis
could not demonstrate a significant reduction of mortality in
term neonates, who were supplemented with vitamin A (110).
Further results of on-going clinical trials investigating the effect
of vitamin A for the treatment of sepsis and NEC are still pending
(111).

Granulocyte and Granulocyte-Macrophage
Colony Stimulating Factors
Myeloid colony stimulating factors (CSFs), including
granulocyte-macrophage CSF (GM-CSF; CSF-2) and granulocyte
CSF (G-CSF; CSF-3), stimulate innate immune function,
improve myelopoiesis, and limit apoptosis. (112). The clearance
of apoptotic cells is essential for the resolution of inflammation
and phagocytosis of apoptotic granulocytes is diminished
in neonates compared to adults (113). Neonates rapidly
deplete their small neutrophil pool when septic, resulting in
neutropenia and Gram negative sepsis was partially reversed by
administration of G-CSF in preterm infants (114, 115). Thus,
a number of clinical trials investigated the effect of G-CSF
and GM-SCF in the prevention and treatment of neonatal
sepsis over the last decades. A 2003 Cochrane Review of seven
treatment and three prophylaxis studies however, demonstrated
no significant survival advantage at 14 days from the start of
therapy (79) (Table 1). Of note, a subgroup analysis of 97 infants,
who in addition to systemic infection, had clinically significant
neutropenia at trial entry, did show a significant reduction in
mortality (79). Three prophylactic studies, on the other hand,
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TABLE 2 | Meta-analyses on preventive strategies for sepsis in preterm infants.

Intervention Outcome RR (95% CI) RCTs/infants References

IVIG All-cause mortality 0.89 (0.75–1.05) 15/4125 (81)

Mortality (infectious) 0.83 (0.56–1.22) 10/1690 (81)

Late-onset sepsis 0.85 (0.74–0.98) 10/3795 (81)

INH-A21 All-cause mortality 0.80 (0.59–1.08) 2/2488 (82)

Staphylococcal infection 1.07 (0.94–1.22) 2/2488 (82)

Altastaph All-cause mortality 1.31 (0.30–5.70) 1/206 (82)

Staphylococcal infection 0.86 (0.32–2.28) 1/206 (82)

Pagibaximab All-cause mortality 1.16 (0.82–1.64)a 2/1669 (83, 84)

Staphylococcal infection 1.17 (0.90–1.50)a 2/1669 (83, 84)

GM-CSF All-cause mortality 1.05 (0.64–1.72) 4/639 (79, 85)

Late-onset sepsis 1.05 (0.84–1.30) 3/564 (79, 85)

Donor human milk vs. formula All-cause mortality 0.75 (0.44–1.27) 4/721 (86)

Invasive infection 0.89 (0.67–1.19) 2/219 (86)

Necrotizing enterocolitis 0.36 (0.18–0.71) 6/431 (86)

Probiotics (single or multiple strains) All-cause mortality 0.77 (0.65–0.92) 27/8056 (87)

Late-onset sepsis 0.86 (0.78–0.94) 37/9416 (88)

Invasive fungal infection 0.48 (0.33–0.71) 6/916 (89)

Probiotics (single strains) All-cause mortality 0.95 (0.72–1.26) 11/3424 (90)

Late-onset sepsis 0.86 (0.76–0.97) 14/3455 (88)

Probiotics (multiple strains) All-cause mortality 0.67 (0.50–0.89) 10/2867 (90)

Late-onset sepsis 0.85 (0.74–0.97) 23/5691 (88)

Oral lactoferrin All-cause mortality 0.65 (0.37–1.11) 6/1041 (75)

Late-onset sepsis 0.59 (0.40–0.87) 6/886 (75)

Oral lactoferrin + probiotics All-cause mortality 0.54 (0.25–1.18) 1/496 (75)

Late-onset sepsis 0.27 (0.12–0.60) 1/319 (75)

Glutamine All-cause mortality 0.97 (0.80–1.17) 12/2877 (91)

Late-onset sepsis 0.94 (0.86–1.04) 11/2815 (91)

Selenium supplementation All-cause mortality 0.92 (0.48–1.75) 2/549 (92)

