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The risk of oxidative stress is high in preterm newborns. Room air exposure of an

organism primed to develop in a hypoxic environment, lacking antioxidant defenses, and

subjected to hyperoxia, hypoxia, and ischemia challenges the newborn with oxidative

stress production. Free radicals can be generated by a multitude of other mechanisms,

such as glutamate excitotoxicity, excess free iron, inflammation, and immune reactions.

Free radical-induced damage caused by oxidative stress appears to be the major

candidate for the pathogenesis of most of the complications of prematurity, brain being

especially at risk, with short to long-term consequences. We review the role of free

radical oxidative damage to the newborn brain and propose a mechanism of oxidative

injury, taking into consideration the particular maturation-dependent vulnerability of the

oligodendrocyte precursors. Prompted by our observation of an increase in plasma

Adenosine concentrations significantly associated with brain white matter lesions in some

premature infants, we discuss a possible bioenergetics hypothesis, correlated to the

oxidative challenge of the premature infant. We aim at explaining both the oxidative

stress generation and the mechanism promoting the myelination disturbances. Being

white matter abnormalities among the most common lesions of prematurity, the use

of Adenosine as a biomarker of brain damage appears promising in order to design

neuroprotective strategies.
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INTRODUCTION

Oxidative stress is the consequence of an imbalance in the ratio among pro-oxidants and
anti-oxidants in the cell (1). Free radicals, i.e., molecules bearing unpaired electrons, non-radical
Reactive Oxygen Species (ROS) and Reactive Nitrogen Species (RNS) are collectively called
oxidants, as they can easily lead to radical chain reactions (Table 1). ROS/RNS are generated
from metabolic redox reactions (2) mostly by the respiratory chain (3), but also by microsomal
cytochrome P450 system and by the immune response (4). Antioxidants, either endogenously
produced or exogenously assumed, include enzymes, vitamins, minerals, and other substances
(summarized in Table 1), which act neutralizing the excess of free radicals and protecting the cells
against the harmful effects of oxidants (1).

https://www.frontiersin.org/journals/pediatrics
https://www.frontiersin.org/journals/pediatrics#editorial-board
https://www.frontiersin.org/journals/pediatrics#editorial-board
https://www.frontiersin.org/journals/pediatrics#editorial-board
https://www.frontiersin.org/journals/pediatrics#editorial-board
https://doi.org/10.3389/fped.2018.00369
http://crossmark.crossref.org/dialog/?doi=10.3389/fped.2018.00369&domain=pdf&date_stamp=2018-11-29
https://www.frontiersin.org/journals/pediatrics
https://www.frontiersin.org
https://www.frontiersin.org/journals/pediatrics#articles
https://creativecommons.org/licenses/by/4.0/
mailto:LucaRamenghi@gaslini.org
https://doi.org/10.3389/fped.2018.00369
https://www.frontiersin.org/articles/10.3389/fped.2018.00369/full
http://loop.frontiersin.org/people/595928/overview
http://loop.frontiersin.org/people/607245/overview
http://loop.frontiersin.org/people/610079/overview
http://loop.frontiersin.org/people/622885/overview
http://loop.frontiersin.org/people/646433/overview
http://loop.frontiersin.org/people/290978/overview
http://loop.frontiersin.org/people/613260/overview


Panfoli et al. Oxidative Stress and Brain Damage in Preterms

TABLE 1 | Main oxidants and anti-oxidants.

Oxidants Anti-oxidants

Free radicals

Hydroxyl radical, superoxide peroxyl,

lipid peroxyl

Enzymes

Superoxide dismutase, catalase,

glutathione peroxidase, glutathione

reductase

Reactive Oxygen Species (ROS)

Peroxide, singlet oxygen,

hypochlorous acid and lipid peroxides

Vitamins

A, C, E

Reactive Nitrogen Species (RNS)

Hydrogen nitric oxide, nitrogen

dioxide, nitrous acid, peroxynitrite,

dinitrogen trioxide

Minerals

Se, Mn, Cu and Zn

Other substances

glutathione, melatonin, thiols,

coenzyme Q, acetylcysteine,

carotenoids and flavonoids

Table summarizes the most common oxidants and the main endogenous and exogenous

antioxidants.

