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The urinary tract comprises the renal pelvis, the ureter, the urinary bladder, and the

urethra. The tract acts as a functional unit, first propelling urine from the kidney to

the bladder, then storing it at low pressure inside the bladder which intermittently and

completely voids urine through the urethra. Congenital diseases of these structures

can lead to a range of diseases sometimes associated with fetal losses or kidney

failure in childhood and later in life. In some of these disorders, parts of the urinary

tract are severely malformed. In other cases, the organs appear grossly intact yet

they have functional deficits that compromise health. Human studies are beginning to

indicate monogenic causes for some of these diseases. Here, the implicated genes

can encode smooth muscle, neural or urothelial molecules, or transcription factors that

regulate their expression. Furthermore, certain animal models are informative about how

such molecules control the development and functional differentiation of the urinary

tract. In future, novel therapies, including those based on gene transfer and stem

cell technologies, may be used to treat these diseases to complement conventional

pharmacological and surgical clinical therapies.

Keywords: bladder, hydronephrosis, posterior urethral valves, prune belly syndrome, urofacial syndrome, ureter,

vesicoureteric reflux

INTRODUCTION

The urinary tract comprises the renal pelvis, the ureter, the urinary bladder and the urethra. The
tract acts as a functional unit, first propelling urine from the kidney to the bladder, then storing
it at low pressure inside the bladder which intermittently and completely voids urine through the
urethra. In fact, it was the anatomist Andreas Vesalius who five centuries ago based on his careful
autopsy studies (1) reasoned that the kidney, ureter and bladder form a single functional unit.
Prior to this, authorities surmised that the kidneys somehow cleaned the blood but they did not
necessarily appreciate their anatomical connection with the lower urinary tract.

Congenital diseases of the urinary tract can lead to a range of devastating diseases sometimes
associated with fetal losses or kidney failure in childhood and later in life (2–4). In some of
these disorders, parts of the urinary tract are absent, while in other cases the organs are present
but are severely malformed. In yet other cases, the organs appear grossly intact yet they have
congenital functional deficits that can compromise health. Human studies are beginning to indicate
monogenic causes for some of these diseases, as reviewed in the last decade (5). Here, we present
an update of several of the implicated genes which encode smooth muscle, neural or urothelial
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structural, and functional molecules, or master transcription
factors that regulate their expression. Furthermore, certain
animal models are informative about how suchmolecules control
the development and functional differentiation of the urinary
tract, and we have alluded to several of them here.

This review does not focus on the detailed anatomy and
developmental biology of the kidney and urinary tract, and for
reviews of these aspects the reader is referred to other literature
(6–8). Furthermore, our focus on the urinary tract does not cover
the genetic bases of human kidney malformations per se and
for this specific topic the reader is directed to other reviews
(3, 9, 10). Lastly, although the term ‘congenital anomalies of
the kidney and urinary tract’, or CAKUT, might be used to
include some of the entities we discuss here, we have elected
not to use this term because its all-encompassing remit lacks
the focus that is required here on the ureter and bladder.
Finally, it is important to recognize that factors that perturb
embryonic milieu may also adversely impact on urinary tract
development: these include maternal diet, vitamin availability,
levels of blood glucose and in vitro fertilization: again, these
aspects are considered elsewhere (11–14).

Table 1 lists the prevalence of several of the congenital urinary
tract diseases that will be discussed, and Table 2 list some of the
genes implicated in their pathogenesis.

GENETIC STUDIES OF VESICOURETERIC
REFLUX, A COMMON URINARY
TRACT MALFORMATION

Certain types of urinary tract malformation are thought to
be common, such as primary non-syndromic vesicoureteric
reflux (VUR). The term describes the retrograde trajectory of
urine from the bladder into the upper urinary tract that is
neither caused by bladder outflow obstruction (i.e., “primary”)
nor associated with malformations outside the renal tract (i.e.,
“non-syndromic”). The precise prevalence of this condition is
uncertain because large asymptomatic populations have not been
screened by cystography. The prevalence, however, has been
estimated to be as high as 10% percent in babies and young
children (18). Prospective studies have shown that milder degrees
of VUR usually spontaneously regress during childhood (24).

