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Breast-feeding is currently recommended to prevent the development of allergic

diseases; however, data are conflicting and mechanisms are unclear. The

immunomodulatory composition of human milk is poorly characterized and varies

between mothers. We and others have shown that high levels of human milk IgA and

certain cytokines and human milk oligosaccharides are associated with protection

against food allergy in the infant, but it is unclear whether they are responsible for

or simply biomarkers of the vertical transfer of protection. Because human milk has

pre- and probiotic properties, the anti-allergy protection afforded by human milk may be

due to its control on the developing gut microbiome. In mice, murine milk IgA supports

gut homeostasis and shapes the microbiota, which in turn diversifies the intestinal IgA

repertoire that reciprocally promotes the diversity of gut microbiome; these mechanisms

are poorly understood in humans. In addition, several human milk bioactives are

immunostimulatory, which may in part provide protection against allergic diseases.

The regulation of immunologically active components in human milk is incompletely

understood, although accumulating evidence suggests that IgA and cytokines in human

milk reflect maternal exposures. This review summarizes the current literature on human

milk components that have been associated with protection against food allergy and

related allergic disorders in early childhood and discusses the work relating to regulation

of these levels in human milk and possible mechanisms of action.

Keywords: breast milk composition, breast feeding, atopic development, IgA, breast milk microbiome, cytokines,

human milk oligosaccharides (HMOs), fatty acids

INTRODUCTION

Breast-feeding is a natural process of providing nourishment to offspring. Human milk is the
optimal source of nutrition for term infants during the first 6 months of life as it provides nutrients,
antimicrobial factors, and exposure to important immunomodulatory factors infants need to grow,
develop, and thrive (1). There are various studies showing that human milk provides defense
against infections and development of allergic disease (2, 3). The first few months of life are
a crucial window in which the still-developing infant immune system can be influenced, with
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breast-feeding allowing for continued exposure to the
mother’s immune system. This can impact oral tolerance
induction and development of allergy (Figure 1). However,
the immunomodulatory composition of human milk is poorly
characterized and varies between mothers.

Many studies have been published investigating the effect
of breastfeeding on atopic diseases, though conclusions from
these studies were conflicting, with some authors claiming a
protective effect, some remaining undecided, and a few even
suspecting that breastfeeding might promote the development of
atopic diseases (4–6). Systematic reviews and meta-analyses have
concluded an overall protective effect of breastfeeding against
atopic dermatitis, wheezing/asthma, allergic rhinitis and cow’s
milk allergy (CMA) in early childhood (7–10), and breast-feeding
is currently recommended to prevent allergic diseases (11). A
multidisciplinary review of the literature from 1966-2001 by
van Odijk et al. reviewed 132 articles discussing early feeding
methods and outcome of atopic disease (7). Only 56 of these
articles were conclusive and the conclusion of the reviewers
was that breastfeeding is protective of atopic diseases (asthma,
recurrent wheezing, atopic dermatitis), and the protective impact
is stronger in children with atopic heredity. The review also
concluded that exposure to small doses of cow’s milk during
first days of life predisposes to cow’s milk allergy (CMA), and
in children with atopic heredity, breastfeeding and extensively
hydrolyzed formula protect against CMA. A meta-analysis by
Gdalevich et al. in 2001 showed that at least 3 months of exclusive
breastfeeding protected from eczema and asthma in childrenwith
a family history of atopy (12, 13). Development of food allergy
was not assessed. This has been reproduced in various other

FIGURE 1 | Factors that influence the development of the neonatal immune system.

