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With the accessibility of next-generation sequencing modalities, an increasing

number of primary immunodeficiency disorders (PIDDs) such as common variable

immunodeficiency (CVID) have gained improved understanding of molecular

pathogenesis and disease phenotype with the identification of a genetic etiology. We

report a patient with early-onset CVID due to an autosomal dominant loss-of-function

mutation in NFKB2 who developed a severe herpes vegetans cutaneous infection as

well as concurrent herpes simplex virus viremia. The case highlights features of CVID,

unique aspects of NF-κB2 deficiency including susceptibility to herpesvirus infections,

the detection of neutralizing anticytokine antibodies, and the complexity of medical

management of patients with a PIDD that can be aided by a known genetic diagnosis.
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INTRODUCTION AND BACKGROUND

Common variable immunodeficiency (CVID; [MIM 607594]) is a primary immunodeficiency
disorder characterized by hypogammaglobulinemia as well as poor humoral response to antigens
or vaccines (1, 2). CVID is clinically and genetically heterogeneous, with onset of disease during
childhood or adulthood. Patients typically present with a history of recurrent sinopulmonary
infections, though some may have a predominance of autoimmune or immune dysregulatory
features. Treatment universally includes gammaglobulin replacement. Less than 20% of CVID
patients are identified to have familial cases or gene defects resulting in autosomal recessive or
autosomal dominant forms of the disease (3, 4). In these forms of CVID, the genetic etiology
provides a window into disease pathogenesis and potential disease complications that can develop
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over time (5). We present a case of a teenage patient
with childhood-onset, autosomal dominant CVID caused by
a heterozygous loss-of-function mutation in the gene NFKB2
[NF-κB2; MIM 615577] who developed an unusually severe
cutaneous herpes vegetans infection and herpes simplex virus
(HSV) viremia requiring aggressive disease management.

CASE

An 18-year-old female was diagnosed with CVID at age six.
As previously described in Chen et al. she, her mother, and
younger brother were found to have a heterozygous pathogenic
variant in NFKB2 that results in an autosomal dominant form of
CVID (6). She developed autoimmune manifestations, including
acquired central adrenal insufficiency, alopecia universalis,
vitiligo, and nail dystrophy. Her infectious history was significant
for both bacterial and viral respiratory infections, recurrent
herpes simplex of the lips and surrounding perioral skin,
and chronic candidal onychomycosis. Adrenal insufficiency
was treated with maintenance doses of hydrocortisone and
stress dose adjustments during times of illness. Early-onset
hypogammaglobulinemia required lifelong gammaglobulin
replacement to prevent recurrent sinopulmonary infections.
Recurrent herpes simplex infection was controlled with chronic
suppressive oral valacyclovir therapy. A Luminex-based assay
of the patient’s plasma [1:100 dilution, as described by Ding
et al. (7)] identified the presence of autoantibodies against
interferon-α (IFN-α) and interferon-ω (IFN-ω) (Figure 1A).
Next, patient plasma was incubated with control peripheral
blood mononuclear cells and STAT1 phosphorylation was
measured by flow cytometry after incubation in unstimulated
or stimulated conditions as described by Burbelo et al. (8).
The patient’s plasma demonstrated neutralizing anti-IFN-α and
IFN-ω antibodies which inhibited STAT1-phosphorylation in
control cells, whereas control and parental plasma did not lead
to inhibition (Figure 1B). The affected sibling’s plasma also
demonstrated neutralizing anti-IFN-α antibodies, and partial
blockade of IFN-ω signaling.

At 16 years of age, the patient required intensive
care hospitalization for decompensated septic shock of
unknown etiology requiring vasopressor support. Prior to
the hospitalization she had become non-compliant with
medications, including gammaglobulin replacement. She
developed acute renal injury, electrolyte disturbances, and
adrenal crisis secondary to sepsis of unknown etiology which
required stress dosing of steroids and electrolyte replacement.
During this time, hypomagnesemia resulted in torsades de
pointes and prolonged QT syndrome. Her persistent renal injury
required chronic daily oral electrolyte replacement to prevent
recurrence of arrhythmias.

Two years later, the patient presented to the emergency
department with a month-long history of progressive, painful,
vegetative facial lesions. The lesions initially developed periorally,
similar to prior herpes simplex outbreaks. Despite increasing
valacyclovir to treatment dosing, the lesions became purulent
and continued to spread, involving the nose and right cheek. She

was treated for presumed bacterial cellulitis with oral cefdinir.
When a bacterial culture reportedly grew group B streptococcus,
cefdinir was transitioned to oral clindamycin. Valacyclovir was
discontinued as the lesions did not improve while on the
medication. She reported tactile fevers and chills with continued
progression of the vegetative lesions despite antibiotic treatment.

