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Central Nervous System tumors are the leading cause of cancer-related death in children,

and medulloblastoma has the highest incidence rate. The current therapies achieve a 5-

year survival rate of 50–80%, but often inflict severe secondary effects demanding the

urgent development of novel, effective, and less toxic therapeutic strategies. Historically

identified on a histopathological basis, medulloblastoma was later classified into four

major subgroups—namely WNT, SHH, Group 3, and Group 4—each characterized by

distinct transcriptional profiles, copy-number aberrations, somatic mutations, and clinical

outcomes. Additional complexity was recently provided by integrating gene- and non-

gene-based data, which indicates that each subclass can be further subdivided into

specific subtypes. These deeper classifications, while getting over the typical tumor

heterogeneity, indicate that different forms of medulloblastoma hold different molecular

drivers that can be successfully exploited for a greater diagnostic accuracy and for

the development of novel, targeted treatments. Long noncoding RNAs are transcripts

that lack coding potential and play relevant roles as regulators of gene expression in

mammalian differentiation and developmental processes. Their cell type- and tissue-

specificity, higher thanmRNAs, make themmore informative about cell- type identity than

protein-coding genes. Remarkably, about 40% of long noncoding RNAs are expressed

in the brain and their aberrant expression has been linked to neuro-oncological disorders.

However, while their involvement in gliomas and neuroblastomas has been extensively

studied, their role in medulloblastoma is still poorly explored. Here, we present an

overview of current knowledge regarding the function played by long noncoding RNAs

in medulloblastoma biology.

Keywords: nervous system, pediatric tumor, medulloblastoma, long noncoding RNAs, oncogenes, tumor

suppressors, diagnostic biomarkers, therapeutic targets

INTRODUCTION

Medulloblastoma (MB), with an estimated 5000–8000 cases/year worldwide (1, 2), is an
aggressive tumor arising in the cerebellum. It mainly affects children and is a major
cause of mortality in pediatric oncology (3). While the previous classification of MB
by the World Health Organization (WHO) was largely based on histological features
(4), the new classification in 2016 exploited molecular parameters to catalog the large
variety of tumors of the Central Nervous System (CNS) (5). Rational molecular-based
classification was supported by the advancement of sequencing technologies allowing extensive
genomic/transcriptomic studies. This classification benefits from the integration between
histological and molecular parameters and led to no longer considering MB as a unique pathology.
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Several subclasses of MB have been unveiled, each displaying
dysregulated genes—the driver genes—altered by single
nucleotide mutations, somatic copy-number aberrations, or by
defects in transcriptional or post-transcriptional gene regulation.

In this review, we highlight the link between MB tumors
and the emerging class of regulatory long noncoding RNAs
(lncRNAs), and their potential as promising cancer biomarkers
and novel therapeutic agents.

Medulloblastoma
Recent genomic and transcriptomic analyses on a large cohort
of primary tumors assigned MBs to four molecularly distinct
subgroups (6, 7). They include the extensively characterized
WNT and SHH subgroups, and the Group 3 (G3) and
Group 4 (G4), whose pathogenesis and signaling pathways are
poorly defined.

WNT
Approximately 10% of all MB patients belong to this subgroup,
characterized by the most favorable prognosis with 95% of
survival (7, 8). WNT tumors, which exhibit classic histology,
are recognizable by a WNT gene expression signature. Nuclear
accumulation of β-catenin is considered a biomarker for
WNT signaling pathway activation. This subgroup often carries
heterozygous TP53mutations, as well as mutations in the DEAD-
box helicase gene DDX3X and in chromatin modifiers genes,
such as SMARCA4 and CREBBP, indicating the implication of
altered epigenome in the development of this disease. Integration
of gene expression and DNA methylation profiles indicated that
WNT subgroup comprises at least two subtypes, WNTα, mainly
enriched for children and characterized by monosomy 6, and
WNTβ, including mainly adults without monosomy 6 (9).

SHH
SHH MBs represent approximately 30% of all MB cases,
characterized by an intermediate prognosis, with survival rates
ranging from 60 to 80% (7). SHH tumors, mainly exhibiting
desmoplastic histology, display an aberrant activation of the
SHH signaling, due to mutations of negative regulators of
SHH pathway, such as PTCH1 and SUFU, and copy number
aberrations of SHH target genes, such as MYCN and GLI2 (7).
TP53 mutations are found in about 30% of childhood SHH
MBs and are associated with extremely poor outcomes. Recent
analyses suggest that SHH subgroup consists of four distinct
subtypes. It includes SHHα, enriched for MYCN and GLI2
amplifications, with the worst prognosis; SHHβ, harboring PTEN
gene deletions and frequently metastatic; SHHγ displaying scarce
copy number aberrations and SHHδ, that is enriched for TERT
gene promoter mutations and has a favorable prognosis (9).