observational studies from Australia, Sweden, and Denmark.
(14–16). The Promotion of Breastfeeding Intervention Trial
(PROBIT), a large randomized trial from Belarus, was able to
promote breastfeeding duration and exclusivity of breastfeeding
at 16 hospitals and found that at these sites, infants had fewer
gastrointestinal infections and lower incidence of eczema in
the first year of life (17). However, the follow-up at 6 years
of this same cohort showed a lack of protective effect with
this intervention on asthma, eczema, or hay fever (5). The
American Academy of Pediatrics Committee on Nutrition and
Section on Allergy and Immunology published a clinical report
in 2008 concluding that there is evidence that breastfeeding until
4 months, compared with feeding formula made with intact
cow’s milk protein, prevents (or delays) the occurrence of atopic
dermatitis, wheezing and cow’s milk allergy in early childhood
(9). Interestingly, Katz et al. reported in 2010 in a large-scale
prospective population-based study that early exposure to cow’s
milk protein as supplementation to breastfeeding might prevent
IgE-mediated cow’s milk protein allergy (18). The Cochrane
Database Systematic Review in 2012 by Kramer and Kakuma
(3) concluded that with breastfeeding beyond 3-4 months, there
is no significant reduction in risk of atopic eczema, asthma, or
other atopic outcomes demonstrated in studies from Finland,
Australia, and Belarus. This was confirmed to be the case for
eczema in the retrospective ISAAC Phase Two Study of >51,000
children randomly selected in 21 countries (19). The most recent
systematic review by Lodge et al. from 2015 showed the protective
effect of more vs. less breastfeeding against risk of asthma in
children 5–18 years, especially in lower income countries, and
against allergic rhinitis in children ≤5 years (10). There was a
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significant effect of protection against eczema for children ≤2
years by exclusive breastfeeding for 3-4 months. Estimate for an
effect of breastfeeding on food allergy had high heterogeneity
and low quality. Most recently, a retrospective study in 2016
from Japan noted that cow’s milk formula exposure during
the first 3 months of life may also have a protective effect on
CMA (20). However, data are conflicting, especially given the
lack of randomized controlled trials and varied definitions of
breastfeeding and allergic outcomes. Unfortunately, most studies
have been underpowered for food allergies or not assessed at
all due to methodologic problems of making the firm diagnosis.
However, among all the atopic diseases, breastfeeding may have
themost impact on development of oral tolerance to foods, which
develops in the gastrointestinal tract. Epidemiologic studies
have not accounted for the human milk composition, which
varies from one mother to another, and may be a remarkable
confounder impacting its protective properties.

Human milk impacts the development of the infant gut
microbiome, along with other maternal and environmental
factors. At birth the infant transitions from a highly regulated
maternal, microbiota-scarce environment to becoming colonized
with ex utero microbiota (21). With vaginal birth, the infant
microbiota originates mainly from the mother’s intestine, vagina
and skin, while the hospital environment and the mother’s
skin provide the first colonizing microbes with C-section birth
(21–23). The bacterial colonization of the newborn intestine
may contribute to development of the neonatal immune
functions or susceptibility to immune-mediated disorders in
early (and later) life (6, 24, 25). Evidence from both animal
(26) and human studies (27–31) have reported that gut dysbiosis
precedes the development of atopy, atopic eczema and food
allergy/sensitization. In the past year, several studies have linked
the importance of gut microbiome and food allergy. Kourosh
et al. sought to better understand fecal microbiome in children
with IgE mediated food allergy and were able to show that
there were significant differences in microbial composition
amongst food-allergic children, especially in the Clostridia class,
compared with healthy siblings and healthy children (32).
Fieten et al. looked for differences in fecal microbiome in
children with or without food allergy in the setting of atopic
dermatitis (33). Their pilot study showed significant differences
in the microbiome profile between these two groups, specifically
with Bifidobacterium breve, Bifidobacterium pseudocatenulatum,
Bifidobacterium adolescentis, Escherichia coli, Faecalibacterium
prausnitzii, and Akkermansia muciniphila. Finally, Fazlollahi
et al. looked at the role of gut microbiota in egg allergic children
and found a distinction in diversity of microbial flora compared
to non-food allergic controls (34). While this data is important
for our discovery of the end outcome of atopy, the specific human
milk components on microbiome and atopy development are
discussed in this review.

Human milk originates in the lactating mammary tissue. Milk
lipid, lactose, and the majority of milk proteins are produced
in the lactating cells (35). Human milk contains immune
cells, immunoglobulins, cytokines, chemokines, growth factors,
lactoferrin, oligosaccharides, enzymes (peroxidases, lysozymes),
secretory components, and hormones, along with foreign food

antigens, bacteria and viruses (6, 36). Several of these bioactive
factors have been assessed in relation to development of allergies
in the infant, and many of these immunologically active factors
in human milk are missing in processed cow’s milk and infant
formulas, in which the whey to casein ratio is markedly lower
than in humanmilk (37, 38). This review summarizes the current
literature on human milk components that have been associated
with protection against food allergy and related allergic disorders
in early childhood and discusses the work relating to regulation
of these levels in human milk and possible mechanisms of action.