Late-onset sepsis 0.73 (0.57–0.93) 3/583 (92)

Cochrane reviews or the most updated meta-analysis on the topic were selected for inclusion in the table. Outcomes were selected based on relevance. Statistically significant results

are marked in bold. Altastaph, antibody against capsular polysaccharide antigen type 5 and 8; CI, confidence interval; GM-CSF, granulocyte-macrophage colony stimulating factor;

INH-A21, pooled generic antistaphylococcal immunoglobulin; IVIG, intravenous immunoglobulin; Pagibaximab, anti-lipoteichoic acid monoclonal antibody; RCT, randomized controlled

trial; RR, risk ratio. aNo complete meta-analysis has been conducted. RR, calculated from preliminary results.

did not demonstrate significantly reduced mortality in neonates
receiving GM-CSF (79). The authors concluded that due to the
small sample size, there was insufficient evidence to support
the introduction of either G-CSF or GM-CSF into neonatal
practice, either as treatment of established systemic infection to
reduce resulting mortality, or as prophylaxis to prevent systemic
infection in high-risk neonates (79).

A study from 2009 investigating 280 neonates ≤31 weeks’
gestation demonstrated that even higher doses of postnatal
prophylactic GM-CSF (10 µg/kg per day administrated
subcutaneously on 5 consecutive days) did not reduce sepsis or
improve survival or short-term outcomes (85). When this study
was pooled with the three previously published small RCTs, no
significant effects of prophylactic GM-CSF on mortality or sepsis
incidence were observed (79, 85) (Table 2).

In summary, available data do not support the use of G-
or GM-CSF for prophylaxis of infections in neonates. This
might in part be explained by a hyporesponsiveness of neonatal

granulocytes to G- or GM-CSF induced anti-apoptotic effects
compared to adults (116). Preterm neonates with moderate
(<1,700/µL) or severe (<500/µL) neutropenia and systemic
infection, however, might benefit from adjuvant treatment
with G-CSF or GM-CSF, respectively (117). Optimal timing of
administration and monitoring of G- or GM-CSF levels will be
crucial to maximize the beneficial aspects of these cytokines in
these infants.

Granulocyte Transfusions
Granulocytes of term and preterm neonates exhibit quantitative
and qualitative differences compared to those of adults,
which may contribute to the neonates’ higher risk for
developing bacterial infections (114). Treatment of neonatal
sepsis with granulocyte transfusions was thus investigated to
determine whether it might enhance quality and quantity of
neutrophils thereby leading to improved outcome. However, no
significant difference in mortality was found in infants with
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sepsis and neutropenia who received granulocyte transfusions
when compared to placebo (Table 1) (80). Of importance,
potentially severe side effects have been reported: fluid overload,
transmission of blood-borne infection, graft-vs.-host disease,
pulmonary complications secondary to leukocyte aggregation
and sequestration and sensitization to donor erythrocyte and
leukocytes (80, 101). Thus, the application of granulocyte
transfusions cannot be recommended due to insufficient
evidence of safety and efficacy in preterm infants.

Exchange Transfusions
Exchange transfusion may remove toxic bacterial products
and potentially harmful circulating inflammatory mediators,
including cytokines, in an effort to improve perfusion and
tissue oxygenation, replace clotting factors, and enhance humoral
immune responses.

One retrospective and one prospective single center study
investigated the effect of exchange transfusions in a cohort of 101
and 83 preterm infants, respectively. In these cohorts of preterm
infants with severe sepsis/septic shock no significant reduction
in mortality rates was found (118, 119). Nevertheless, a trend
in mortality reduction was reported (119) and another study
found a statistically significant protective effect, after controlling
for potential confounding factors significantly associated with
death (GA, serum lactate, inotropic drugs, oligo/anuria) (118).
Although hypoglycemia, electrolyte disturbances, hemodynamic
instability, and thrombosis are potential complications of
exchange transfusion, the authors reported no side effects (120).
Thus, based on the current evidence and safety data, no firm
conclusion on the recommendation of exchange transfusions for
the treatment of neonatal sepsis can be made.