TABLE 1 | Prevalences of human congenital urinary tract diseases.

Urinary tract disease Prevalence References

Bladder exstrophy 0.002% births (15)

Megabladder 0.30–0.06% in first trimester (16)

Posterior urethral valves 0.01% births (17)

Primary non-syndromic

vesicoureteric reflux

Estimated 1–10% in young

children

(18)

Prune belly syndrome 0.004% live births (19)

Ureteropelvic junction

obstruction

Up to 0.4% of newborns (20–22)

Urofacial syndrome Prevalence unknown but around

150

postnatal cases reported

(23)

Families with multiple members affected by VUR are recognized
yet may not have been exhaustively investigated by cystography.
This makes it challenging to track VUR within families. All
these aspects make it challenging to undertake genetic studies
in primary VUR. Indeed, numerous studies have undertaken
genetic linkage or association analyses and indicated various
loci as candidates for primary VUR (25–30). Unfortunately,
there has been little inter-study uniformity in the loci. Reasons
could be that the studies were underpowered, primary VUR is
genetically heterogenous, and its modes of inheritance are varied.
The largest published study to date (31), using parametric linkage
analysis of 1,062 affected individuals from 460 families under
a dominant model, identified a single region on chromosome
10q26. The locus contains 69 genes, yet sequencing them failed
to reveal likely pathogenic variants in their coding regions. One
explanation could be that the region contains mutations in yet-
to-be defined non-coding regulatory regions of genes that direct
ureter development. Other studies have pointed to variants in
specific genes. Two such studies (32, 33) implicated variants
of ROBO2 in primary VUR, and mutations in this gene do
cause ureter malformations in mice (32, 34). Others, however,
were unable to confirm the observations in other primary VUR
populations (35). A similar story of non-replication (36, 37)
applies to variants in the gene called RET that encodes a growth
factor receptor that drives growth of the embryonic ureter
rudiment (38). The uroplakins are a family of proteins that
form heterodimers that coat the apical surface of the urothelium
that lines the renal pelvis, the ureter and the bladder (39).
They are thought to confer water-proofing properties and so
prevent the egress of urine back into the body. Mice with
homozygous mutations of uroplakin IIIa (UpkIIIA) or UpkII

TABLE 2 | Genes implicated in congenital disorders of the human urinary tract.

ACTA2 encoding the smooth muscle contractile protein alpha smooth muscle

actin

ACTG2 encoding the smooth muscle contractile protein γ2-actin

BNC2 encoding basonuclin 2, a zinc finger containing protein implicated in

epithelial maturation

CHRM3 encoding M3, the main acetylcholine receptor in detrusor smooth

muscle

HNF1B encoding a transcription factor widely expressed in renal tract epithelia

HPSE2 encoding heparanase 2, a protein that may modulate growth factor

signaling in bladder nerves

ISL1 encoding a transcription factor that may be involved in formation of the

bladder and urethra

LRIG2 encoding leucine-rich-repeats and immunoglobulin-like-domains 2 that

may modulate growth factor signaling in bladder nerves

MYH11 encoding the smooth muscle contractile protein called myosin heavy

chain 11

MYLK encoding myosin light chain kinase that modifies myosin in smooth

muscle cells

PAX2 encoding a transcription factor widely expressed in the developing ureter

and kidney

TBX18 encoding a transcription factor that affects morphogenesis of the ureter

TNXB encoding an extracellular matrix protein found in the urinary tract

TSHZ3 encoding a transcription factor that modulates smooth muscle

differentiation

UPKIIIA encoding a member of the uroplakin family that water-proofs the

urothelium
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have severe urinary tract malformations including VUR and
hydronephrosis (39), and when the zebrafish homolog called
upkIII was experimentally knocked-down, embryonic kidney
tubule epithelia showed mislocalisation of proteins including
the Na+/K+-ATPase (40). Rare individuals with heterozygous
predicted pathogenic UPKIIIA mutations have been reported
(41–43) and some have ureter malformations, including VUR. In
contrast, when large populations with primary non-syndromic
VUR were studied, UPK mutations could not be identified
(44). One explanation could be that UPK mutations are rarely
compatible with life and so would not be expected to be found in
generally healthy individuals with VUR.

