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Emerging literature suggests that delayed identification of childhood asthma results

in an increased risk of long-term and various morbidities compared to those with

timely diagnosis and intervention, and yet this risk is still overlooked. Even when

children and adolescents have a history of recurrent asthma-like symptoms and risk

factors embedded in their medical records, this information is sometimes overlooked by

clinicians at the point of care. Given the rapid adoption of electronic health record (EHR)

systems, early identification of childhood asthma can be achieved utilizing (1) asthma

ascertainment criteria leveraging relevant clinical information embedded in EHR and (2)

innovative informatics approaches such as natural language processing (NLP) algorithms

for asthma ascertainment criteria to enable such a strategy. In this review, we discuss

literature relevant to this topic and introduce recently published informatics algorithms

(criteria-based NLP) as a potential solution to address the current challenge of early

identification of childhood asthma.

Keywords: early, identification, asthma, children, informatics, EHR

INTRODUCTION

Asthma is the most common chronic illness of childhood, affecting up to 17% of children and
representing one of most burdensome chronic diseases in the US (1–6). At present, there are no
signs of declining trends in the prevalence of asthma among children and adolescents; rather,
they continue to increase in many parts of the world (5–7). Furthermore, a delayed diagnosis
of asthma, especially in young children is common (8–10). The emerging literature suggests
that childhood asthma increases long-term morbidities (11), which could be mitigated by timely
therapeutic interventions. This current awareness leads to relevant and consequential questions,
(1) what are the various long-term morbidities of childhood asthma that can be reduced through
timely identification and therapeutic intervention, (2) what is the magnitude of delay in identifying
childhood asthma and why does it occur, (3) what can be done to reduce or eliminate delay in
identification of childhood asthma, and (4) what is the role of informatics in clinical care and
research for early identification of childhood asthma? Even though currently almost all hospitals
and most office-based physicians have adopted electronic health records (EHR) (12, 13), there is
yet to evolve a strategic approach for applying informatics tools to identify early childhood asthma.
The authors address each of the questions above, specifically the emerging role of informatics in
improving early identification of childhood asthma in the EHR era.
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Timely Identification and Intervention of
Early Onset Asthma Might Reduce the Risk
of Long-Term Morbidity
Early onset asthma is no longer just the domain of childhood but
also affects long-term morbidity in adulthood. The Tasmanian
study showed that children with early-onset asthma or wheezing
episodes exhibited a lung function decline by the age of 7 years,
compared to healthy children and this gap widened and persisted
up to 45 years of age (11). Also, lower lung function at age
7 was associated with chronic obstructive pulmonary disease
(COPD) and asthma-COPD overlap syndrome (ACOS). Long-
term morbidity of childhood asthma has been corroborated
by other studies (14, 15). The Tucson birth cohort study
reported that transient wheezers during the first 6 years of
life (which has been previously considered a non-pathological
entity) demonstrated impaired lung function similar to those
with persistent asthma and worse than late-onset wheezers at 16
years of age (16). Control of asthma through interventions (e.g.,
inhaled corticosteroid [ICS]) improved airway inflammation,
respiratory symptoms, asthma exacerbations, rescue medication
use, quality of life, and bronchial responsiveness, suggesting that
early ICS intervention might have beneficial effects for those at
risk of poor long-term asthma outcomes (17–19). In addition,
the recent literature suggests that childhood asthma poses
numerous health threats through asthma-associated infectious
and inflammatory disease comorbidities (AIICs) (20–31). Both
children and adults with asthma are at an increased risk of
serious respiratory infections [e.g., pneumococcal pneumonia
or invasive pneumococcal diseases (20–22), pertussis (23), and
common upper respiratory infections (e.g., otitis media and
strep infection) (24–26). Furthermore, AIICs are not limited
to respiratory infections but also non-respiratory infections
such as blood stream infection, appendicitis, herpes zoster (27–
30) as well as inflammatory condition including Celiac disease
(32). While these AIICs can cause a significant morbidity,
the impact of AIICs in children with asthma is currently
overlooked. Without a diagnosis of asthma, one has limited
access to therapeutic interventions which may mitigate the
risk of serious respiratory infections such as an AIIC (e.g.,
hospitalization-required severe pneumonia) (33). Thus, early
identification of childhood asthma is a prerequisite step in the
mitigation and prevention of poor long-term asthma outcomes
(e.g., exacerbations, poorly controlled asthma and impaired lung
function) and AIICs.

