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Numerous studies have examined the strategy of tight glucose control (TGC) with

intensive insulin therapy (IIT) to improve clinical outcomes in critically ill adults and children.

Although early studies of TGC with IIT demonstrated improved outcomes at the cost

of elevated hypoglycemia rates, subsequent studies in both adults and children have

not demonstrated any benefit from such a strategy. Differences in patient populations,

variable glycemic targets, and glucose control protocols, inconsistency in attaining

these targets, heterogeneous intermittent sampling, and measurement techniques, and

variable expertise in protocol implementation are possible reasons for the contrasting

results from these studies. Notably, differences in modes of nutrition support may have

also contributed to these disparate results. In particular, combined use of early parenteral

nutrition (PN) and a strategy of TGC with IIT may be associated with improved outcomes,

while combined use of enteral nutrition (EN) and a strategy of TGC with IIT may be

associated with equivocal or worse outcomes. This article critically examines published

clinical trials that have employed a strategy of TGC with IIT in critically ill children to

highlight the role of EN vs. PN in influencing clinical outcomes including efficacy of

TGC, and adverse effects such as occurrence of hypoglycemia and hospital acquired

infections. The perspective afforded by this article should help practitioners consider the

potential importance of mode of nutrition support in impacting key clinical outcomes

if they should choose to employ a strategy of TGC with IIT in critically ill children with

hyperglycemia.

Keywords: tight glucose control, intensive insulin therapy, enteral nutrition, parenteral nutrition, children, critical

illness, outcomes

INTRODUCTION

Clinical trials of tight glucose control (TGC) with intensive insulin therapy (IIT) to improve
outcomes in critically ill adults and children have promisedmuch, but delivered little.While the first
studies in critically ill adults in surgical intensive care units (ICUs) demonstrated improvements
in mortality and morbidity from TGC with IIT (1, 2), later studies in medical and mixed
medical/surgical ICUs observed worse outcomes (3–6). Disappointingly, TGC with IIT resulted
in substantial increases in hypoglycemia in all these studies with corresponding poor clinical and
neurological outcomes (7–9). Similarly, in critically ill children, the first study of TGC with IIT was
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notable for significant decreases in length of stay and
inflammation, but came at a cost of substantial increase in
hypoglycemia rates (10). Subsequent studies in critically ill
children were unable to demonstrate any benefits from TGC
with IIT, and continued to report elevated hypoglycemia rates in
spite of measures such as continuous glucose monitoring (CGM)
and computer guided decision making to reduce hypoglycemia
(11–13). Follow-up neurodevelopmental studies have observed
worse clinical outcomes from hypoglycemia due to TGC with
IIT in critically ill children (14, 15). Differences in patient
populations, variable glycemic targets and glucose control
protocols, inconsistency in attaining these targets, heterogeneous
intermittent sampling and measurement techniques, and
variable expertise in protocol implementation are possible
reasons for the contrasting results from these studies (16–18).
Notably, differences in modes of nutrition support may have also
contributed to these disparate results. In particular, combined
use of early parenteral nutrition (PN) and TGC with IIT may
be associated with improved outcomes, while combined use of
enteral nutrition (EN) and TGC with IIT may be associated
with equivocal or worse outcomes. This article will examine
how mode of nutrition support may influence blood glucose
(BG) concentrations, and provide perspectives on how nutrition
support may influence the efficacy of TGC with IIT and
occurrence of adverse events.

STRESS HYPERGLYCEMIA IN PEDIATRIC
CRITICAL ILLNESS

Stress hyperglycemia commonly occurs in critically ill children,
even in those with previously normal glucose homeostasis
(19–25). Over two-thirds of critically ill children experience
moderate hyperglycemia [BG concentrations > 150 mg/dL (>
8.3 mmol/L)], while severe hyperglycemia [BG concentrations >

200 mg/dL (> 11 mmol/L)] occurs in as many as one-third of
critically ill children (19–25). Stress hyperglycemia develops via a
combination of increase in gluconeogenesis (relative to glucose
uptake and turnover) and development of insulin resistance
(26). Both of these mechanisms are mediated by increases in
inflammatory cytokines as well as elevated levels of counter-
regulatory hormones (catecholamines, cortisol, glucagon and
growth hormone) (27, 28). Additional mechanisms for stress
hyperglycemia include impairments in pancreatic beta-cell
function with corresponding reduction in insulin secretion (29).