CYTOKINES, CHEMOKINES, AND
GROWTH FACTORS

Cytokines, which include chemokines, interleukins, interferons,
and growth factors, are signaling molecules that function in
cellular communication. Human milk is a rich source of
immunostimulatory and immunoregulatory cytokines (6, 39).
There is variation in the concentration of cytokines among
mothers, and overall concentrations for several of those are
relatively low in human milk, causing debate in the clinical
significance of cytokine levels on health outcomes. Some of
the variation in cytokine levels is thought to be due to
varyingmaternal (microbial) exposures. Milk interleukin (IL)-10,
interferon (IFN)-γ (40) and transforming growth factor (TGF)β
(41) levels have been shown to vary depending on mothers’
country of residence, and country of birth (42), and TGFβ
as an example is in human milk at a biologically meaningful
concentration.

TGFβ is an important regulatory cytokine involved in
suppression of both Th1 and Th2 pathways, and is the
molecule that has been most studied. The three isoforms
of TGFβ combined make it the most prevalent cytokine in
human milk, with the most abundant being TGFβ-2 (43, 44).
Immunomodulatory cytokines in murine milk, including TGFβ
have been shown to influence the development and maturation
of the mucosal immune system in neonatal mice and to be
associated with the protection against allergic asthma (45). Some
studies have confirmed that milk TGFβ is immunologically
active, and involved in the induction of oral tolerance, perhaps
by inducing increased production of specific IgA (46, 47).
Alternatively, TGFβ-2 has been shown to induce maturation of
immature intestinal epithelial cells (48). Protection induced by
human milk TGFβ has especially been noted in the development
of atopic dermatitis (43). This was supported in a review in 2010
by Oddy and Rosales of twelve human studies that determined
that 67% of the studies showed a positive association of TGFβ-
1 or TGFβ-2 preventing atopic outcomes in infancy and early
childhood (49). The study concluded that TGFβ is likely essential
in the development of immune responses in infants and may
provide protection against adverse immunological outcomes
(49). Overall, however, there is conflicting data regarding the
role TGFβ in the development of atopic disease in humans
(41, 50–56). Most recently, a study by Morita et al. showed that
lower concentration of TGFβ-1 in human milk at 1 month, but
not TGFβ-2, may be linked to development of eczema (57).

Frontiers in Pediatrics | www.frontiersin.org 3 August 2018 | Volume 6 | Article 218

https://www.frontiersin.org/journals/pediatrics
https://www.frontiersin.org
https://www.frontiersin.org/journals/pediatrics#articles


Rajani et al. Human Milk Components and Atopic Disease

In another study of food allergy, the concentration of TGFβ-1
in colostrum from mothers of infants with IgE-mediated cow’s
milk allergy was lower than from mothers of infants with non-
IgE-mediated cow’s milk allergy; however, the levels in healthy
controls were found in between (58). The studies are summarized
in Table 1. A recent study showed that human milk TGFβ was
associated with increased richness, evenness and diversity of
infant gut microbiome composition (61).

Emerging data regarding the role of other human milk
cytokines and chemokines on allergic disease development has
been variable. A summary of association between cytokines and
the development of food allergy can be found in Table 2. Earlier
studies using ELISA found that levels of IL-4 are lower and IL-
8 and CCL5 (RANTES) are higher in human milk from atopic
compared to non-atopic mothers (63, 64), though others found
that cytokine levels were largely not related to maternal atopy
(6, 65). Various studies report low to undetectable levels of
other cytokines and chemokines including IFNγ, IL-2, IL-4, IL-
5, IL-10, IL-12, IL-13, CCL5, CXCL8, CXCL10, and TNF-α and
have found no association with development of atopic disease
despite their involvement in immune and intestinal development
(39, 50, 53, 55, 66, 67). Pro-inflammatory cytokines, including
IL-1β, IL-6, and IL-8 are also found in human milk in low
concentrations. IL-6, IL-8, CXCL8, and CXCL10 in human milk
have been shown to be affected by factors such as gestational
smoking, maternal race, and season (68) and exercise has been
associated with elevated levels of IL-1β and IL-17 (69). There are
studies showing that some of these cytokine levels in milk may
impact allergic outcomes in offspring. Increased levels of IL-1β
in human milk have been shown to be associated with protection
against eczema (55). Soto-Ramirez et al. showed that IL-5 and
IL-13 levels in milk, although extremely low, are risk factors for
asthma at 12 months of age (67). CCL5 in milk was the strongest
risk factor for development of atopic dermatitis in the study
by Ochiai et al. (65). Because food allergy represents a failure
in development of mucosal tolerance to foods, immune factors
in human milk may have a more direct effect on development
of food allergy (62). In fact, our study showed that a panel
of pro-inflammatory and regulatory cytokines including IL-1β,
IL-6, IL-10, and TGFβ-1 in human milk were associated with
protection against CMA (6, 62). These cytokines promote IgA
production, Th17 differentiation andmicrobiota-driven crosstalk
between gut macrophages and RORγt+ ILC-3 population (70). It
is unclear whether these bioactive factors are directly related to
protection or whether they are biomarkers of another protective
mechanism (6).