Recombinant Activated Human Protein C
Recombinant human activated protein C (rhAPC) possesses a
broad spectrum of activity including modulation of coagulation,
inflammation, and apoptosis (121). However, results among
adults and children demonstrated lack of efficacy and an
increased risk of bleeding associated with higher mortality
rates (122, 123). Consequently, rhAPC was withdrawn from
the market before any randomized trials were performed in
preterm neonates, and in 2012 a clear recommendation against
the treatment with rhAPC for neonatal sepsis was proclaimed
(124).

CURRENT INTERVENTIONS WITH
CLINICAL EVIDENCE OF BENEFIT

Human Milk
Human milk contains multiple distinct bioactive molecules,
including antimicrobial proteins and peptides (APPs), that
protect against infection and contribute to immune maturation,
and healthy microbial colonization (Figure 1C) (140). Ethical
limitations preclude RCTs on the topic but feeding preterm
infants with their ownmother’s milk (MOM) offers an impressive
array of benefits, including decreased rates of LOS, NEC and
retinopathy of prematurity, lower rates of re-hospitalizations in

the first year of life, and improved neurodevelopmental outcomes
(141–144).

The term “human milk feeding” is frequently used to
encompass bothMOM and donor humanmilk (DHM), implying
that the multiple beneficial outcomes attributed to MOM can be
generalized to DHM (145, 146). This assumption, however, may
only be partially correct due to differences in milk composition
and processing. Preterm mothers’ milk shows great variation in
total protein levels and inverse correlation with lactation and
daily milk volume (147). This demand-adapted regulation of
protein intake, including APPs is hampered in DHM, because
GA of donors’ infants and infants receiving their milk might
be mismatched or DHM might be pooled. More importantly,
pasteurization of DHM destroys or significantly decreases the
concentration of many of the protective elements in humanmilk,
including lysozymes, secretory IgA, growth factors, lactoferrin,
antioxidants, and microbiota (145, 146, 148–150). Nevertheless,
improved outcomes of infants fed DHM may be primarily to
avoiding potentially injurious effects of formula feeding (145,
146, 151). A meta-analysis showed that feeding with formula
compared with DHM results in a higher risk of developing
NEC (86). However, feeding DHM instead of formula did not
significantly affectmortality or rate of invasive infection (Table 2)
(86).

Prebiotics
A wide range of prebiotic components (substrates that are
selectively utilized by host microorganisms conferring a health
benefit) and antimicrobial and anti-inflammatory factors are
delivered by breast milk (141–143). These provide passive
protection to the neonate and stimulate maturation of host
intestinal defenses, which are particularly relevant for premature
infants (144). Prebiotic components of human milk promote the
growth of a physiologic, probiotic flora including Bifidobacteria
spp. and Lactobacilli spp. in the colon. Although there is
currently no evidence regarding the effectiveness of the isolated
application of prebiotics in preventing nosocomial sepsis in
preterm infants (152), combinations of probiotics and synbiotics,
i.e., a synergistic combination of probiotics and prebiotics, may
be beneficial for prevention of LOS, as described below (153).

Probiotics
In healthy term infants the gut is colonized with maternal
probiotic bacteria including Lactobacilla spp. and Bifidobacteria
spp., which upregulate local and systemic immunity, increase
anti-inflammatory cytokines, and decrease the permeability of
the gut to bacteria and toxins (Figure 1B). Treatment with
antibiotics and delayed enteral feeding are common in preterm
infants and contribute to the development of sepsis and NEC
(154). Probiotics, live non-pathogenic microorganisms, might
confer a benefit to neonatal host immunity. By altering host
epithelial and immunological responses (155), they may reduce
several neonatal inflammatory conditions (156).