Upon hospitalization, laboratory evaluation identified
leukocytosis (neutrophils 7,000 cells/µl; lymphocytes 7,900
cells/µl) and elevated C-reactive protein (11.6 mg/dL; normal
range 0–1.5 mg/dL). Natural killer (NK) cell expression
of CD107a was reduced, and NK cell functional assays
demonstrated reduced cytotoxicity (Cincinnati Children’s
Diagnostic Immunology Laboratory). Her cutaneous exam
revealed exophytic, thick, yellow-brown plaques involving the
bilateral nares, right oral commissure, and adjacent medial
cheek. The plaques were exudative and distorted the nasal
architecture (Figure 2). A wound swab from the medial cheek
was positive for HSV by polymerase chain reaction (PCR) assay.
Other bacterial or viral infections often seen in immunodeficient
patients, including varicella zoster and cytomegalovirus (CMV),
were ruled out. The patient’s systemic symptoms raised concern
for HSV viremia, and a HSV peripheral blood PCR was positive.
She did not have any neurological symptoms or meningeal
signs; thus, HSV meningitis or encephalitis were not suspected.
HSV type-1 was isolated from tissue culture of affected skin
on the medial cheek; pathology demonstrated spongiosis and
mixed granulomatous dermal infiltration with fat necrosis.
Intravenous foscarnet therapy resulted in rapid improvement
of her cutaneous eruption, including the associated pain, and
systemic symptoms (Figure 3). Slower, continued resolution
occurred over several weeks (Figure 4). The patient had
recurrence of HSV vegetans and HSV viremia 3 months later.
On this second occasion, early identification of HSV as the
source of skin infection led to expedited hospitalization and early
initiation of antiviral therapy. She had a significantly shorter
hospital course with transition to oral valacyclovir at discharge
when HSV culture demonstrated susceptibility to acyclovir.

DISCUSSION

Herpes vegetans is a rare, atypical cutaneous herpes simplex
infection most commonly described in patients with acquired
immunodeficiency due to HIV infection (9–11). Herpes vegetans
has also been identified in other immunodeficient states,
including CVID, congenital T-cell immunodeficiency, Good
syndrome, malignancy, and those receiving immunosuppressive
medications (12–15). Peripheral blood plasmacytoid dendritic
cells from a patient with HIV-HSV coinfection had reduced
IFN-α production, likely contributing to his severe, chronic
HSV skin disease (16). Herpes vegetans can include exophytic,
ulcerative, exudative, or verrucous lesions, and plaques. Tissue
biopsy, direct immunofluorescence, and culture help confirm the
diagnosis, guide the choice of antiviral therapy, and rule out
other infectious etiologies or co-infections within the lesions.
While acyclovir or valacyclovir are first-line therapies, acyclovir-
resistant strains are often cultured from the lesions (11, 12)
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FIGURE 1 | Patient, familial CVID-affected subjects, and control subject plasmas were screened for the presence of neutralizing anticytokine autoantibodies. (A)

Anticytokine autoantibodies were quantified as a function of the fluorescence intensity using a Luminex-based assay. (B) IFN-α or IFN-ω induced phosphorylation of

STAT1. Normal control peripheral blood mononuclear cells were incubated with subject or control plasma, and STAT1 phosphorylation was measured in unstimulated

or stimulated conditions via flow cytometry.

FIGURE 2 | Herpes vegetans facial lesions at initial presentation.

for which alternative antivirals including foscarnet, topical
imiquimod, or intralesional cidofovir, should be considered
(16–18). In our patient case, intravenous foscarnet treatment

FIGURE 3 | Herpes vegetans facial lesions after 10 days of intravenous

foscarnet treatment.

was initiated due to concerns for acyclovir resistance in the
setting of apparent lack of response to oral valacyclovir,
severity of infection, rapid progression of disease, and presence
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FIGURE 4 | Facial lesions 2 months after presentation.

of HSV viremia. Foscarnet treatment should include careful
monitoring for renal toxicity and electrolyte abnormalities
including hypomagnesemia, hypocalcemia, and hypokalemia.
Monitoring for foscarnet toxicity was particularly important in
this case, given the patient’s history of prior renal injury, long QT
syndrome, and torsades des pointes.