Other growth factors have also been shown to be present
in high concentrations in human milk, including vascular
endothelial growth factor, hepatic growth factor, and epidermal
growth factor, though the clinical importance is unknown
(56, 62, 71). Most recently, a study was conducted by
Munblit et al. in which 398 pregnant/lactating women in the
United Kingdom, Russia, and Italy were followed prospectively
to look for an association between levels of immune mediators in
colostrum/mature human milk and allergic outcomes in infants
during the first year of life (56). Hepatocyte growth factor
(HGF) in mature human milk was protective against common

cold incidence at 12 months. Other study outcomes in infants
included eczema symptoms, parental-reported food allergy, and
recurrent cough/wheeze at 6 and 12 months of age. Results
showed higher levels of IL-13 in the colostrum and mature
human milk were protective against parent reported food allergy
and eczema respectively. IL-2, IL-4, IL-5, IL-10, IL-12, and IFNγ

showed no significant association with eczema, wheeze or food
allergy (56).

SOLUBLE CD14/TLR

Human milk may also influence neonatal microbial recognition
by modulating Toll-like receptor (TLR)-mediated responses
specifically and differentially (72). Necrotizing enterocolitis has
been shown to be reduced in infants who are breastfed, mediated
likely via the lipopolysaccharide (LPS) receptor TLR4 preventing
mucosal injury and promotion of repair (73). CD14 is the
soluble component (sCD14) of the TLR4, which has a role in
innate immunity. It binds to LPS from gram-negative bacteria
and intestinal enterocytes. The absence of sCD14 reduces the
TLR4 response to LPS. Colostrum is rich in sCD14 with levels
decreasing over time whereas neonates lack CD14. Soluble CD14
levels have been found to be lower in colostrum and human
milk of mothers with children who develop atopy or eczema,
sensitization (6, 74). Later studies, however, deny an association
between levels of sCD14 and development of atopy (52, 54).
In 2015, Savilahti et al. showed that elevated sCD14 in human
milk 3 months post-partum was associated with development
of IgE-mediated allergic disease by 5 years of age in children
who had hereditary risk of atopy, suggesting that sCD14 in
milk influences the emergence of allergy in children with atopic
heredity (75). This study contrasted with a study by the same
group from 2005 that showed sCD14 levels were lower in
colostrum of mothers with infants developing atopic symptoms
and IgE sensitization than of those of infants with no atopy
(51). Studies regarding sCD14 in human milk are summarized
in Table 3. The conclusions are mixed and there does not appear
to be a clear relationship between sCD14 levels in human milk
and development of atopic disease.

IMMUNOGLOBULIN A (IgA)

The predominant immunoglobulin in human milk is IgA, most
of which is in the form of secretory IgA (SIgA), with smaller
amounts of IgG and IgM (6, 76). An older study utilized
human milk from a prospective birth cohort of 145 mother-
infant dyads oversampled for high risk of food allergies and
followed for 12-18 months for development of CMA. The study
showed that high levels of human milk total (77) and cow’s
milk-specific IgA (78) were associated with protection against
CMA, consistent with other reports (79, 80). While the exact
function of IgA in human milk is unknown, it is thought to
supplement infant IgA production, which only commences after
birth (78, 81). Data from several studies support a role for
maternal environment (geographic location, microbial pressure,
exposure to farm animals and cats) in driving milk IgA levels and
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TABLE 1 | Studies pertaining to TGFβ in human milk and development of atopic disease.

Study Year Location Size Duration/Age Outcomes

Kalliomaki et al. (43) 1999 Finland n = 47 Up to 12 months Increased TGFβ-1 and 2 levels in colostrum

were associated with higher post

weaning-onset atopic disease

Saarinen et al. (58) 1999 Finland n = 6209 Up to 12.7 months Increased TGFβ-1 levels in colostrum are

associated with infants who develop

IgE-mediated cow’s milk allergy versus

non-IgE-mediated cow’s milk allergy; healthy

controls were found in between

Bottcher et al. (50) 2003 Sweden n = 53 Up to 2 years TGFβ-1 and 2 levels were not significantly

associated with eczema, salivary IgA, or allergic

sensitization

Oddy et al. (59) 2003 Australia n = 243 Infancy Increased TGFβ-1 is associated with lower risk

of wheeze in infancy

Savilahti et al. (51) 2005 Finland n = 4674 Up to age 4 years TGFβ-1 and 2 levels were not significantly

associated with atopy development

Snijders et al. (52) 2006 Netherlands n = 315 Eczema (up to 12 months),

Wheezing (up to 2 years),

Allergic sensitization (up to 2

years)