When the production of ROS exceeds the antioxidant
defenses, or antioxidant levels are low, as is the case in the
preterm newborn, oxidative stress usually occurs to the detriment
of all of the cellularmacromolecules (5). In adults, oxidative stress
is recognized as a major contributing factor to the pathogenesis
of a number of cardiovascular and neurological diseases,
malignancies, diabetes, aging, inflammation and others (2, 6),
Despite these deleterious effects, low or moderate concentrations
of free radicals are necessary for many fundamental cellular
functions, including host defenses (7).

OXIDATIVE STRESS AS PATHOGENIC
FACTOR IN THE PRETERM INFANT

The oxidant/antioxidant status balance is a process that
begins before birth (8), and premature infants are particularly
susceptible to oxidative stress (9, 10). Most of the complications
of prematurity, such as bronchopulmonary dysplasia (BPD),
retinopathy of prematurity (ROP), necrotizing enterocolitis
(NEC), intraventricular hemorrhage (IVH), periventricular
leukomalacia (PVL), and punctate white matter lesions (PWML),
appear related to oxidative stress (11, 12), mostly occurring due
to a mismatch among the free radical production and the anti-
oxidative capacity of the premature neonate (10). Accordingly,
Saugstad hypothesized that all of these complications may belong
to one entity, “the oxygen radical disease of neonatology” (13).
This topic was recently reviewed by Buonocore et al. (14).

Birth exerts the challenge of a hyperoxic insult due to the
sudden exposure to a normoxic environment (100mmHg oxygen
tension, PO2) of an organism primed to develop in a hypoxic
(20–25 mmHg, PO2) environment as the womb is. For this
reason, current indications on neonatal resuscitation highlight
the importance of starting respiratory support using the lowest
oxygen concentration to reduce the postnatal oxidative stress
(15). A randomized trial performed on neonates of 24–34 weeks
gestational age who received resuscitation demonstrated that the

use of room air, instead of 100% O2 as the initial resuscitation gas
resulted lower oxidative stress, decreasing respiratorymorbidities
(16).

Together with hyperoxia, other main risk factors for oxidative
stress exposure in preterm infants are hypoxia, ischemia,
infections, and immune response activation, mitochondrial
dysfunction, Fenton reaction due to both free iron and
endothelial cell damage (17). Hypoxia has been demonstrated
to be a risk factor for oxidative stress in preterm newborns.
In a study conducted on 34 hypoxic and 15 healthy preterm
newborns, plasma concentration of hypoxanthine, total
hydroperoxide (TH), and AOPP were assessed both in umbilical
cord blood immediately after birth and in peripheral blood on
postnatal day 7 (18). Levels of these markers were significantly
higher in hypoxic newborn at birth and at day 7 than in the
healthy controls. Interestingly, a significant increase in TH and
AOPP levels in non-hypoxic preterm newborns at day 7 was
also observed, indicating that oxidative stress also occurs in
non-hypoxic babies (18).

Moreover, antioxidant defense mechanisms are incompletely
developed or deficient in preterm newborns (19). Preterm
infants show reduced antioxidant defense mechanisms,
including decreased levels of vitamin E, β-carotene, melatonin,
ceruloplasmin, transferrin, and erythrocyte superoxide
dismutase (SOD) (10). In a study on 100 preterm and 100
full-term neonates, plasma levels of vitamin A, vitamin E, and
catalase were found significantly lower while plasma level of
MDA, a marker of lipid peroxidation, was significantly higher
in the preterm than in the full-term newborns, especially in
those ones who developed NEC or BPD (20). A prospective
study evaluated the concentration of vitamin D, glutathione
peroxidase, SOD, MDA, and AOPP on 31 term neonates with
hypoxic-ischemic encephalopathy (HIE) in comparison to 30
healthy term neonates (21). It was found that Vitamin D level,
GP, and SOD were statistically lower on the first day of life in
the study group compared to controls, while MDA levels were
significantly higher in the study group (21). Although to date
it has been difficult to design effective antioxidant therapies
(19), the possibility can be envisaged to use particular kinds
of antioxidants, such as melatonin, and effective free radical
scavenger (22–24) and to design prophylactic antioxidant
therapies also before birth.