A Delay in Identification of Asthma in
Children and Adolescents Is Common and
Why it Happens
A delay in identification of childhood asthma, especially in young
children is still common (8–10). We previously reported that
almost two thirds of children under 18 years of age had a delay
in asthma diagnosis, and the delay was as long as 3 years after
one met Predetermined Asthma Criteria (see Table 2-1) (8).
Bisgaard et al. revealed that 32% of children, ages 1–5 years in
the US and Europe (n = 9,490), reported recurrent respiratory
symptoms (cough, wheezing, and shortness of breath), and 28%
of children reported weekly asthma symptoms of whom only

20% had an asthma diagnosis and only 9.5% were receiving ICS
(34). Also, the Lung Health Survey showed that 7.5 % of high
school students with recurrent and significant asthma symptoms
were not diagnosed with asthma (35). Consequently, a delayed
asthma diagnosis was associated with increased urgent care visits
suggesting suboptimal care and limited access to proper asthma
therapy (10, 36, 37).

Among complex causes for delaying diagnosis of pediatric
asthma, both conceptual and operational predicaments can be
potentially addressed or improved in the EHR era. Conceptually,
there is a lack of consensus on asthma diagnosis. Case
in point, the NIH-led workshop discussed the core and
supplementary predictors and outcome variables for asthma
research (38), but left asthma ascertainment criteria undefined.
Currently, only a few asthma ascertainment criteria based on
medical record review exist and provide a basis for developing
informatics tools for these asthma criteria enabling early
detection of childhood asthma as described in the next section.
In 2015, the Canadian Thoracic Society and Canadian Pediatric
Society criteria for asthma provided succinct and practical
approaches to make a diagnosis of asthma for preschoolers (39),
consisting of (1) existence of airflow obstruction (e.g., recurrent
asthma-like symptoms or exacerbations), (2) reversibility of
airflow obstruction (e.g., favorable bronchodilator response),
and (3) no evidence for alternative diagnosis(Table 1). As
an alternative asthma criteria, Predetermined Asthma Criteria
(PAC) (Table 2-1) which is conceptually similar to the Canadian
Thoracic Society criteria, consists of (1) airflow obstruction, (2)
reversibility and variability of airflow obstruction (e.g., recurrent
wheezing with respiratory symptoms), and (3) no evidence of
alternative diagnosis. Its usefulness in detection of asthma has
been proven in numerous asthma epidemiology (20, 23–31, 40–
47). Also Asthma Predictive Index (API) (Table 2-2) which was
developed to identify young children at risk of developing asthma
can also be considered as feasibility of application of API to

TABLE 1 | Operational diagnostic criteria for asthma in children 1–5 years of age,

a Canadian Thoracic Society and Canadian Pediatric Society.

1. Documentation of airflow obstruction

Preferred Documented wheezing and other signs of airflow obstruction

by physician or trained health care practitioner

Alternative Convincing parental report of wheezing or other symptoms of

airflow obstruction

2. Documentation of reversibility of airflow obstruction

Preferred Documented improvement in signs of airflow obstruction to

SABA ± oral corticosteroids by physician or trained health

care practitioner

Alternative† Convincing parental report of symptomatic response to a

3-month trial of a medium dose of ICS (with as-needed SABA)

Alternative‡ Convincing parental report of symptomatic response to SABA

3. No clinical evidence of an alternative diagnosis

†
In children with frequent symptoms and/or one or more exacerbation requiring rescue

oral corticosteroids or a hospital admission; ‡ In children with mild intermittent symptoms

and exacerbations, the diagnosis is only suggested because the accuracy of parental

report of a short-term response to inhaled short-acting β2-agonists (SABA) may be

unreliable due to misperception and spontaneous improvement of another condition.

Because this is a weaker alternative diagnostic method, confirmation by direct observation

when symptomatic is preferred. ICS Inhaled corticosteroids.
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TABLE 2 | Two asthma ascertainment criteria which were used for developing

NLP algorithms.