The mode of nutrition support in the ICU can also exacerbate
stress hyperglycemia (30). Critically ill children are often
prescribed PN due to inability to tolerate EN in critical illness
states. The provision of excess carbohydrate calories in PN can
result in elevated BG concentrations. While normal infants and
children may have substantially higher glucose turnover rates
than adults (31), limited data from critically ill children suggest
that glucose infusion rates (GIR) <5 mg/kg/min may be optimal
for glucose utilization from PN (32, 33). The practice of cycling
PN may also be associated with stress hyperglycemia, most
likely due to impaired insulin secretion (34). Commonly used

predictive equations to calculate energy expenditure needs in
critical illness states are inferior to targeted indirect calorimetry,
and often result in over prescription of calories (35–37). In
contrast, nutrition strategies such as supplementation of PN with
glutamine and the administration of low calorie PN may reduce
the development of stress hyperglycemia during critical illness
(38, 39).

In turn, stress hyperglycemia can affect the delivery of
nutrition during critical illness in a variety of ways. Stress
hyperglycemia may influence the ability to provide consistent
or adequate EN during critical illness due to delayed gastric
emptying and slowing down of gut motility (40). Stress
hyperglycemia can also impair the prokinetic action of
erythromycin on gastric emptying (41). Altered gut motility
and insensitivity to prokinetic agents may result in intolerance
to EN. Studies in critically ill adults have demonstrated the
association of intolerance to EN with stress hyperglycemia and
BG variability (42). Stress hyperglycemia also results in altered
nutrient utilization during critical illness. Stress hyperglycemia
exacerbates protein catabolism in skeletal muscle in critically ill
adults with severe burns (43). Stress hyperglycemia may also
reduce the activity of lipoprotein lipase contributing to the
development of hypertriglyceridemia through reduced clearance
of circulating triglycerides (44).

Stress hyperglycemia during critical illness thus results in the
rapid availability of glucose as a fuel for metabolic processes
occurring in vital organs in the body. During the acute phase
of critical illness coinciding with high metabolic demands, stress
hyperglycemia may be adaptive to favor survival. However,
during the chronic phases of critical illness, persistence of stress
hyperglycemia may reflect impaired allostasis with potential for
harm from increased oxidative damage due to propagation of
the proinflammatory response, and impaired cellular repair and
tissue healing (30). Though stress hyperglycemia is often justified
as an adaptive response to critical illness (45, 46), numerous
studies in critically ill children have observed the association of
stress hyperglycemia with poor clinical outcomes across a variety
of disease states (19–25, 47–53). Consequently, the strategy of
TGC with IIT emerged as a viable and rational solution to
improve outcomes in critically ill children experiencing stress
hyperglycemia.

TGC WITH IIT IN CRITICALLY ILL
CHILDREN

Early studies of TGC with IIT in critically ill children focused on
children with severe burns and very low birth weight neonates
(54–56). Subsequently, this practice of TGC with IIT was studied
in more general populations of critically ill children with varying
results (10–13). The variability in observed outcomes across
these studies are due to several important methodological and
epidemiological differences that are summarized in Table 1. In
the study by Vlasselaers et al, BG concentrations were controlled
to age-specific fasting ranges in the intervention group that
were substantially lower than the BG ranges in the intervention
groups in the other three studies (Safe Pediatric Euglycemia
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TABLE 1 | Studies of tight glycemic control with intensive insulin therapy in critically ill children—demographics and methodology.

Study Sample

size (n)

Number

of centers

Age range

(years)

Diagnosis categories TGC range vs.

control range (BG,

mg/dL)

Blood glucose

management details

Primary outcome in

TGC range vs.

control range

Vlasselaers et al. (10) 700 1 0–16 75% cardiac surgery;

25% medical-surgical

<1 year old: 50-80 vs.

>215;

>1 year old: 70–100

vs. >215

Paper based guideline;

arterial blood samples;

blood gas analyzer

Clinical: Days in ICU

(5.51 vs. 6.15,

p = 0.017)

Biochemical: CRP

change from baseline

to Day 5, mg/L (−6 vs.

0, p = 0.007)

Agus et al. (11) 980 2 0–3 Cardiac surgery 80–110 vs. standard

care

CHECKS algorithm;

arterial blood samples;

CGMS/POC

30 days rate of

healthcare associated

infections—number of

infections per 1,000

patient-days in the

cardiac ICU (8.6 vs.

9.9, p = 0.67)

Macrae et al. (12)* 1369 13 0–16 61% cardiac surgery;

39% medical-surgical

72–126 vs. 180-215 Paper based guideline;

arterial blood samples;

POC

Number of days alive

and free from

mechanical ventilation

at 30 days (23.6 vs.