A 2014 Cochrane review of 24 randomized or quasi-RCTs
evaluated the effect of probiotics in the prevention of NEC and
LOS in preterm infants <37 weeks GA or <2,500 g birth weight,
or both (157). Enteral probiotic supplementation significantly

Frontiers in Pediatrics | www.frontiersin.org 6 July 2018 | Volume 6 | Article 199

https://www.frontiersin.org/journals/pediatrics
https://www.frontiersin.org
https://www.frontiersin.org/journals/pediatrics#articles


Schüller et al. Immunomodulation in Neonatal Sepsis

FIGURE 1 | Immunomodulatory approaches for the treatment and prevention of neonatal sepsis. (A) PTX, a phosphodiesterase inhibitor, mediates most of its

functions by enhanced cyclic AMP (cAMP) due to a reduced degradation of cAMP (125, 126). Relatively high concentrations of adenosine are present in neonatal

blood plasma and neonatal mononuclear cells demonstrate increased sensitivity to the cAMP-mediated inhibitory effects of adenosine (127, 128). As

immunomodulatory properties of PTX are mediated via adenosine-dependent pathways, adenosine and PTX in combination, lead to a profound inhibitory effect on

pro-inflammatory cytokine production (129). On neonatal APCs, PTX demonstrates anti-inflammatory properties by (1) down-regulating TLR4 expression and

signaling, (2) downregulation of surface molecules such as CD14 and CD11b, and (3) inhibition of inflammatory cytokine production (70). (B) The microbiome of

premature infants has a smaller proportion of beneficial bacteria and higher numbers of pathogenic bacteria compared to term infants, likely owing to higher

frequencies of cesarean sections, antibiotic use, exposure to the hospital environment, and artificial feeding (130). The administration of probiotics up-regulates local

and systemic immunity by (1) decreasing proinflammatory cytokines, (2) increasing the production of anti-inflammatory cytokines, and (3) decreasing the permeability

of the gut to bacteria and toxins (131). (C) Human milk contains a range of distinct bioactive molecules that protect against infection and inflammation including

immunoglobulins, long-chain PUFAs, and LF. Among them, the antimicrobial and immunomodulatory effects of lactoferrin are best studied: (1) Inhibition of bacterial

adhesion and biofilm formation (132–134), (2) binding of endotoxins from intestinal pathogens (135), (3) blocking of receptors essential for epithelial invasion of

microbes (136) thereby (4) prevention of bacterial translocation (137), (5) promotion of anergic/anti-inflammatory effects in LPS or LTA stimulated macrophages by TLR

expression and pathway interference (138, 139).
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reduced the incidence of severe NEC≥ stage II and mortality but
initially, no evidence of significant reduction of LOS was found
(157). Recent meta-analyses, including 37 RCTs (n= 9,416) have
demonstrated a significant protective effect of probiotics against
LOS and all cause mortality (87, 88, 158) (Table 2). The optimal
composition of probiotics remains to be determined, but there
is evidence that probiotics consisting of multiple strains are more
effective than single-strain probiotics in preventing mortality and
NEC (90).

Side effects of probiotic treatment are rare and most clinical
studies did not report significant adverse effects. However,
occasional cases of sepsis caused by administered probiotic
species have been reported (159).

In summary, growing evidence suggests that the preventive
use of probiotics reduces the risk for neonatal sepsis in preterm
infants. Further studies are necessary to optimize formulation,
composition, standardization and optimal dosing of probiotics.

Synbiotics
The potential benefit of synbiotics, a combination of probiotics
and prebiotics is currently being investigated and so far one
large RCT has been published. This recent RCT of an oral
synbiotics preparation (Lactobacillus plantarum plus fructo-
oligosaccharide) enrolled 4,556 infants >2,000 g or 35 weeks of
gestation, in rural India and found a significant reduction of the
primary outcome sepsis and death in the treatment arm (risk
ratio 0.60, 95% confidence interval 0.48–0.74) (160). Preterm
infants represent a major challenge in resource-poor settings
whereNEC and sepsis carry greater risks of death (161). The risk–
benefit ratio of prophylactic probiotics or synbiotics might differ
between healthcare settings. Results indicate an equal or even
more pronounced beneficial effect in neonates from developing
countries and support further RCTs in both, high and low
resource settings.

Lactoferrin
Lactoferrin is the major whey protein in mature human milk
and is present in even higher concentrations in colostrum (153).
This multifunctional, 80 kDa iron-binding glycoprotein is part
of the innate immune system and possesses a broad range of
antimicrobial, immunostimulatory, anti-inflammatory, and anti-
apoptotic properties (Figure 1C) (162).