OXIDATIVE STRESS-RELATED BRAIN
INJURY

Advances in neonatal care allow preterm neonates to survive
(25), but especially the very-low-birth-weight infants (VLBW)
are at high risk to develop brain gray (GM) and white
matter (WM) maturational disturbances, which may lead to
neurodevelopmental disabilities (26, 27).

A study conducted on 119 consecutive premature infants
admitted to neonatal intensive care units demonstrated a
significant reduction in both cerebral cortical and deep nuclear
GM volume and a subsequent increase in cerebrospinal fluid
assessed with brain magnetic resonance at term equivalent age
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(TEA), in preterm infants compared with term infants (28).
Along with gestational age at birth, the major predictor of altered
cerebral volumes was the presence of cerebral WM injury, that
most significantly correlated to neurodevelopmental outcome
(28).

Cerebral WM injury is a full-spectrum of lesions named
periventricular leukomalacia (PVL), that occurs in two
overlapping forms: cystic PVL, in which the periventricular
focal necrosis is macroscopic and evolves to multiple cysts; and
non-cystic PVL, in which the focal necrosis are microscopic and
evolve principally to glial scars (29). Evidence of PVL is found in
25 to 75% of VLBW infants with neuropathological examination
(10). The incidence of cystic PVL declined significantly starting
from late nineties of last century, now occurring in a minority
of infants with abnormal neurodevelopmental outcome (30).
Contemporary cohorts of preterm survivors commonly display
milder forms of injury, primarily diffuse white matter injury
(DWMI) and punctate white matter lesions (PWML), that even
though do not involve pronounced neuronal loss may be also
associated with a clear WM damage and neurodevelopmental
disabilities (29, 31, 32). DWMI and PWML are currently the
most common causes of brain injury in preterm infants (33, 34).
Signs of DMWI occurs in about 50% of very low birth weight
infants (35), while more than 10% of premature infants <32
weeks develop lesions visible at MRI performed at term corrected
age. Oxidative stress is among the main causes of PWML (36–
41). In fact, the optimal concentration of oxygen for resuscitation
of very preterm infants is currently strictly monitored (15). Risk
factors for the development of PWML and for oxidative stress
production are similar, including hyperoxia, hypoxia, ischemia-
reperfusion, hemorrhage, and maternal/fetal inflammation (33).
Inflammatory microglial response in cerebral white matter can
generate free radicals (42). A number of epidemiological studies
have shown an association between infections and cerebral
palsy (43) and intrauterine T cell activation and risk of cerebral
lesions (44). VLBW infants with neonatal sepsis were shown
to have increased rates of cerebral palsy and WM lesions, by a
large cohort study (45). Another mismatch among demand and
supply in the premature babies would regard insulin-like growth
factor 1 (IGF-1), a mitogenic hormone involved in growth
and metabolism. Increased chemical energy demand but low
IGF-1 concentrations characterize preterm birth, which appears
associated with complications such as especially ROP (46, 47).

OLIGODENDROGLIAL PRECURSOR
INJURY AS THE MAIN CAUSE OF BRAIN
DAMAGE

It has been reported that brain injury mostly affects WM, being
oligodendroglial death the most important cause of PVL and
PWML (35, 48, 49). Studies on both human brain and animal
models assessed that the developing oligodendrocyte (OL) is the
principal cellular target (49, 50). All of the cited risk factors can
cause toxicity to the oligodendroglial precursors. For example,
proinflammatory cytokines produced in response to hypoxia and
infection can become toxic to the oligodendroglial precursor cells

(pre-OL) (43). Glutamate excitotoxicity and free radical injury
have recently been implicated in pre-OL death (39). Free iron,
in turn causing oxidative stress, contributes to the onset of the
OL dysmaturation (18).

In addition, oxidative stress reduces the expression of
differentiation-promoting genes, such as Olig1, Olig2, and Sox10
in pre-OL, and increases the expression of differentiation-
inhibiting genes (ID2 and ID4), resulting in the interruption of
OL maturation (51).