Group 3
G3 is the most aggressive subgroup accounting for about 25%
of all MBs, about half of them being metastatic at diagnosis
(10). These tumors display a MYC signature, being characterized
by amplification of the MYC proto-oncogene and exhibiting
aberrantMYC expression in almost all cases (7). G3 shows intra-
tumoral heterogeneity, including three further subtypes: G3α and

G3β with a more favorable prognosis compared to G3γ, which
frequently harbors increasedMYC copy number (9).

Group 4
G4, the most common subtype, accounts for 35% of all MBs.
These tumors are often metastatic at diagnosis and have
intermediate prognosis. It is the most enigmatic subgroup,
characterized by a neuronal gene expression signature,
resembling that of glutamatergic neurons (7). Common
alterations pertain to inactivating mutations in KDM6A gene,
duplication of SNCAIP gene, and amplification of MYCN
and CDK6 proto-oncogenes. G4 has been re-classified into
G4α, characterized by MYCN and CDK6 amplifications,
G4β, strongly enriched for SNCAIP duplications and putative
PRDM6 overexpression, and G4γ enriched for focal CDK6
amplification (9).

LONG NONCODING RNAS

RNA is considered as the most “rediscovered” biological
macromolecule (11, 12) since, starting from the informational
role assigned to mRNAs in 1961 (13, 14), novel unexpected
functions have been attributed to RNA in the last three
decades. In the 1980s, its capacity to catalyze biochemical
reactions was associated with its ability to fold into complex
tridimensional structures (15). In the early 1990s, regulatory
functions were attributed to two long RNAs lacking protein-
coding capacity, H19 (16, 17), and XIST (18, 19). Since then,
a huge number of noncoding RNAs, both short and long in
size, was discovered in parallel with the finding that more than
half of the transcriptome encodes non-proteinogenic transcripts.
Among them, the lncRNAs number in the tens of thousands and
include also circular RNAs, covalently closed RNA circles derived
from back-splicing of linear transcripts (20). LncRNAs are >200
nucleotides and represent very versatile molecules for their
unique ability to specifically recognize both nucleic acids and
protein partners via base-pairing and modular tridimensional
structures, respectively. They are flexibly involved in important
biological processes, such as development, cell differentiation
and growth, thanks to their main functions of gene expression
regulators and the genome structure architects.

Mechanisms of Action
LncRNAs may be engaged in fine-scale modulation of gene
expression as well as in large-scale control of developmental
programs. They may act through a variety of mechanisms,
depending on their cellular localization. Some of them are
exclusively localized in the nucleus, others in the cytoplasm,
others change their localization during development or
differentiation, and still others show both localizations.
In the latter case, a single lncRNA might have multiple
molecular functions.

Nuclear lncRNAs
Nuclear lncRNAs (Figure 1A) can be found in the nucleoplasm
or associated with chromatin (21). Typically, these latter are
supposed to control protein-coding gene expression at the

Frontiers in Pediatrics | www.frontiersin.org 2 March 2019 | Volume 7 | Article 67

https://www.frontiersin.org/journals/pediatrics
https://www.frontiersin.org
https://www.frontiersin.org/journals/pediatrics#articles


Laneve et al. Long Noncoding RNAs in Medulloblastoma

FIGURE 1 | Mechanisms of action of lncRNAs. (A) In the nucleus, lncRNAs can regulate gene expression by guiding epigenetic (1) or transcription (2) factors to

specific loci, by acting as enhancers (3), by structuring the three-dimensional conformation of chromatin (4), or by recruiting splicing factors (5). (B) In the cytoplasm,

they act by modulating mRNA stability (6) or translation (7), by sequestering miRNAs (8), or by coding small peptides (9).

epigenetic level by recruiting chromatin modifiers to specific
genomic loci. This is achieved through their scaffolding activity,
by which they interact simultaneously with distinct protein
complexes, and through their capability to act as “molecular
guides,” that ensure the specificity of target recognition (21). This
function can be carried out in cis or in trans. The cis-acting RNAs
are typically low-abundant, and regulated genes are located in
the proximity of their transcription site; trans-acting RNAs are
more abundant and can modulate the expression of genes at
independent loci (21). Notably, perturbations of the epigenetic
regulation were recognized as causative of malignancies (22), and
some cancer-related lncRNAs, such as XIST (23), HOTAIR (24–
26), NBAT (27), and LINC-PINT (28), were reported to direct
epigenetic modifications (29).