Lactoferrin directly interacts with TLR4 and CD14 and
demonstrates bacteriostatic activity through its high affinity for
iron its ability to directly bind LPS (163, 164). In addition
to its function as an antimicrobial protein, lactoferrin has
also demonstrated immunoregulatory properties in vitro and
in vivo (131, 165, 166). These studies indicate a potential
role of lactoferrin as an immune-sensor to maintain immune
homeostasis with an immunosuppressive effect on inflammatory
monocytes/macrophages of preterm neonates (30, 131, 167).

Bovine lactoferrin (bLF) is only 69% homologous to human
lactoferrin (hLF), but both serve similar biological functions
(168). In RCTs the oral supplementation with bLF was associated
with a decreased incidence of LOS caused by bacteria and
invasive fungal infections in preterm infants (169). A recent
Cochrane Review including six RCTs demonstrated that oral bLF

supplementation with or without probiotics decreased LOS and
NEC stage II or III but not mortality (Table 2) (75). Of note, to
date no adverse effects regarding the use of bLF in human infants
have been reported (75). Talactoferrin, a recombinant hLF, has
been tested in a phase I study in preterm neonates (170). In
contrast to bLF, talactoferrin does not need to be pasteurized
and might therefore differ in function and effectiveness. Studies
comparing talactoferrin and bLF remain to be done. Given the
common use of probiotics, potential interactions between oral
probiotics and bLF/talactoferrin should be tested (171).

Thus, optimum dosing regimens, type of lactoferrin (human
or bovine), and effects on long-term outcomes still need to be
defined, but lactoferrin might prove to be an effective agent in
helping to prevent LOS in very preterm infants.

Zinc
Preterm infants are born with low zinc (Zn) stores and
a diminished capacity for Zn absorption and retention. Zn
supplementation decreases oxidative stress markers and limits
pro-inflammatory cytokine production by targeting Nuclear
Factor Kappa B (NF-κB) (172, 173). A RCT in 352 infants aged 7–
120 days with probable serious bacterial infection showed that Zn
supplementation significantly reduced treatment failure, defined
as need to change antibiotics, need for intensive care, or death
(174). In a RCT high doses of Zn (9.7–10.7 mg/day) reduced
mortality in preterm infants (24–32 weeks) without signs of
infection at initial inclusion (175). Two RCTs have evaluated the
effects of enteral Zn supplementation in preterm infants (≥32
weeks) with suspected sepsis (176, 177) and one of them (177)
showed a significant reduction in mortality (178). A Cochrane
review of the effects of enteral Zn supplementation in preterm
neonates morbidity and mortality is currently pending (179).

Pentoxifylline
Pentoxifylline (PTX), a non-specific phosphodiesterase inhibitor
with immunomodulatory properties (Figure 1A), may be
beneficial in preterm neonates with sepsis and NEC. PTX
inhibits the production of TLR—and inflammasome-mediated
inflammatory cytokines and the expression of LPS-stimulated
surface markers in vitro (127, 128). PTX’s effects are more
pronounced in neonatal immune cells than in adults and it
suppresses pro-inflammatory cytokines to a greater degree than
anti-inflammatory cytokines (127, 128). This corresponds to
the observation of limited clinical benefit in adult sepsis, but
promising results from RCTs in neonates. Moreover, PTX’s
anti-inflammatory effects on PRR signaling are distinct from
those of other anti-inflammatory agents such as dexamethasone
and azithromycin with which PTX can act in synergy (180).