2-1. PREDETERMINED ASTHMA CRITERIA (PAC)

Patients were considered to have definite asthma if a physician had made a

diagnosis of asthma and/or if each of the following three conditions were

present, and they were considered to have probable asthma if only the first

two conditions were present:

1. History of cough with wheezing, and/or dyspnea, OR history of cough

and/or dyspnea plus wheezing on examination (airflow obstruction),

2. Substantial variability in symptoms from time to time or periods of weeks

or more when symptoms were absent (reversibility and variability of

airflow obstruction)

3. Two or more of the following:

• Favorable clinical response to bronchodilator

• Nonsmoker (14 years or older)

• Sleep disturbance by nocturnal cough and wheeze

• History of hay fever or infantile eczema OR cough, dyspnea, and

wheezing regularly on exposure to an antigen

• Blood eosinophilia higher than 300 µL

• Positive wheal and flare skin tests OR elevated serum IgE

• Pulmonary function tests showing one FEV1 or FVC <70% predicted and

another with at least 20% improvement to an FEV1 of higher than70%

predicted OR methacholine challenge test showing 20% or greater

decrease in FEV1
• Nasal polyps

Patients were excluded from our previous study if any of these conditions

were present (no evidence of alternative diagnosis):

• Pulmonary function tests that showed FEV1 to be consistently below

50% predicted or diminished diffusion capacity

• Tracheobronchial foreign body at or about the incidence date

• Hypogammaglobulinemia (IgG <2.0 mg/mL) or other immunodeficiency

disorder

• Wheezing occurring only in response to anesthesia or medications

• Bullous emphysema or pulmonary fibrosis on chest radiograph

• PiZZ alpha1-antitrypsin

• Cystic fibrosis

• Bronchopulmonary dysplasia

• Mild pectus excavatum with respiratory symptoms

• Paradoxical vocal cord motion

• Other major chest disease such as juvenile kyphoscoliosis or

bronchiectasis

FVC forced vital capacity; FEV1, forced expiratory volume in 1 s.

2-2.ASTHMA PREDICTIVE INDEX (API)

Major Criteria Minor Criteria

1. Physician diagnosis of asthma for

parents

2. Physician diagnosis of eczema for

patient

1. Physician diagnosis of allergic

rhinitis for patient

2. Wheezing apart from colds

3. Eosinophilia (≥ 4%)

Asthma is determined by frequent wheezing episodes (two or more) plus at least one of

two major criteria or two of three minor criteria.

retrospective studies has been recently established (48, 49). API
includes frequent wheezing in addition to either one major
risk factor (parental history of asthma or eczema) or two of
three minor risk factors (eosinophilia, wheezing without colds,
and allergic rhinitis). Apart from the conceptual challenges,
operational challenges also contribute to the delayed diagnosis of

asthma. Even if asthma ascertainment criteria are in place, it is
still challenging and extremely labor-intensive for a physician or
other abstractor to comprehensively review, collect, and interpret
all necessary information from structured (e.g., test results) and
unstructured data (e.g., recurrent asthma symptoms or favorable
bronchodilator responses written in clinicians’ narrative free
text) (50). Overcoming these challenges through informatics
technologies provides a tremendous opportunity not only to
enhance early identification of asthma but also to provide optimal
asthma management through a clinical decision support system
(CDSS) for clinicians and their care teams. Therefore, clinical
informatics approaches, including recently developed natural
language processing (NLP) algorithms for PAC and API, to
be discussed in the next section, address both conceptual and
operational barriers to early identification of asthma in children
and adolescents for asthma care and research.

Informatics Approach for Early
Identification of Asthma in an EHR Era:
Natural Language Processing (NLP)
The amount of EHR data has grown exponentially which
provides a tremendous opportunity to leverage EHR data for
clinical research and practice. NLP, one of prominent informatics
techniques, has been demonstrated to be a promising way to
automate chart review enabling large-scale studies that require
information embedded in clinical free text (50–53). Although
NLP has been successfully applied in various clinical applications
(54–56), it has been observed that NLP has been underutilized in
EHR-based clinical research (57).