Nuclear lncRNAs can also act as regulators of transcriptional
programs, by recruiting transcription activators or repressors
to specific loci (30, 31), as enhancer RNAs that exert
enhancer-like functions (32, 33), as chromosome architects
and nuclear organizers that contribute to the formation of
specific sub-nuclear structures (21, 34, 35), or as regulators of
alternative splicing (36).

Cytoplasmic lncRNAs
Cytoplasmic lncRNAs (Figure 1B) regulate gene expression at
the post-transcriptional level, often exploiting their sequence
complementarity with transcripts deriving from the same
genomic locus or from independent loci. Upon specific target
recognition, they are able to modulate mRNA stability, both

positively as BACE1-AS (37) and TINCR (38), and negatively as
½-sbsRNAs (39), or translation, as lincRNA p21 (40). Another
role is that of decoys for microRNAs (miRNAs): in this case,
the lncRNA functions as a competing endogenous RNA (ceRNA)
that sequesters miRNAs from their mRNA targets, causing
translational de-repression. This activity is based on regulatory
crosstalk betweenmultiple transcripts (41, 42). Notably, lncRNA-
mediated ceRNA networks in cancer are continuously emerging
(43, 44). However, only for a very limited number, such as Gas5
(45), linc-RoR (46, 47), NORAD (48), and linc-NeD125 (49),
this function has been characterized: their aberrant enrichment
or local increased concentration in pathological conditions
can culminate in tumorigenesis. Finally, some lncRNAs may
contain short open reading frames producing small, functional
peptides (50).

THE ROLE OF LNCRNAS IN CNS

The CNS of mammals is a very sophisticated system in which
neuronal and glial cells structurally and functionally interact
to guarantee the proper brain activity. Numerous evidence
correlates the evolutionary increase in human brain complexity
with the expanding number of lncRNAs (51, 52). Accordingly,
40% of human annotated lncRNAs are expressed in the brain,
where they display neuro-anatomical and/or cell-type specific
expression, and about 30% of lncRNAs appears to be primate-
specific (31, 53). Notably, compared to lncRNAs from other
tissues, the brain-specific lncRNAs are: (i) themost evolutionarily
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conserved species, (ii) predicted to retain conserved secondary
structures, and (iii) preferentially adjacent to protein-coding
genes involved in neuronal differentiation and function (54).
Overall, these findings indicate that brain-specific lncRNAs likely
possess conserved functions and are crucially implicated in
higher-order cognitive abilities as well as in establishing neural
cell-type diversity and function. This hypothesis is sustained by
their spatiotemporal expression, which is exquisitely regulated
during NS development (55) and in response to neuronal
activity (56). So far, a growing body of literature shows that
lncRNAs influence every step of neurodevelopment, from early
stages of differentiation to synaptogenesis (57–59). In vitro
studies revealed some lncRNAs, such as RMST (60), TUNA
(61), DALI (62), and PAUPAR (63), that control complex gene
expression programs underlying the neurogenic commitment
of pluripotent embryonic stem cells. This is mainly achieved
through their action of “guide” RNAs that convey transcriptional
and/or epigenetic factors on the promoters of neuronal genes.
In vivo analyses identified other species such as GOMAFU
(56, 64, 65), EVF2 (66), PNKY (67), and linc-BRN1B (68) that,
through the recruitment of epigenetic, transcriptional, or splicing
factors, govern the balance between self-renewal and neuronal
differentiation. LncRNAs also contribute to synaptogenesis and
neuronal plasticity, which underlies learning, memory, and
cognition, by regulating crucial proteins that control neurite
elaboration (69), translation in synapses (70, 71), and ion channel
subunits (72).

LNCRNAS IN
NEURO-ONCOLOGICAL DISORDERS

Based on their crucial role in NS development and function,
lncRNA qualitative and/or quantitative alterations may
profoundly impact on different neurological pathologies,
including neurodevelopmental, neurodegenerative, neuro-
immunological, and neuro-oncological disorders (73, 74). In
the latter settings, lncRNAs have drawn extensive attention
as molecules that may drive tumorigenesis. In addition, they
can serve as predictors of cancer sub-types as well as potential
therapeutic targets.

It is widely understood that mutations, epigenetic alterations
or somatic copy number aberrations in the noncoding portion
of the genome underlie cancer pathology (75). Accordingly,
recent studies indicated that lncRNAs are highly deregulated
in cancer, where they participate as tumor-suppressors or
oncogenes in tumor initiation and progression. Notably, most
lncRNAs displaying aberrant expression are cancer-type unique
(76). However, despite the identification of a large number
of lncRNAs in neurological cancers, only for a few of them
mechanisms of action have been experimentally clarified.