GENETIC BREAKTHROUGHS IN
SYNDROMIC CONGENITAL DISORDERS
OF THE HUMAN URINARY TRACT

If discovering specific genetic causes of primary non-syndromic
VUR has so far proved elusive, much more progress has
been made in defining causative genes in syndromic congenital
disorders of the urinary tract i.e., those where there is associated
disease outside the urinary tract. In this respect, perhaps the
most convincing gene implicated thus far in human primary
VUR is TNXB that encodes an extracellular matrix protein that
is expressed in the urinary tract (45). A heterozygous variant
was found to track with VUR in a large family, and cell biology
experiments showed that the variant altered cell motility in
cultured fibroblasts. Furthermore, rare TNBX missense variants
were found in certain VUR families in another study (46). Close
inspection of affected individuals revealed that some have joint
hypermobility and, of note, TNBX loss of function mutations
had previously been reported in Ehlers-Danlos syndrome (47).
Thus, these families with VUR and TNXB variants might be
considered to have a forme-fruste on the full-blown Ehlers-
Danlos syndrome that has been reported to be associated with
urinary bladder diverticula (48). Similar observations have been
made for PAX2, a gene that encodes a transcription factor which
is widely expressed in the developing kidney and the urinary
tract, and also the optic nerve. Mice with heterozygous mutations
of Pax2 have congenitally small kidneys and can have VUR (49,
50). Rare individuals born with malformed kidneys, sometimes
accompanied by VUR, have been found to carry heterozygous
PAX2 mutations (51, 52). A subset of such individuals also have
optic nerve malformations (51), so fulfilling all the criteria of
the full-blown ‘renal coloboma syndrome’. Again, however, when
PAX2 was sequenced in larger populations with primary non
syndromic VUR, mutations could not be identified (53). In the
remainder of this review, we will focus on several other rare
diseases with defined genetic causes.

PRUNE BELLY SYNDROME

Prune belly syndrome describes a constellation of signs present
from the antenatal period featuring amassively distended bladder
that fails to empty fully, and overlying abdominal wall muscles
that are thinner than normal (54). It nearly always occurs in boys

when the signs include undescended testicles. For this condition,
the term “sequence” may be more accurate than “syndrome”
because the abdominal features could be secondary to themassive
bladder distention. The prevalence of prune belly syndrome has
been calculated as being 3.8 per 100,000 live births (19). Before
birth, the syndrome is one cause of “megabladder,” a massively
dilated bladder, a phenotype with a first trimester prevalence of
1:330–1670 (16). From review of the detailed phenotypes (55, 56),
prune belly syndrome is likely to have more than one etiology.
On histology, some affected individuals have physical blockade
of the urethra, for example with urethral agenesis or valves, with
a hypertrophied bladder wall. Others, by contrast, have an overtly
patent urethra, sometimes with a poorly developed prostatic
bed and their bladders can contain disorganized muscle bundles
and prominent connective tissue. These two categories would
therefore, respectively have either “anatomic” or “functional”
bladder obstruction. Contraction of detrusor smooth muscle in
the body of the bladder is the driver for urinary voiding, and
the neural signal to contract is acetylcholine that is released
by parasympathetic autonomic nerves and which binds to the
M3 muscarinic receptor. Homozygous, putative loss-of-function
mutations, of CHRM3 have been reported in a family with several
males affected by a prune belly-like disease (57). CHRM3 codes
for M3 and the large floppy bladders in this family strikingly
resemble the phenotype reported in male homozygous Chrm3
mutant mice (58). M3 also mediates pupillary contraction to light
and the above family showed defects in this reflex (57). A family
with a phenotypically similar bladder and eye syndrome have
been described but genetic tests were reported to be unrevealing
(59). Of note,M3 is present in the embryonic bladder urothelium,
as well as in smooth muscle, indicating that it may have other, as
yet undefined, roles in the developing urinary tract (57).