The criteria for asthma ascertainment are mostly based on
clinical information such as a history of respiratory symptoms
and relevant information which are largely embedded in EHR
as free text. Due to the large volume of EHR (primarily free
text information), manual chart review to ascertain patient
asthma is very costly, time consuming, error-prone, and often
impractical for point of care and population-based studies (50).
The capability of an NLP algorithm to extract, process, and
classify information in free text is a key feature in enabling
early identification of asthma in the EHR era (58). However,
asthma ascertainment utilizing informatics has not been fully
explored. A research team applied a machine learning technique
on EHR data (i.e., codes, drugs, and clinical text) in order to
identify children with asthma (59). Their approach relies largely
on physician-diagnosed asthma and does not take into account
the patient’s asthma symptoms that could precede the physician’s
asthma diagnosis. Thus, it is not suitable for early identification of
asthma. Also, this approach is not able to provide physicians with
evidence of the likelihood of asthma that would assist in their
clinical decision making. In order to tackle these challenges and
achieve a timely-diagnosis of asthma, we have developed NLP
algorithms (both rule-based and machine learning algorithms)
for two existing asthma ascertainment criteria, PAC and API as
described in the following.

To develop and test NLP algorithms for asthma, the
availability of asthma ascertainment criteria based on
retrospective EHR data is prerequisite. To our knowledge, two
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criteria (PAC and API) for asthma ascertainment using existing
health records are suitable for developing their corresponding
NLP algorithms. Both PAC and API are capable of determining
the index date of asthma when the criteria are fulfilled, which
is an important feature for clinical and epidemiological studies
requiring temporal discernment for asthma as an exposure
or outcome.

Conceptually, NLP algorithms extract, process and classify
asthma-related events at the note level and then aggregate them
to determine the patient asthma based on the given criteria (i.e.,
definite, probable, or negative of PAC; positive or negative of API)
(Figure 1) (51, 60). Operationally, we applied an information
extraction (IE)-based NLP pipeline for the development of
NLP algorithms. For IE, we used various resource-driven tools
which utilize domain-specific knowledge engineering such as
MedTaggerIE for information in clinical documents (61) and
MedTime for temporal information (62). Our original work
on developing and testing an initial prototype NLP algorithm
for PAC encompassed both rule-based and machine learning
systems (50, 63).

We assessed performance of the prototype NLP algorithms for
PAC in comparison with ICD code-based asthma ascertainment
(50). The results of the initial prototype of our NLP algorithm
for PAC demonstrated that NLP algorithms significantly
outperformed ICD-code based asthma ascertainment in both
validity and timely identification of asthma. Importantly, based
on the asthma index date, defined as the earliest date of
the constellation of symptoms meeting the PAC, 85% of

children had experienced a delayed physician diagnosis by ICD
code-based asthma ascertainment, compared to 27% by NLP
algorithms. Subsequent to the testing of this initial prototype
NLP we have been able to improve the performance. Our
recently published study shows the performance of the NLP
for PAC algorithm at 90% of PPV and 98% of NPV (51)
which suggests a significant improvement over the prototype
NLP algorithm. As this enables automated comprehensive
chart review for the ascertainment of asthma almost real
time and on a large scale, the commentary accompanying
the paper considered this informatics work as “a giant step”
for leveraging EHR for asthma care and research (64). This
is especially true in the early identification of childhood
asthma which allows timely intervention allowing mitigation
of long-term and serious consequences of childhood asthma as
discussed above.

Along these lines, we recently developed and tested an NLP
algorithm for the API (60) using the manual chart review to
ascertain asthma based on API as a reference. The performance
of the NLP algorithm for API was 88% of PPV and 98% of
NPV. Moreover, both NLP for PAC and API algorithms provide
evidence (i.e., part of clinical text containing asthma-related
events) for asthma ascertained by the algorithms, providing
verifiable information for decision making of the clinicians.
The promising results portend the potential implementation of
these NLP algorithms for asthma care in a real-world setting
as it greatly reduces the burden on clinicians in reviewing large
volumes of EHR to discern asthma status. Currently, these two

FIGURE 1 | A high-level diagram of NLP algorithms for asthma ascertainment (i.e., NLP-PAC and NLP-API). There are two components in NLP algorithms: the

document-level processing component extracts asthma-related concepts from unstructured data (clinical free text) using pattern-based rules and structured data (Lab

and PPI) in asthma ascertainment criteria in Table 2, and the patient-level classification component aggregates processed information to ascertain asthma at a patient

level. EHR, electronic health record; NLP, natural language processing; PPI, patient provided information; PAC, Predetermined Asthma Criteria; API, Asthma

Predictive Index.
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NLP algorithms are being further tested before implementation
in our asthma care practice.