In the setting of a primary immunodeficiency such as
CVID, skin infections that are non-responsive to standard
antibacterial therapies should raise concern for an atypical or
opportunistic infection. In this particular case, herpes vegetans
skin infection, herpes simplex virus (HSV) infection with
antiviral resistance, and/or a superimposed fungal, bacterial,
or atypical mycobacterial infection were all considered in
the differential diagnosis. In the patient’s family, all three
CVID-affected family members had a history of recurrent
HSV skin lesions. Not surprisingly, loss-of-function NFKB2
mutations, leading to defective NF-κB2 protein function in
the non-canonical NF-κB pathway, have been associated with
susceptibility to viral infections, including HSV, varicella, herpes
zoster, and molluscum contagiosum (6, 19–21). A NFKB2 gain-
of-function mutation resulting in a combined immunodeficiency
phenotype has also been reported to have increased susceptibility
to viral infections. One such patient developed CMV enteritis,
severe Epstein-Barr virus (EBV) infection, warts, and herpes
labialis (22). Thus, knowledge of the molecular or genetic
pathogenesis of CVID or other PIDDs can be extremely
important in specific disease screening and treatment decisions.
In addition to infections typically seen in all patients with
CVID, NF-κB2-deficient CVID patients are susceptible to
viral infections and can develop adrenal insufficiency. The
unique association of ACTH deficient-adrenal insufficiency in
this genetic primary immunodeficiency disorder adds to the
complexity of care in acute and chronic settings; stress dosing
of steroids is critical in preventing life-threatening episodes of
hypoglycemia and other complications associated with adrenal
crisis (6, 20, 23).

At least two mechanisms may contribute to the increased
susceptibility to viral infections in patients with NFKB2 defects:

(1) Defective NK cell cytotoxicity has been described in a patient
with CVID-like disease due toNFKB2mutation (24); NK cells are
critical in the cytotoxicity of virus-infected cells including herpes
viruses (25), and (2) neutralizing anticytokine autoantibodies
to interleukins and interferons have also been reported in an
unrelated case of a CVID patient with a loss-function mutation
in NFKB2 who had severe recurrent bacterial and viral infections
that improved after treatment with the anti-CD20 B-cell targeting
monoclonal antibody, rituximab. Post-treatment, the patient had
a significant reduction of autoantibody titers and no recurrence
of invasive infections (21). In the current case report involving
severe herpes vegetans and HSV viremia, abnormal NK cell
function as well as neutralizing anti-IFN-ω and anti-IFN-α
antibodies were identified, likely contributing to the recurrent
and severe nature of the patient’s HSV infection, and rituximab
is being considered as a treatment option.

CVID is one of the most commonly treated primary
immunodeficiencies, with an incidence of ∼1:10,000 to 1:50,000
individuals (26–28). Criteria for diagnosis of CVID includes: (1)
Significantly reduced immunoglobulin G serum levels as well as
low levels of immunoglobulin A and/or immunoglobulin M, (2)
poor or absent responses to antigens including immunizations,
and (3) absence of any other well-defined primary or secondary
hypogammaglobulinemic state (2). IgG serum levels vary
significantly with age, and thus, care should be taken to use
age-adjusted normal ranges in the evaluation of CVID. As
some children may have transient hypogammaglobulinemia of
infancy, a diagnosis of CVID is often not made until the
child is at least 2–4 years of age. Though CVID is more
often diagnosed in adulthood, one European cohort of more
than 2,000 CVID patients found that onset of disease prior
to 10 years of age occurred in 34% of the individuals. Thus,
a diagnosis of CVID should be considered in any individual
with recurrent sinopulmonary infections, or a constellation of
recurrent or unusual infections along with autoimmune or
immune dysregulatory disease manifestations.

NF-κB2, encoded by the gene NFKB2, is the principal protein
of the non-canonical NF-κB pathway which has key roles in B-
cell maturation, thymic development, and peripheral lymphoid
organ development (29, 30). Loss-of-function mutations
in NFKB2 result in a highly penetrant form of childhood-
onset hypogammaglobulinemia with recurrent infections,
autoimmune features, and in many cases, endocrinopathy, or
ectodermal features (31). The presence of autoimmunity and
endocrinopathy in NF-κB2 deficiency could be explained by the
importance of NF-κB2 in thymic expression of the AIRE gene,
as demonstrated in murine models (32, 33). AIRE (autoimmune
regulator) protein is required for development of central
tolerance and elimination of self-reactive thymocytes. Reduced
AIRE expression leads to the presence of circulating autoreactive
T-cells, increasing susceptibility to autoimmune disease, and
particularly in the endocrine system (34, 35). Endocrinopathies
seen in NFKB2 defects include ACTH-deficient adrenal
insufficiency, hypothyroidism, and growth hormone deficiency.
Ectodermal defects and autoimmune conditions include alopecia
areata, trachyonychia, and vitiligo. Sinopulmonary infections
are predominant, mucocutaneous candidiasis can occur, and
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as highlighted in this case, NFKB2-deficient patients can have
increased susceptibility to herpesvirus infections. Recognition of
primary immunodeficiency diseases including CVID andNFKB2
defects allows for improved disease screening, targeted therapies,
and the potential for research involving curative treatment.
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