No significant association of with TGFβ-1 and

development of eczema, wheezing or allergic

sensitization

Bottcher et al. (60) 2008 Sweden n = 54

(L. reuteri) n = 55 (control)

Up to 2 yeas Decreased TGFβ-2 in colostrum is associated

with lower incidence of allergic sensitization

and a trend of protective effect on eczema

development

Kuitunen et al. (53) 2012 Finland n = 364

(colostrum) n = 321 (BM)

At 2 years of age Increased TGFβ-2 is associated with higher risk

of allergic disease and eczema

Ismail et al. (54) 2013 Australia n = 79 Up to 12 months TGFβ-1 level was not significantly associated

with eczema or allergic sensitization

Orivuori et al. (41) 2014 Finland, France,

Germany and

Switzerland

n = 610 Eczema (up to 4 years),

asthma (up to 6 years),

allergic sensitization (up to 6

years)

TGFβ-1 level was not significantly associated

with eczema, asthma, or allergic sensitization

Jepsen et al. (55) 2016 Denmark n = 223 Up to 3 years TGFβ-1 level was not significantly associated

with recurrent eczema or wheeze

Munblit et al. (56) 2017 United Kingdom,

Russia and Italy

n = 398 Up to 6 months Increased TGFβ-2 is associated with higher risk

of eczema

Morita et al. (57) 2018 Japan n = 43

(eczema) n = 53 (control)

Up to 6 months Lower TGFβ-1 ratio (1-month milk/colostrum) is

associated with higher risk of eczema

specificity (40, 41, 82). Some studies have shown a link between
high IgA levels and protection for the development of atopic
dermatitis (41, 51) while other studies show no link between sIgA
and development of other atopic diseases (41, 50, 54).

Mucosal IgAs are produced by plasma cells in the gut
lamina propria and are transported across epithelial cells by the
polymeric immunoglobulin receptor (pIgR) (83). Human milk
IgA is produced by mammary gland B cells that have migrated
from the mother’s intestine via the “enteromammary link”
(84, 85), as shown in animal studies (86–89). This is controlled
by the mucosal vascular addressin MadCAM-1 or mucosa-
associated epithelial chemokine CCL28, which interacts with the
gut homing receptor α4β7 integrin (90) and mucosa-associated
CCR10 (91). Consistent with this, in a rabbit model either oral or
inhaled RSV resulted in RSV-IgA production in milk, bronchial
and enteral secretions, whereas systemic immunization did not
(92). Studies in humans (93) showed that oral immunization in
women resulted in an increase in plasma cells in milk, but not

in saliva or serum, (85). This forms the hypothesis that human
milk IgA reflects the antigenic exposure of the mother’s gut to
dietary proteins as well. Using the cohort mentioned above, it
was shown that a strict maternal diet restricting cow’s milk was
associated with lower levels of sIgA levels in human milk than
cow’s milk-containing diet (78). This implies that the antigenic
stimulation encountered by the maternal gut directs the antibody
specificity of human milk (85). In order to further understand
the regulation of IgA in milk, epitope-specific binding of IgA in
milk was compared to paired maternal serum samples (85). This
revealed that IgA in human milk had partially different epitope
specificity to cow’s milk antigens than IgA in serum, suggesting
different pools of antibody-producing lymphocytes controlling
serum and human milk antibodies, respectively, and therefore
supporting evidence for enteromammary milk. In summary, IgA
levels expressed in human milk are influenced by many maternal
factors, including diet, location, exposures, microbiota, and likely
plays a protective role against development of cow’s milk allergy.
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TABLE 2 | Summary of association between cytokines and the development of food sensitization/allergy.