To ensure whether these NLP algorithms can be generalizable
to other study settings with a different population, different
clinical practice, and even different EHR system, we tested
the performance of our current NLP algorithm for PAC
in a different study setting with a different EHR system
and demonstrated portability (PPV: 89% and NPV97% at a
hospital in a different state) (65, 66). These results provide
a new opportunity for large scale (multi-site) and automated
identification of childhood asthma whichmay potentially address
challenges associated with a delayed identification of asthma
resulting in delayed therapeutic interventions and possible
long-term morbidity.

Implications of NLP Algorithms on Asthma
Care and Research for Early Identification
of Childhood Asthma
In addressing the existing challenges for early identification of
childhood asthma as described above, NLP algorithms have
potential impact for asthma care. First, incorporating our NLP
algorithms for the two asthma ascertainment criteria as part of
CDSS would support clinicians or their care teams according
to their needs and workflow (e.g., alerting clinicians at a point
of care or population surveillance). Also, those NLP algorithms
provide retrieved events or evidence with temporal components
supporting an asthma diagnosis, so clinicians can then review
and discuss such evidence supporting the diagnosis of asthma
with parents or caregivers. Another important implication of NLP
algorithms for PAC and API is the ability for computational
phenotyping subgroups of asthmatic children with distinctive
clinical characteristics (i.e., stratification) based on the two
independent asthma ascertainment criteria enabling precision
medicine. For example, we recently reported that children
who met both PAC and API criteria by NLP algorithms
had clinical features characterizing children at high-risk for
conditions such as atopy, poor asthma control, increased asthma
exacerbation, impaired lung function, and high risk of asthma-
associated infectious and inflammatory comorbid conditions
(AIICs), compared to those who met only one criteria or healthy
controls (32, 67). This computational phenotyping approach
on a large scale is a novel way of identifying a high-risk
population for either point-of-care or population surveillance.
Third, along these lines, extending the application of NLP
algorithms from early identification of asthma to the optimal
management of asthma through stratification and prognostication
of asthma is an important step to improve outcomes, care
quality and ultimately care costs. Our group has developed and
tested the multiple necessary NLP algorithms enabling optimal
management of childhood asthma such as an NLP algorithm
for asthma prognosis (e.g., likelihood of remission or relapse),
triggers of asthma exacerbations (e.g., allergic sensitizations),
and clinicians’ adherence to guidelines (68–71). Currently, our
group is testing the utility of an innovative asthma management
strategy leveraging these NLP algorithms implemented in clinical
work flow. Lastly, computational phenotyping through NLP

algorithms is likely to significantly enhance clinical research
capabilities for asthma. The algorithms have the potential to
enable virtual clinical studies (e.g., clinical trial or observational
studies) as they can automatically identify subjects who meet
the enrollment criteria and determine outcomes collected
prospectively or retrospectively. The conceptual feasibility
of emulating clinical trials using EHR has already been
demonstrated (72). This might truly revolutionize the current
way of conducting clinical studies, especially randomized
clinical trials and is an active research area under clinical
research informatics.

SUMMARY

In this review, we summarized currently reported informatics
approaches for the early identification of asthma and their
potential to assist in timely identification so as to reduce
the risk of long-term morbidity of asthma through improved
management strategies. Given the current magnitude and impact
of delayed identification of childhood asthma, we believe that
the utilization of informatics approaches and techniques on EHR
provides a great potential to improve clinical decision making
in the early identification of asthma, allowing proper and timely
diagnosis and management of asthma.

To enhance current asthma care and research through the use
of rapidly emerging technologies to achieve early identification
of asthma, multiple changes are necessary. First, awareness of
the significance of early identification of childhood asthma is
needed from its currently overlooked and misunderstood status,
especially long-term impact of transient wheezing episodes and
AIICs. Second, research effort for the development of new
informatics tools, further tested and refined existing tools,
and implementation of the clinical informatics tools such as
NLP algorithms to the real world setting should be widely
shared and supported. Lastly, not only the researchers but
also clinicians who deliver direct individual patient care need
to realize and adapt to the rapid advancement of informatics
approaches leveraging EHR to enhance the current state of
asthma care and research. Given the potential value and
impact of informatics tools in the pursuit of delivering the
best possible care to the patient, clinicians and researchers are
strongly encouraged to seek a partnership with informatics teams
to maximize the benefit of the patients they care for. The
informatics approaches and tools for asthma discussed above can
be implemented to enhance current asthma care and research,
while they may help us make novel biomedical discoveries
for asthma. We hope this review paper ignites such interest
and endeavor.
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