A meta-analysis of six RCTs encompassing 416 infants
concluded that PTX, when used as an adjunct therapy to
antibiotics in neonatal sepsis, might decrease mortality (Table 1)
(77). Statistical subgroup analyses of four of these studies revealed
lower mortality in preterm infants, infants with confirmed sepsis,
and infants with Gram-negative sepsis. However, according to
the authors, the overall quality of evidence was low (77). A recent
double-blind RCT of 120 preterm infants with LOS demonstrated
several beneficial adjuvant effects of PTX including a reduced
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length of hospital stay (p= 0.04), duration of respiratory support
(p = 0.02) and less need for vasopressors (p = 0.01) but was
not powered for clinical outcomes (181). Of note, no adverse
effects of PTX were reported. Further in vivo studies, both in
animal sepsis models and in human clinical trials, may help
to define the optimal timing and dosing of PTX as well as its
efficacy in improving short—and long-term outcomes following
neonatal inflammation. Initiated in 2016, a randomized, placebo
controlled multi-center study with a cohort size of 900 very
preterm infants with LOS or NEC, is currently investigating
PTX’s effect on disability-free survival (Australian New Zealand
Clinical Trials Registry 12616000405415).

FUTURE CONCEPTS WITH POTENTIAL
BENEFITS

Although certain measures have indicated benefit, there remains
an urgent and unmet need for novel, safe and efficacious
strategies to reduce the huge burden of sepsis-related morbidity
in the preterm population. We herein discuss new approaches
with potential future applications that have not yet been tested
beyond phase 1 clinical trials.

Maternal Immunization
Maternal immunization boosts the concentration of vaccine-
specific IgG antibodies in the mother and increases antibody
concentration in the infant at birth. Currently three vaccines
have specific recommendations for routine use in pregnancy:
tetanus, influenza and pertussis (182). Future prospects include
potential development of maternal vaccines against GBS (183),
cytomegalovirus (CMV) (184) and respiratory syncytial virus
(RSV) (185).

In term infants, maternal vaccination may provide protection
until the period of maximum susceptibility or risk has passed
or until the infant has completed the routine immunizations.
This benefit may be reduced in preterm infants due to reduced
transplacental antibody transport before the third trimester
with resulting lower antibody-concentrations compared to term
infants (186). While much remains to be learned regarding
the optimal timing, safety and efficacy of maternal vaccines as
well as their potential effect on subsequent infant responses to
vaccines (187), maternal immunization is an important strategy
to substantially reduce morbidity and mortality from infectious
diseases after birth.

Antimicrobial Proteins and Peptides (APPs)
Both in vitro and in vivo data support the hypothesis that
APPs are important contributors to intrinsic mucosal immunity.
Alterations in the level of APP expression or biologic activity can
predispose the organism to microbial infection (188). Primarily
released by neutrophils, monocytes, and macrophages, APPs
are also produced within the skin and at mucosal surfaces
by epithelial cells and thus are present within body fluids,
including saliva, airway surface liquid, and breast milk (189).
Circulating and intracellular levels of APPs are relatively low
in early life, especially in preterm infants, potentially lessening
protective immunity (190). APPs expressed in neonates include

α- and β-defensins, cathelicidins, bactericidal/permeability-
increasing protein (BPI), and lactoferrin (191). While some
studies argue for lactoferrin in the prevention of LOS in VLBW
infants (192), preclinical data also support antibacterial and
anti-endotoxin properties of therapeutic APPs. For example,
the recombinant bactericidal/permeability-increasing protein
(rBPI21) has demonstrated beneficial effects in children with
severemeningococcal sepsis (193, 194). Further research onAPPs
for prevention and treatment of neonatal sepsis is ongoing and
has recently been reviewed in detail (190). Synthetic peptides with
combined antimicrobial and immunomodulatory properties,
such as clavanin-MO, an adenosine monophosphate (AMP)
isolated from Styela clava, and Innate defense regulator (IDR)-
1018, derived from bovine bactenecin, represent a promising
approach to treat invasive infections of various bacterial strains,
including multidrug-resistant hospital isolates (195, 196). Of the
APPs lactoferrin (Lf) has demonstrated benefit as oral agent in
the prevention of neonatal sepsis (75). Regarding other APPs,
although the results of preclinical studies are encouraging, to our
knowledge neonatal clinical trials have not yet been conducted.