Although there is evidence of an imbalance between
antioxidant and oxidants, the ultimate cause of oxidative stress
and molecular bases for the maturation-dependent vulnerability
of the pre-OL to injury in a window of time ranging from 30 to
34 weeks of gestational age is yet unknown. We have recently
proposed a bioenergetics hypothesis, correlating the oxidative
stress generation to the significant increase of plasma Adenosine
(Ado) concentration observed in some VLBW infants (52). Ado
production may be triggered by the oxygen challenge and the
untimely sensory stimulation consequent to premature birth.
In particular, the pain sensory pathways would be primarily
triggered by the invasive procedures routinely performed in
intensive care units. A prospective randomized controlled
trial evaluated the reduction of procedural pain 150 preterm
newborns (gestational age 27–32 weeks) both pharmacological
and non-pharmacological treatments to reduce the procedural
pain in preterm newborn (41). Moreover, our recent unpublished
data demonstrate that Ado concentration at day 15 was
significantly associated with brain WM lesions evidenced using
MRI performed at TEA. The underlying mechanism leading to
myelination disturbances of the premyelinating preOLs, would
be the consequence of the signal conveyed by Ado, which
is a potent promoter of the preOLs differentiation (48, 53,
54).

Free radical production consequent to hypoxia and
ischemia/reperfusion, together with the low caloric intake
after birth in the premature babies may cause a slowing down

TABLE 2 | Main antioxidant Treatments.

Treatment Mechanism of action References

Caffeine Free radical scavenger and adenosine

receptor antagonist; Anti-inflammatory and

anti-apoptotic.

Endesfelder et al. (59)

Erythropoietin Anti-apoptotic, anti-oxidative and

anti-inflammatory with angiogenic and

neurogenic effects.

Rangarajan et al. (60),

Maiese et al. (61)

Melatonin Direct scavenger of oxygen free radicals,

particularly the hydroxyl radical; Indirect

antioxidant via stimulation of antioxidant

enzymes.

Reiter et al. (62), Gitto

E et al. (63), Miller

et al. (64), Vladan

et al. (24)

Allopurinol Decrease free radical formation; Xanthine

oxidase inhibitor; Directly scavenging free

radicals.

Kaandorp et al. (65),

Van Bel F et al. (66)

Quercetin Increases survival against oxidative insults

in neuronal culture.

Dajas et al. (67)

Table reports the most common strategies contrasting oxidative stress employed to

protect preterm brain from white matter injuries.
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of the oxidative phosphorylation, diminishing high-energy
compounds (18, 55).

FUTURE DIRECTIONS

Many authors accept the hypothesis that free radicals persists to
the damage of the premature brain. Consequently, to prevent
long-term sequelae of oxidative stress, it is necessary to early
diagnosis the presence of an oxidative stress damage by a
validate panel of biomarkers, which could also represent the first
step in delineating potential therapeutic interventions. To date,
different biomarkers have been proposed to measure oxidative
stress in the newborn. Plasma prostanoids were validated as
biomarkers of oxidative stress injury to neurons (56). Visfatin,
an adipocytokine involved in oxidative stress was also proposed
(57) as a new marker of oxidative stress in preterm newborns.
Ado blood concentration at day 15 after birth (52) may represent
a biomarker to foresee premature brain injury, but further studies
are needed to assess its diagnostic value in preterm infants (58).

Recently, novel treatment strategies have been proposed to
counteract damages induced by oxidative stress in preterm
infants (see Table 2), including the Ado antagonist caffeine (68).
Considering the cited low postnatal IGF-1 concentrations in
preterm infants, associated to ROP and other complications, a
supplementation with recombinant human IGF-1 and its binding
protein rhIGFBP-3 has been suggested (47). The preterm hypoxic
status has been addressed by administration of erythropoiesis-
stimulating agents (ESAs) in particular erythropoietin (EPO),

that was shown to display low plasma levels. ESAs reduced
the need for blood cell transfusions and decreased rates of
IVH, and NEC (69). However, although promising, early EPO
administration was not recommended by a Cochrane Systematic
Review, due to its limited benefits (69) and its beneficial effect
appears to require further studies.

In conclusion, despite gaps still present in our knowledge of
the mechanism of oxidative stress production in the pathogenesis
of brain damage in the premature newborn, this organ remains
at major risk especially for the prolonged vulnerability of
white matter at certain gestational ages during which preterm
newborns undergo intensive care treatment. There is a need for
new and accurate neonatal biomarkers of brain injury that can
foresee those babies at higher risk of developing brain injury
thus needing neonatal neuroprotection, by new therapeutic
interventions centered on reversal of the processes that promote
dysmaturation, one of the more important being oxidative stress.
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