Study Year Location Size Duration/Age Cytokines assessed Food allergy

development

Bottcher et al. (50) 2003 Sweden n = 53 Up to 2 years IL-4, IL-5, IL-6, IL-8, IL-10, IL-13, IL-16,

IFN-γ, TGFβ-1, TGFβ-2, RANTES, eotaxin

No significant association

Snijders et al. (52) 2006 Netherlands n = 315 Up to 2 years IL-12 or TGFβ-1

(IL-10 undetectable)

No significant

association

Kuitunen et al. (53) 2012 Finland n = 364

(colostrum)

n = 321

(3 month HM)

At 2 years of age IL-10, TGFβ-1 No significant

association

Järvinen et al. (62) 2015 Finland n = 145 Up to 2 years IL-1α, IL-1β, IL-6, IL-10

PDGF-BB, CCL27, VEGF, TSLP, CCL11,

CXCL10, and CXCL11, CCL22, TGFβ-1,

(TNF-a and -b, CCL1, CCL17, IL-31,

eotaxin 3, CXCL9, IL-5, GM-CSF, and

IL-12p70 undetectable)

IL-1β, IL-6, IL-10, and

TGFβ-1 in human milk

showed association with

cow’s milk tolerance

Munblit et al. (56) 2017 United Kingdom,

Russia and Italy

n = 398 Up to 6 months IL-2, IL-4, IL-5, IL-10, IFNγ, IL-12, IL-13,

HGF, TGFβ-1, TGFβ-2, TGFβ-3

IL-13 associated with

protection, otherwise no

significant

association

HM, Human milk.

TABLE 3 | Studies pertaining to sCD14 in human milk and development of atopic disease.

Study Year Location Size Duration/Age Outcomes

Jones et al. (74) 2002 United Kingdom Varies

(multiple

cohorts)

At 6 months Decreased sCD14 in 3 month HM is associated with

higher eczema incidence

Oddy et al. (59) 2003 Australia n = 243 Up to 12 months sCD14 levels in 2 week HM showed no significant

association with infant wheeze

Savilahti et al. (51) 2005 Finland n = 4674 Up to 4 years Decreased sCD14 levels in colostrum were associated

with a higher incidence of allergic sensitization and

eczema

Snijders et al. (52) 2006 Netherlands n = 315 Eczema (up to 12 months),

wheeze (up to 2 years), or allergic

sensitization (up to 2 years)

sCD14 level in 1 month HM was not significantly

associated with eczema, wheeze, or allergic sensitization

Ismail et al. (54) 2013 Australia n = 79 Up to 12 months sCD14 level in 1 and 4 week HM was not significantly

associated with eczema or allergic sensitization

Savilahti et al. (75) 2015 Finland n = 260 Up to 5 years Increased sCD14 level in 3 month HM is associated with

higher incidence of allergic sensitization and eczema

HM, Human milk.

MICROBIOME

Infant microbiome composition is influenced by breastfeeding
(94, 95). Human milk can modify the infant microbiome directly
through seeding from the maternal microbiome and through
the other effects of human milk. Diversity of the infant gut
microbiome develops in the first 2 years of life and Bifidobacteria
dominate throughout the first year (96). Recent studies have

shown that host genetics, prenatal environment and delivery
mode can shape the newborn microbiome at birth [reviewed
in (97)]. Following this, postnatal factors, such as antibiotic

treatment, diet and environmental exposure, further modulate
the development of the infant’s microbiome and immune system.

Living on farms, avoiding antibiotics, vaginal delivery, and
other environmental factors leading to greater diversity in the
microbiome have been associated with a major reduction in
the risk of atopic diseases(98, 99). Several large studies have
confirmed the role of breastfeeding in determining the gut
microbiome. Initially there is lower microbiome diversity with
breastfeeding, as human milk selects for a highly adapted
intestinal microbiota, and when breastfeeding is ceased and
complementary feeds start, Lactobacilli, Bifidobacteria, and
Enterobacteriaceae are replaced with a microbiota dominated
by Clostridium and Bacteroides species(100–103). The WHEALS
birth cohort confirmed that together with the mode of delivery,
breastfeeding is one of the most important factors impacting
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infant microbiome (95). Interestingly, however, only 12–14% of
variability was explained by maternal mode of delivery, exposure
to pets, demographics and breastfeeding. This may be partly due
to the fact that the human milk biologically active components
such as IgA and HMOs, which can modulate microbial
composition and function, were not specifically considered. Their
concentrations vary between mothers, and this variation is not
captured in a coarse definition of breastfeeding.

Several culture-dependent and–independent studies have
revealed that colostrum and human milk contain a variety
of bacterial communities that colonize the infant’s gut. The
initial studies demonstrated predominance of staphylococci,
lactobacilli, streptococci and propionibacterium, and closely
related gram-positive bacteria (104). Culture-independent
molecular techniques, especially those utilizing 16S rRNA
sequencing have confirmed a similar diversity of bacteria, but
also presence of several others including Gram-negative bacteria
(6, 105–109). Milk bacterial communities vary between mothers
but are relatively stable within individuals (106). Human milk
microbiota has been shown to act as a source of bacterial species
that colonize the infant gut (110), to be but different from skin
suggesting an endogenous route for human milk colonization
(105, 111). The amount of bacteria ingested by an infant per
800mL of milk consumed daily is estimated at 1 × 105-1 × 107,
though this is likely an underestimation (112). Recently, it was
shown that human milk provides a source of about one-fourth of
infant gut microbiota (113).