Innate Immune Stimulants
Exposure to non-pathogenic components that augment the
innate immune responses to prevent neonatal sepsis is promising,
but has not yet been thoroughly investigated. Possible candidates
are PRR- agonists; among them TLRAs are most extensively
studied. In newborn mice, pre-treatment with TLRAs was
associated with increased cytokine responses to subsequent
polymicrobial infection, induced via intraperitoneal injection
of a cecal slurry, with enhanced recruitment of phagocytes
and reduced mortality (197). Although Th1-polarizing TLR-
responses are diminished in preterm neonates compared to
term neonates and adults (38, 39, 198), Th1 cytokine responses
to TLR7/8 agonists such as R848 reach adult levels (37, 199).
Whether any benefits confer to human neonates from TLRAs
currently used as stand-alone agents (e.g., imiquimod cream,
TLR7A) or as components of adjuvanted vaccines in clinical and
preclinical trials in adults (200) needs to be carefully investigated
in preclinical studies.

Most recently a beneficial effect of subcutaneously
administered aluminum salts (alum) in the prevention of
neonatal polymicrobial sepsis in mice was demonstrated (201).
Alum, the most widely used adjuvant in human vaccines,
does not activate TLRs but, rather, promotes caspase-1
activation and IL-1β production via the NACHT, LRR and PYD
domains-containing protein 3 (NLRP3)-inflammasome (202).

Live attenuated vaccines such as Bacille Calmette–Guérin
(BCG) provide inherent PRR-activating activity that may
contribute to enhanced immune responses and a decreased
susceptibility to invasive non-TB infections in developing
countries, where BCG is routinely administered (54, 203). BCG
may exert its beneficial potential through heterologous, “non-
specific” effects. This heterologous innate immune protection
may be due to “trained immunity,” the phenomenon whereby
innate activation results in a heightened state of innate
responses to a broad range of pathogens and thus broad
protection, via innate memory as has been reviewed elsewhere
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(204). Of note, the combined administration of BCG plus
the alum-adjuvanted hepatitis B vaccine (HBV) demonstrates
age-dependent synergistic enhancement of IL-1ß, production
potentially enhancing both innate and adaptive immune
responses (205).

Thus, results from animal and human in vitro studies are
indicative for a beneficial effect of innate immune stimulants
in the prevention of neonatal sepsis and should be further
investigated.

Stem Cells
Mesenchymal stromal cells (MSCs) are non-hematopoietic,
multipotent stromal precursor cells that can be isolated
from the placenta, cord blood, and Wharton’s Jelly (206,
207). MSCs are capable of modulating immune responses
(208) by both cell-to-cell contact and through the release of
soluble paracrine factors including nitric oxide, indoleamine
2,3-dioxygenase, PGE2, TGF-β, and IL-10 (209, 210). MSCs
may improve bacterial clearance by various mechanisms,
including enhancement of phagocytic activity of APCs and up-
regulation of TLR-2 and TLR-4, and β-defensin 2 secretion
(211, 212). A comprehensive review of 18 preclinical studies
published between 2009 and 2015 demonstrated that MSC
therapy in animal models of sepsis significantly reduced the
overall odds of death (OR 0.27, 95% CI 0.18–0.40) (213). A
clinical trial of infusion of MSCs to adults demonstrated a
significant increase in survival rate (214, 215). Further adult
clinical trials are on-going, but to our knowledge neonatal
sepsis trials have not yet been conducted (216). However,
several studies currently investigate the use of umbilical cord
blood derived-MSCs for the prevention and treatment of
bronchopulmonary dysplasia (BPD) in human preterm infants
at risk, after phase 1 trials showed an acceptable safety profile
(217).

Of note, the abundance of hematopoietic stem and progenitor
cells (HSPCs) in preterm compared to term cord blood, may
contribute to the beneficial effects of delayed cord clamping in
very preterm infants (218, 219). A recent systemic review of 2,834
preterm infants found high-quality evidence for reduced hospital
mortality, but no clear evidence for a reduction of LOS in infants
with delayed cord clamping (220).