23.2, mean

difference = 0.36, 95%

CI−0.42–1.14)

Agus et al. (13)* 713 35 0–17 Medical-surgical 80–110 vs. 150–180 CHECKS algorithm;

arterial blood samples;

CGMS/POC

Number of ICU free

days through Day 28

(20 vs. 19.4, p = 0.86)

*Study stopped early.

TGC: tight glycemic control; BG: blood glucose; ICU: intensive care unit; CRP, C-reactive protein; CI, confidence intervals; CHECKS, Children’s Hospital Euglycemia for Kids Spreadsheet;

CGMS: continuous glucose monitoring sensor; POC, point of care.

after Cardiac Surgery—SPECS, Control of Hyperglycaemia in
Pediatric Intensive Care—CHiP and Heart and Lung Failure—
Pediatric Insulin Titration—HALF-PINT). The control group BG
range also differed between these studies. Additionally, there
was greater separation of BG concentrations in the study by
Vlasselaers et al, compared to the SPECS, CHiP, and HALF-PINT
studies. Another important difference between these studies was
the striking variation in overall incidence of acquired infections
in study subjects. The study by Vlasselaers et al. observed a
much higher incidence of acquired infection in the control group
than SPECS, CHIP, or HALF-PINT which could possibly reflect
important definitional and epidemiological differences compared
to the latter three studies. Consequently, the trial by Vlasselaers
et al. was more likely than the other three trials to have identified
a positive benefit from TGC with IIT.

Published meta-analyses of studies of TGC with IIT in
critically ill children have not observed any benefits from this
strategy (57–59). In 2014, Srinivasan et al. carried out the first
systematic review and quantitative meta-analysis of the 4 studies
till date that had examined the efficacy and safety of TGC with
IIT in critically ill children (excluding neonates) (57). This meta-
analysis observed that TGC with IIT did not reduce 30-day
mortality, but did appear to reduce acquired infection in critically
ill children at the expense of higher incidence of hypoglycemia.
Subsequently, Zhao et al. published an updated meta-analysis in
2018 including the results from the recent HALF-PINT trial and

observed that TGC with IIT did not reduce 30-day mortality
or acquired infection in critically ill children, but resulted in
substantial increases in hypoglycemia rates (58). Recently, Chen
et al. carried out a meta-analysis of 6 studies of TGC with IIT in
critically ill children and preterm neonates, and concluded that
the practice of TGC with IIT did not confer any benefits but
did result in significant increases in hypoglycemia (59). Notably,
none of these above meta-analyses took into account mode of
nutrition support when evaluating the safety and efficacy of TGC
with IIT in critically ill patients.

MODES OF NUTRITION SUPPORT:
IMPLICATIONS FOR EFFICACY AND
SAFETY OF TGC WITH IIT

Data From Adult Studies
In the single-center surgical and medical adult ICU studies of
TGC with IIT from Leuven, early use of PN for nutrition support
was heavily favored during ICU admission (1, 3). Per existing
European Society of Parenteral and Enteral Nutrition (ESPEN)
guidelines at the time of these studies, the use of early PN to reach
goal energy needs within 3 days of admission was emphasized if
they were not expected to tolerate EN or had a contraindication
to use of EN (60). In the original Leuven surgical ICU study
from Leuven, subjects received on an average 1,100 kcal/day. The
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majority of energy delivery was via PN started on the first day
of ICU admission (768 kcal/day in the form of 20% intravenous
dextrose solution from the first day onwards) (1). Similarly, in
the subsequent Leuvenmedical ICU study, the majority of energy
delivery was from PN started on the first day of ICU admission
(ranging between 750 and 800 kcal/day) (3). In contrast, the
NICE-SUGAR study, in accordance with customary practice in
Australia, New Zealand and Canada at the time of the study,
almost exclusively relied on the use of EN for nutrition support
during ICU admission to provide on average 880 kcal/day with
goal energy needs reached by 7–10 days (7). In the NICE-SUGAR
study, PN was used to supplement EN delivery and energy from
PN never exceeded 300 kcal/day.