HUMAN MILK OLIGOSACCHARIDES

Human milk oligosaccharides (HMOs) provide the main
substrate for an infant’s gut microbiota during exclusive
breastfeeding, particularly promoting bifidobacteria and
Bacteroides (114–116). Some HMOs have anti-inflammatory
properties, and support maturation of the gut mucosal immune
system (117). Some also have an inhibitory effect on intestinal
cell growth (118), and some bind to dendritic cells through
the lectin receptor DC-SIGN (119) inhibiting HIV transfer to
T-cells. These oligosaccharides are not digestible by the infant
and are extensions of lactose generated by the action of a series
of glycosyltransferases. For fucose, two fucosyltransferases
FUT2 (secretor gene) and FUT3 (Lewis gene) are implicated.
Depending on the Lewis blood group and secretor status,
different enzymes are available for the synthesis of HMOs. As
a result, human milk from different mothers have significant
variations in qualitative and quantitative composition of
HMOs. HMO composition is relatively stable during the
course of lactation, although it is not known whether minor
daily variations are due to the mother’s diet (120). This
heterogeneity implies that some breast-fed infants are not
being exposed to certain structures. Non-secretor mothers,
lacking a functional FUT2 enzyme (FUT2−/−), represent
15-25% of mothers depending on their ethnic background
(121, 122), and their milk is missing all alpha-2 linked fucose
oligosaccharides (21). Infants fed by non-secretor mothers are
delayed in establishment of bifidobacteria-laden microbiota

(123). Differences in HMOs have also been associated with
susceptibility to infectious gastroenteritis (124, 125) and HIV
(126–128). In our previous studies, certain HMO profiles
were associated with protection against cow’s milk allergy
(129). Infants who received human milk with low Lacto-N-
fucopentaose (LNFP) III concentrations were more likely to
become affected with CMA when compared to those receiving
milk with high levels (p = 0.00036, odds ratio 6.7, 95% CI 2.0–
22). Two other studies have assessed the association between
HMO and atopic diseases. A study that followed 20 infants for
the first 18 months for development of FA, and measured HMOs
using HPLC was powered to only find major effects, and indeed
did not find a significant difference in HMOs between mothers
of allergic and non-allergic children (130). In a second study,
infants fed by non-secretor mothers had delayed development
of bifidobacteria-laden microbiota (123) and if also born via
c-section had a higher risk to manifest IgE-associated eczema
(21). However, development of food allergy or composition of
individual HMOs were not assessed. These data support the role
of HMOs in protection against CMA, possibly through their
effect on infant gut microbiome. Most recently, the Canadian
Healthy Infant Longitudinal Development (CHILD) study,
compared HMO profiles with food sensitization at 1 year of age
(131). The study found that lower risk for food sensitization was
associated with higher concentrations of fucosyl-disialyllacto-
N-hexaose (FDSLNH), lacto-N-fucopentaose II (LNFPII),
lacto-N-neotetraose (LNnT), lacto-N-fucopentaose I (LNFPI),
sialyllacto-N-tetraose c (LSTc), and fucosyllacto-N-hexaose
(FLNH), and relatively lower concentrations of lacto-N-hexaose
(LNH), lacto-N-tetraose (LNT), 2′-fucosyllactose (2′FL), and
disialyllacto-N-hexaose (DSLNH). Further investigation into
HMO composition is necessary to better understand the role of
HMOs in pathophysiology and possibly future therapeutics for
prevention of atopic disease.