Other individuals found to have massively dilated bladders
yet no anatomical outflow obstruction carry mutations of
genes that encode smooth muscle contractile proteins, or other
molecules needed for their functionality. Indeed, mutations
of the following genes have been identified in either prune
belly or the overlapping disease called megacystis microcolon
intestinal hypoperistalsis syndrome: ACTA2, encoding α-smooth
muscle actin (60); ACTG2, encoding γ2 smooth muscle actin
(61); MYH11, encoding a smooth muscle heavy chain protein
(62); and MYLK encoding myosin light chain kinase that
modifies myosin chains in smooth muscle cells (63). Another
candidate gene in relation to myogenic failure is MYOCD that
encodes a transcription-related protein needed for expression
of smooth muscle contractile proteins (64–66). A study that
used microarrays to seek copy number variants in 34 cases
of prune belly syndrome found that one carried a deletion
of a locus encompassing MYOCD (67). Finally, heterozygous
whole gene deletions of HNF1B have been reported in rare
patients with prune belly syndrome (68). The gene codes for
hepatocyte nuclear factor 1B transcription factor that is widely
expressed in epithelia in the developing renal tract (69). On the
other hand, while heterozygous mutations of HNF1B are well-
recognized to cause diverse kidney malformation, these patients
do not have prune belly syndrome (70). Moreover, another study
found that, while a patient with prune belly syndrome carried a
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missense variant ofHNF1B, this did not affect the transactivation
functional of the encoded protein (71). A further caveat is that
whole gene deletions of HNF1B may also extend to adjacent
genes (68) so that the final phenotype may not be ascribed to
HNF1B itself.

UROFACIAL SYNDROME

Urofacial, or Ochoa, syndrome (UFS) is characterized by a
bladder in which the detrusor contracts against an incompletely
dilated bladder outflow tract, with the result being high
hydrostatic pressures within the bladder yet incomplete voiding
(23). It is therefore another example of functional bladder
outlet obstruction. Complications include high pressure VUR,
ascending bacterial infection, pyelonephritis and renal failure.
Affected individuals also have a characteristic grimace when
smiling, and a neurogenic basis for this bladder disease has
long been surmised (72). The prevalence of the syndrome is
not known but at around 150 cases, mostly children, have
been reported in the medical literature (23). Inherited in an
autosomal dominant manner, a subset of affected families have
biallelic mutations of HPSE2 (73–77) encoding a protein called
heparanase 2 that inhibits the enzymatic activity of heparanase
(78) that can release growth factors sequestered on matrix
molecules called glycosaminoglycans. Other families with UFS
instead have biallelic mutations of LRIG2 (79–81), that encodes
a putative plasma membrane protein called leucine-rich-repeats
and immunoglobulin-like-domains 2. This protein is thought
to mediate growth factor signaling (82), in part by analogy to
other better studied LRIG family members (83). Experimental
knockdown of the Xenopus hpse2 homolog in embryos causes
disorganized peripheral motor nerves (84) and, in mouse
developing urinary tracts, both heparanase 2 and LRIG2 can
be immunodetected in pelvic ganglia, the structures that send
autonomic nerves into the bladder (75, 81). Moreover, both
proteins can be detected in nerves growing into normal human
fetal bladders (79). Mice that have homozygous mutations for
either Hpse2 (75, 85) or Lrig2 (81) have impaired bladder
emptying. Moreover, these mice have abnormal patterns of
bladder nerves, with a depletion around the outflow tract, and
an overabundance in the body of the bladder (79). Both mutants
also show downregulated levels of bladder transcripts encoding
neuronal nitric oxide synthase (81), a protein known to mediate
bladder outflow dilatation (86). Thus, evidence is accumulating
that UFS is a peripheral neuropathy of the urinary bladder, and it
is hoped that the definition of aberrant neurobiology will suggest
logical therapies for this devastating disease.