Data From Pediatric Studies
In the pediatric Leuven study (similar to the adult Leuven
studies), PN was started at ICU admission (in the form of
20% intravenous dextrose solutions) while attempts were made
to start EN as soon as feasible based on the underlying
condition (10). On average, infants received 42 kcal/kg/day and
children received 28 kcal/kg/day during their ICU admission
with substantial energy delivery via exclusive PN in over 40% of
the study population (and PN with partial EN in the remaining
60%). To a lesser extent than the pediatric Leuven study, the
SPECS trial also relied predominantly on PN for energy delivery
in over 50% of the study population (11). During the period of
study enrollment in the SPECS trial, subjects in the TGC group
received a median of 41% of their total caloric intake via EN,
while 38% of subjects in the control group received a median of
38% of their total caloric intake via EN. In contrast, the CHiP
and HALF-PINT trials largely relied on EN for energy delivery
based on current clinical practice guidelines at the time of the
studies (12, 13). In the CHiP trial, by Day 7 of enrollment, the
median enteral caloric intake was approximately 20 kcal/kg/day
and the median parenteral caloric intake was approximately 5
kcal/kg/day in enrolled subjects (12). In the HALF-PINT trial,
by Day 7 of enrollment, median EN delivery was approximately
25 kcal/kg/day which accounted for approximately 60% of total
energy delivered in enrolled subjects (13). Table 2 summarizes
key differences in nutrition support, measures of glycemia, and
primary outcomes with effect size across these pediatric studies.

Interaction of TGC With IIT and Mode of
Nutrition Support (EN vs. PN)
The mode of nutrition support (EN or PN) is a key variable
that has important implications for the efficacy and safety of
TGC with IIT in both adults and children. In the single center
Leuven adult studies, the aggressive early initiation of PN to
rapidly reach goal energy needs by 48–72 h following admission
may have aggravated the problem of stress hyperglycemia and
risk of worse outcomes in a population of critically ill adults with
high prevalence of pre-existing diabetes mellitus. Consequently,
the strategy of TGC with IIT may have proven beneficial in
this setting (61). In contrast, use of TGC with IIT in the
relatively nutrition restricted setting of NICE-SUGAR may have
been harmful by evoking a global substrate deficit via insulin-
induced suppression of proteolysis, lipolysis, glycogenolysis, and

gluconeogenesis. By suppressing these important compensatory
mechanisms which play a vital role in states of energy deprivation
and starvation, TGC with IIT likely resulted in worse outcomes
in this large study that relied predominantly on EN (61).

A published meta-analysis by Marik et al. in 2010 took
into account mode of nutrition support (EN vs. PN) using
meta-regression techniques to control for proportion of
intravenously delivered calories from PN (62). Thismeta-analysis
demonstrated reduced mortality from TGC with IIT when PN
was utilized as the predominant mode of nutrition support. After
excluding the two Leuven trials that predominantly employed
PN as the mode of nutrition support, the authors observed
that mortality was lower with control patients receiving usual
care with EN suggesting that TGC with IIT may be harmful in
patients receiving exclusive or predominant EN (62).

In published studies of TGC with IIT in critically ill children
till date, less granular information is available regarding timing,
intensity, duration and mode of nutrition support. This limits
our ability to provide detailed analyses of interaction of mode
of nutrition support and TGC with IIT on clinical outcomes
similar to adult studies. Similar to the adult studies, the pediatric
studies also vary in nutrition support practice which makes
direct comparisons challenging. The pediatric Leuven study
demonstrated benefits of TGC with IIT coupled with a nutrition
support strategy that relied mainly on early PN (10). In contrast,
the HALF-PINT study predominantly emphasized EN delivery
and observed trends to better outcomes with usual care targeting
BG of 150–180 mg/dL (8.3–10 mmol/L) (13). The schematic
comparison of differences in mode of nutrition support (EN vs.
PN) and potential impact on TGCwith IIT to influence outcomes
is depicted in Figure 1 using the example of the pediatric Leuven
and HALF-PINT studies.

The important question for practitioners is whether any one
mode of nutrition support—EN or PN—is superior to another to
improve outcomes in critically ill adults and children. In critically
ill adults, early EN initiation compared to early PN initiation
did not reduce mortality or reduce secondary infections, but was
associated with more digestive complications and hypoglycemia
(63, 64). Based on current evidence, use of PN is feasible and
appears to result in rapid increase in energy and protein delivery
with the ability to reach target goals early on during critical illness
(65). In contrast, use of EN is often delayed due to illness severity
and frequently does not reach goal energy and protein needs due
to recurrent interruptions to enteral feeding (66). Early initiation
of EN (compared to delayed initiation of EN) appears to be
associated with improved clinical outcomes in critically ill adults
and children (67, 68). However, it was not clear until recently if
early initiation of PN compared to delayed initiation of PN was
beneficial or harmful in critically ill subjects. This vital question
of timing of PN initiation (early vs. delayed) was addressed in
critically ill adults and children by the Early Parenteral Nutrition
Completing Enteral Nutrition in Adult Critically Ill Patients
(EPaNIC) study and the Early vs. Late Parenteral Nutrition in
the Pediatric Intensive Care Unit (PEPaNIC) study, respectively
(69, 70). In both the adult and pediatric studies, delayed PN
initiation compared to early PN initiation was associated with
better clinical outcomes in the form of fewer acquired infections
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TABLE 2 | Studies of tight glycemic control with intensive insulin therapy in critically ill children—nutrition support and glycemia.