Extensive studies have been carried out in gliomas, the most
prevalent types of primary intracranial carcinoma (77). Several
lncRNAs associated with glioma stemness (78–80), proliferation,
and migration (81–84) have been identified, and most of them
function as miRNA decoys (81).

Neuroblastoma (NB) is a pediatric tumor of the sympathetic
NS, accounting for more than 7% of childhood malignancies
(85). Themolecular link between deregulated lncRNA expression
and NB tumorigenic features is emerging (86), and several
deregulated lncRNAs during NB pathogenesis have been
uncovered (87–92).

Our knowledge of lncRNA function in MB physiopathology
is still fragmentary. Genome-wide association studies may help
to understand how genetic polymorphisms in lncRNA loci
contribute toMB predisposition (93). Furthermore, in spite of the
numerous high-throughput expression studies carried out so far,
lncRNAs have been largely disregarded. However, re-annotation
of array-based data and integration of cancer phenotype
associations allowed prioritizing disease-related lncRNAs in
tumors, including MB (94), demonstrating the potential of data
re-analyses. In another study, a de-novo genome-wide inspection
of MB subgroup-specific chromosomal alterations identified the
first G3MB gene fusions (6). They involve the 5′-end of PVT1, a
lncRNA hosting the putative MB oncogene miR-1024 (95, 96).
In the PVT1-MYC fusion, the induction of miR-1024 and the
associated malignant phenotype may be explained through an
oncogenic positive feedback-loop, established by MYC on its
response elements on PVT1 promoter (6).

Other studies focused on the role played in MB by previously
identified noncoding oncogenes. Among them, UCA1 (97)
and CRNDE (98, 99) are upregulated in MB samples. UCA1
knockdown in MB cells results in the arrest of cell cycle
progression, suppression of cell migration, and proliferation
(100). Similarly, in vitro downregulation of CRNDE blocked cell
cycle, inhibited proliferation and aggregation, while increasing
apoptosis. Tumor growth was also reduced in MB mouse models
silenced for CRNDE (101). Inversely, the lncRNA HOTAIR
(102) is downregulated in MB samples, whereas its target genes
HOXD8 and HOXD10 are upregulated (103). The misbalance of
these crucial developmental genes may partially account for the
embryonic origin and the pediatric onset of MB. However, their
mechanisms of action are presently unknown.

Mechanistic insights into the role of lncRNAs in MB
biology have been carried out only for a very few species, as
discussed below.

Mechanisms of Action of lncRNAs in Mb
The colon cancer upregulated transcript CCAT1 (104) is
a prototype of oncogenic lncRNA, associated with several
carcinomas, where it promotes cell proliferation, invasion,
migration, and chemoresistence (105–107). In MB, its expression
is upregulated in 20 unstratified tumor samples and also in at
least four MB cell lines (108). CCAT1 knockdown in MB cells
causes the decrease of cell proliferation rate, (depending on
CCNA and CDK2 gene repression), cell migration, and invasion.
Its in vivo depletion reduces the volume of subcutaneous tumors
of xenotransplanted mice (108). CCAT1 has been proposed to
play its oncogenic role by altering the phosphorylated, active
status of components of the tumorigenic MAPK pathway.
In combination with previous reports indicating CCAT1 as a
miRNA sponge (109–111), this study suggests that CCAT1 may
control tumorigenesis through multiple activities.

Frontiers in Pediatrics | www.frontiersin.org 4 March 2019 | Volume 7 | Article 67

https://www.frontiersin.org/journals/pediatrics
https://www.frontiersin.org
https://www.frontiersin.org/journals/pediatrics#articles


Laneve et al. Long Noncoding RNAs in Medulloblastoma

FIGURE 2 | Linc-NeD125-based network in MB. (A) MiR-19a-3p, miR-19b-3p, and miR-106a-5p pleiotropically control KDM6A, MYCN, CDK6, SNCAIP gene

expression. (B) In G4MB, linc-NeD125 is upregulated and, functioning as a decoy for the three miRNAs, causes translational derepression of the G4MB driver genes

KDM6A, MYCN, CDK6, SNCAIP.