Inflammasome Inhibitors
The inflammasome is a newly identified group of PRRs and
specific blockage of these by small-molecule inflammasome
inhibitors is a promising approach in different inflammatory
conditions, including microbe-induced inflammation (221, 222).
Numerous inflammasomes have been described so far; among
them the (NLRP3) has been best characterized. Interactions
among the three proteins of the NLRP3 inflammasome (NLRP3
protein, adapter protein apoptosis-associated speck-like protein
(ASC) and procaspase-1) tightly regulate inflammasome function
to ensure immune activity only when appropriate. In vivo
neutralization of the NLRP3 inflammasome with an orally
available small molecule inhibitor decreased inflammasome
dependent cytokine secretion (IL-1β /IL-18) in a murine Staph.

aureus infection, and improved the bacterial clearance through
improved acidification of the phagosome (223). Newborn
neonatal caspase-1/11 knockout mice, showed improved survival
following septic challenge compared with wild-type mice (224).
This effect was independent of NLRP3 activation (224). Despite
promising results from clinical trials in adults treated with
inflammasome inhibitors for inflammatory diseases other than
sepsis (225, 226), more information is needed regarding themode
of inflammasome action in neonates to inform potential targeted
therapeutic inhibition in this distinct age group.

Antibiotics With Anti-inflammatory
Properties
Inflammation in sepsis is usually triggered by microbial
components, hypoxia, arterial hypotension, and reperfusion.
Some antimicrobial agents, such as β-lactam antibiotics, may
exacerbate inflammation through the lysis of bacteria (227).

In contrast to proinflammatory effects of certain antibiotics
that lyse bacteria, several protein synthesis inhibiting
antibiotics exhibit anti-inflammatory activities. Macrolides,
rifampicin, and tetracycline demonstrate anti-inflammatory and
immunomodulatory properties with a potential application in
systemic inflammation (228–231). Rifampicin and tetracycline
are contraindicated in the neonatal period; the use of macrolides
for other indications, namely, Ureaplasma spp. infection and
the prevention of BPD in preterm neonates, however, has been
studied (232, 233). Prophylactic azithromycin significantly
reduced BPD and the composite outcome of BPD/death in
preterm infants (232).

The macrolide azithromycin, specifically inhibits IL-1α and
IL-1β secretion and non-canonical inflammasome activation
upon TLR agonist, including LPS, stimulation in vitro (180)
and in vivo (234). A decrease in IL-1β-mediated inflammation
has been attributed to destabilizing mRNA levels for NALP3, a
key inflammasome component (235). In a murine sepsis model,
mortality was lower along with decreased sepsis scores whenmice
were treated with a combination of ampicillin and azithromycin
instead of ampicillin alone (236). In adults, azithromycin was
associated with more ICU-free days in severe sepsis patients
with and without pneumonia (237), however questions on the
applicability of these results in neonates remain including the
consideration of side effects (238–240).

None of these new approaches has been tested in human
neonates thus far and the potential in vitro and in vivo
effects of new therapies need to be fully explored before any
clinical studies in neonates can be performed. In addition to
possibly beneficial single agent such as PTX, future studies will
evaluate if a multimodal approach including a combination of
immunomodulatory agents may prevent or mitigate neonatal
sepsis and associated long term- morbidities in preterm infants.

CONCLUSION

Administration of human milk is a key approach in preventing
neonatal sepsis. The use of probiotics and lactoferrin might be
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effective but more evidence is needed to confirm preliminary
observations and to optimize formulation, composition,
and dosing of these agents. In certain settings/populations,
vaccination with BCG is associated with a reduction in neonatal
sepsis via heterologous (“non-specific”) effects possibly related
to trained immunity. With respect to treatment of neonatal
sepsis, PTX holds promise, but larger studies with long-term
outcome data are still pending. Several other immunotherapies
evaluated for the prophylaxis of neonatal sepsis including
IVIG, myeloid CSFs and granulocyte transfusions have
failed to demonstrate benefit. As we look to the future,
APPs, PRR-agonists, stem cell therapy and inhibitors of the
inflammasome might offer new therapeutic or preventive
avenues in neonatal sepsis with preclinical and clinical studies
yet to be done.

The successful development of new prophylactic and
treatment options should take into account age-specific immune
responses. Timing of therapy and dosage may determine
whether immunomodulatory agents induce a protective
immune response or whether the same approach causes
potentially harmful interference with the developing immune
system.
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