FATTY ACIDS

Milk lipids are principal macronutrients in human milk and
studies have shown that milk from atopic mothers varies in
fatty acid content. Polyunsaturated fatty acids (PUFAs), more
specifically the omega-3 (ω-3) fatty acids, e.g., docosahexaenoic
(DHA) and eicosapentaenoic (EPA), have been recently shown to
have anti-inflammatory effects in chronic inflammatory diseases,
such as asthma (132). On a maternal fish oil supplementation
trial, omega-3 PUFA levels were positively associated with IgA
and sCD14 levels, suggesting a relationship between fatty acid
status and mucosal immune function (133). Another study has
shown that atopic mothers’ milk has lower levels of n-3 long-
chain PUFA at 1 month of lactation than non-atopic mothers
(134). Overall, the studies examining the fatty acid profile in
human milk as a risk factor for subsequent atopic disease have
been mixed, though generally found that n-3 PUFAs in human
milk possibly protect against atopic diseases (134–139). The
conflicting findings may be due to the complex interactions
between different fatty acids types and the divergent functions on
immune system based on the dose (6, 140).
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More recently, the short-chain fatty acids (SCFAs), including
acetate, butyrate and propionate, have been demonstrated
as possibly important mediators of allergic inflammation.
Inflammation is likely a by-product of the metabolic activity of
gut microbiota given that SCFAs are altered in children who
are or become overweight or atopic (141). SCFAs are the first
metabolites produced by the gut microbiota of newborns, with
synthesis increasing rapidly after birth (142). As commensal
microbiome has been shown to be protective against food
sensitization in animal models (26), this may be due to the SCFAs
produced by these commensal bacteria. In mice, experimental
data has shown that increased SCFAs, especially acetate and
butyrate, may prevent development of food allergy by way
of promoting the tolerogenic effect of CD103+ dendritic cells
(143). Initial studies have shown that in term infants, total gut
SCFA levels are elevated in formula-fed vs. breastfed infants,
however acetate levels in particular are highest with exclusive
breastfeeding (141, 144). There are no published studies of SCFA
levels in human milk.

HUMAN MILK CELLS

A variety of other factors have yet to be better investigated
in terms of the impact on the development of inflammation
and immunity. Extremely interesting is recent data suggesting
that up to 6% of cells in human milk are stem cells, and
mesenchymal stem cells isolated from humanmilk are potentially
reprogrammable to many types of tissue (145, 146). These cells
may play a role in development of immune cells, including
regulatory T cell, which may suppress antimaternal immunity
and lead to microchimerism that induce intestinal tissue repair
and immune protection (146). Colostrum is specifically also rich
in leukocytes, with breastfed infants being exposed to as much as
1010 maternal leukocytes per day, and the role of this exposure in
immune development in infants is not yet clear (44). One study
of 61 mothers and infants did show that macrophage proportion
was significantly smaller in the milk of mothers who had infants
with cow’s milk allergy compared to mothers who had healthy
infants, whereas neutrophil, eosinophil or lymphocyte abundant
milk noted significantlymore often being received by infants with
cow’s milk allergy (147). There is still much to learn about the
effect of these factors in prevention of allergic disease.

DIETARY ANTIGENS

Maternal dietary antigens, including ovalbumin, β-lactoglobulin,
gliadin and peanut, have been detected in human milk generally
in quantities varying from undetectable levels to 430 ng/ml

(148–155). Although their role in inducing symptoms in already
sensitized infants has been shown (150), and the ingestion of egg
has been associated with immune markers in infants (155), their

role in initial sensitization or tolerance development in humans
is still debated.

CONCLUSIONS

The immunomodulatory composition of human milk is
surprisingly poorly characterized and varies between mothers.
The coarse definition of breastfeeding used in epidemiologic
studies does not take into consideration the variability in the
numerous immunologically active factors in human milk, which
may lead to conflicting data regarding the impact of breastfeeding
on immune development and downstream implications on
development of prevention of allergic disease. Whereas one
mother’s milk may be rich is immunoprotective factors, another
mother’s milk may not; however epidemiologic studies do not
differentiate between these two very different infant dietary
(and microbial) exposures. In addition, randomized controlled
trials, with assignments to either breastfeed or not, are lacking,
and definitions of breastfeeding and allergic outcomes vary.
Unfortunately, most studies have been underpowered for food
allergies or not assessed at all due to methodologic problems of
making the firm diagnosis.

The studies above suggest that, upon a closer look, the
milieu of biomarkers in human milk varies between mothers
and the composition may play a function in progression
to or prevention against atopy. The impact of human milk
biologically active components can be direct or perhaps due to
modulation of intestinal microbial composition and function.
Most importantly, the factors do not act in isolation, and the
study into the impact of a combination or networks of immune
factors in human milk on infant microbiome and immune
development is still “in its infancy.” Better elucidation of the
role of these factors could lead to early targets for treatment
and prevention of allergic disease. Further and larger well-
characterized studies using prospective cohort data would be
extremely helpful in determining the most important factors that
likely play a role in development of atopic diseases. The above
studies shed a guiding light for future areas of research.
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