Study Nutrition

protocol for

study

Details of nutrition

support

Median daily caloric

intake (kcal/kg/day)

Average daily insulin

dose in TGC range

vs. control range

(IU/kg/day)

Time weighted

average BG in TGC

range vs. control

range (mg/dL)

Hypoglycemia in

TGC range vs.

control range

(BG < 40 mg/dL), %

Vlasselaers et

al. (10)

Yes Early PN (20% dextrose

with 10% amino acids);

exclusive PN in >40%

of subjects and PN

with partial EN in

∼60% of subjects

Infants: 42

Children: 28

1.3 vs. 0.0 113 vs. 158 25 vs. 1

Agus et al.

(11)

No; local site

practice

PN in >50% of

subjects; partial EN in

56% in TGC group and

59% in control group

50 0.2 vs. 0.0 112 vs. 121 3 vs. 1

Macrae et al.

(12)

No, local site

practice

EN and PN per local

site practice

25 0.18 vs. 0.07 107 vs. 114 7.3 vs. 1.5

Agus et al.

(13)

Yes Early EN; EN in 53% of

TGC group and 55% in

control group

40 0.74 vs. 0.01 109 vs. 123 5.2 vs. 2

TGC, tight glycemic control; BG, blood glucose; PN, parenteral nutrition; EN, enteral nutrition.

FIGURE 1 | Schematic comparison of interaction of TGC with IIT and mode of nutrition support (EN vs. PN) with impact on outcomes in critically ill children. Pediatric

Leuven study: Vlasselaers et al. (10); HALF-PINT study: Agus et al. (13). TGC with IIT, Tight glucose control with intensive insulin therapy; EN, enteral nutrition; PN,

parenteral nutrition.

and lower ICU dependency. There were no mortality differences
between the two groups in either study. In both studies, TGC
with IIT was employed to maintain normoglycemia. Notably,
the delayed PN initiation group experienced more hypoglycemia
episodes in both studies, likely due to greater proportion of
nutrition support in the form of EN provided to this group
during study enrollment coupled with a strategy of TGC with
IIT. This finding of more frequent hypoglycemia episodes in the
delayed PN initiation group is similar to other studies of TGC
with IIT in critically ill patients that have relied predominantly on
EN for nutrition support (6, 12, 13). Interestingly, even though
the delayed PN initiation group experienced fewer infections,
there was more inflammation (as measured by C-reactive protein
levels) in this group compared to the early PN initiation group

in both studies (69, 70). This raises the intriguing possibility
that a strategy that relies predominantly on EN might favor an
uncoupling of the inflammatory state from processes involved
in autophagy and maintenance of the gut function to improve
clinical outcomes (71–73).

CONCLUSION

In summary, studies of TGC with IIT have demonstrated
varying results due to numerous methodological and target
population differences, but an important factor that may often go
underappreciated is the mode of nutrition support in the form
of either EN or PN, or a combination of the two. Specifically,
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when PN is the favored mode of nutrition support, TGC with
IIT may be associated with improved outcomes compared to
usual care, as usual care in this setting of early PN may be
associated with more harm from uncontrolled hyperglycemia.
In contrast, when EN (or predominantly EN) is the favored
mode of nutrition support, TGC with IIT may be associated
with equivocal or worse outcomes compared to usual care, as
usual care in this setting of early EN may be more beneficial
with maintenance of gut function and processes involved in
autophagy. While pediatric data surrounding the interaction
of mode of nutrition support and TGC with IIT is limited,
the practitioner should consider the potential importance of
mode of nutrition support in impacting key clinical outcomes,
if they should choose to employ a strategy of TGC with IIT

to manage critically ill children. Future studies of TGC with
IIT should use targeted indirect calorimetry for more accurate
estimation of energy needs, and ensure targeted protein delivery
to meet minimum threshold goals. Such studies should also
incorporate better decisionmaking support for nutrition delivery
and glucose control in the form of protocol-driven algorithms
and continuous glucose monitoring technologies to ensure
consistency in key variables that affect outcomes in this critically
ill population.
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