Another lncRNA implicated in MB is ANRIL (112), which
plays a pivotal role in multiple cancers as an epigenetic
regulator of its neighbor tumor-suppressors CDKN2A/B
(113, 114). ANRIL expression is upregulated in MB cells,
where its knockdown lowers cell viability and migration
while increasing apoptosis, by deranging the expression of
several apoptotic factors (115). ANRIL has been shown to
act as a decoy for miR-323, a miRNA identified in neurons
(116) and characterized as a glioma tumor-suppressor
(117, 118). Consistently, miR-323 silencing counteracted
the abovementioned ANRIL-dependent cell phenotypes.
This regulative axis impinges on BRI3, a miR-323 target
gene (119) encoding for a brain-expressed transmembrane
factor (120). BRI3 activates MAPK, AKT and WNT signaling
cascades, already associated with MB progression (121–123),
through a double mechanism: BRI3 upregulation enhances
the phosphorylation of p38, MAPK, ERK, and AKT kinases
and stimulates the accumulation of Wnt3a, Wnt5a, and β-
catenin. The dysregulation of such pathways may partially
explain the apoptotic phenotypes observed upon imbalance of
ANRIL/miR-323/BRI3module (115).

More recently, the lncRNA LOXL1-AS1, the antisense
transcript to the LOXL1 genomic locus, whose variants are
strongly associated with the exfoliation syndrome (124), was
found to be overexpressed in MB tissues. In vitro and
in vivo experiments revealed that it controls cell viability,
proliferation, cell cycle, and metastasis by activating the PI3K-
AKT pathway (125).

Recently, the ceRNA mechanism has emerged as a crucial
pathogenic pathway in MB. Linc-NeD125 was the first ceRNA
identified in MB and, generally, in tumors of the CNS (49).
It was identified in NB cells as the precursor of miR-125-b1
(126), a neuronal-enriched miRNA (127) involved in neural
cell differentiation (128), function (129) and NB and MB cell
proliferation, and apoptosis (130, 131). Notably, linc-Ned125 is
significantly and specifically upregulated in primary G4 MBs,
compared to the other subgroups. In this context, it functions
as a miRNA decoy. Linc-NeD125 interacts with miR-19a-3p,
miR-19b-3p, and miR-106a-5p that pleiotropically control the
expression of four G4MB driver genes, namely KDM6A,MYCN,
CDK6, and SNCAIP (7) (Figure 2). Through this mechanism,
linc-NeD125 causes the driver gene translational de-repression,
contributing to G4MB tumorigenesis and/or to the maintenance
of cancer cell identity. This study highlighted linc-NeD125 as a
novel potential G4 driver gene, as well as a specific biomarker and
a potential therapeutic target. Accordingly, its knockdown in G4-
derived cells caused a significant reduction of cell proliferation,
migration, and invasion (49).

The second example of ceRNA in MB is the lncRNA Nkx2-
2as, that behaves as a tumor-suppressor in SHH MB subgroup.
It is highly down-regulated in MB cells derived from a SHH
mouse model and it suppresses the malignant phenotype of MB
cells, functioning as a sponge for miR-103/107 and miR-548m.
This activity causes the depression of the tumor-suppressor genes
BTG2/Tis21/PC3 and LATS1/2, promoting tumor growth in vitro
and in vivo (132).
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FUTURE DIRECTIONS

The main challenges in fighting cancer are the identification
of specific biomarkers, for timely diagnosis and prognosis,
and novel tumor-driver genes, which can be therapeutically
targeted for suppressing tumor growth. The former function
would help the choice of pre-operative treatments and facilitate
the tumor follow-up examinations. Unfortunately, very few
biomarkers are known for pediatric tumors (133) and in MB
<20 protein-coding genes have been characterized as promising
candidates. However, most of these biomarkers were identified
from single studies and from heterogeneous tumor types,
lacking tumor-specificity (133). The recent categorization of
MB into at least four subtypes, with distinct features, led
the scientists to consider them as distinct pathologies with
likely different responses to therapy. This new perspective
triggered the search for novel MB-subgroup specific biomarkers
and therapeutic targets. For both issues lncRNAs are very
challenging (75). Since many of them are uniquely expressed
in specific cancer types, they may function as powerful cancer
biomarkers (134). In addition, for their ability to fold into
complex tridimensional structures that increase their stability,
they can be easily detected into body fluids as urine, blood,

and cerebrospinal fluids, making the tumor diagnosis less
invasive (75). Notably, lncRNAs are also considered new relevant
targets for cancer therapy as highly tissue-specific drivers of
cancer phenotypes. Finally, in this search for lncRNAs as novel
molecules that distinguish clinically relevant cancer subtypes and
predict tumor behavior, the circular RNAs are proving to be
effective cancer biomarkers for their abundance, stability, and
specificity (135).
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