CONGENITAL HYDRONEPHROSIS
CAUSED BY PRIMARY
URETER MALFORMATIONS

Molecularly upstream of myocardin is another transcription
factor called teashirt-3, encoded by TSHZ3 (64, 65, 87). TSHZ3
is normally expressed in mesenchymal cells at the top of the
embryonic ureter that are differentiating into smooth muscle

cells (64, 88). Homozygous mutant Tshz3 mice fail to develop
ureteric muscle in this location and, unable to peristalsis in this
location, have hydronephrotic functionally obstructed ureters
(64). Of note, humans with heterozygous deletions of TSHZ3 can
be born with malformed ureters, and these individuals also suffer
from an autism-like disorder because the same gene is expressed
in, and drives the functional differentiation of, brain cortical
neurons (89). Other transcription factors regulate smoothmuscle
differentiation in the ureter. A preliminary study suggested that
TSHZ3 interacts with SOX9 (87) and in humans mutations of
the latter gene cause a multiorgan malformation syndrome called
campomelic dysplasia (90) featuring sex reversal and hydroureter
(91). Similarly, TBX18 is a transcription factor transiently
expressed in mesenchymal cells of the embryonic ureter around
the urothelium (92). Homozygous mutant Tbx18 mice form
fibroblast-like cells rather than normal smooth muscle in this
location (92). Humans with heterozygous TBX18 pathogenic
variants have been reported (93) who have ureteropelvic junction
obstruction and hydronephrosis, a phenotype with a postnatal
prevalence of up to 0.3–0.4% newborns (20–22). Based on
cell culture experiments, it is also possible that the same
gene is required to differentiation of pacemaker cells in the
ureter (94).

POSTERIOR URETHRAL VALVES

Posterior urethral valves, a disease confined to males, is a
common cause of lower urinary tract obstruction detected
by antenatal ultrasound screening. When accompanied by
oligohydramnios and kidney damage, neonatal survival
is compromised and not significantly improved by fetal
vesicoamniotic shunting (4). The prevelance of posterior
urethral valves has been calculated to be 1 in 7,800 live births
(17). Although generally a sporadic disease, families have been
reported with more than one sibling affected (95). Moreover,
monozygotic vs. dizygotic twin studies are consistent with a
genetic component (96). Currently, however, putative genetic
bases for posterior urethral valves remain elusive. Two studies
(97, 98) have reported on a variety of copy number variants
in patients with posterior urethral valves but a convincing
pattern or stronger evidence of pathogenicity yet to emerge
for these. Of note, a preliminary study reported multiple
members over three generations affected by anatomical uretral
obstruction who carried a heterozygous non-sense mutation
of BNC2 (99). This gene codes for basonuclin 2 a zinc finger
protein that is expressed in the embryonic urethra (99).
Furthermore, experimental downregulation of the homologous
gene in zebrafish caused malformation of the distal part of
the embryonic urinary tract (99), and mutant Bnc2 mice have
malformed urethras (100).

BLADDER EXSTROPHY

In classic bladder extrophy, the front part of the bladder is
open, and this is considered an intermediate severity disorder
in the spectrum of mid-line diseases that span epispadias

Frontiers in Pediatrics | www.frontiersin.org 4 April 2019 | Volume 7 | Article 136

https://www.frontiersin.org/journals/pediatrics
https://www.frontiersin.org
https://www.frontiersin.org/journals/pediatrics#articles


Woolf et al. Genes and the Urinary Tract

and cloacal exstrophy. The prevalence has been measured
as 2.1 per 100,000 births, with a positive correlation with
maternal age (15). Genetic association studies have implicated
variation in the ISL1 locus in classic bladder extrophy, yet
pathogenic variants in the ISL1 coding region have not
been proven (101, 102). Another idea is that the association
with the ISL1 locus indicates functional variation of a non-
coding genomic region that affects ISL1 expression but this
hypothesis has yet to be proven (103). ISL1 is a transcription
factor known to be expressed in the region of the forming
mouse bladder (102). Mutant Isl1 mice have an epispadias-
like phenotype, and in normal development the encoded
transcription factor induces bone morphogenetic factor 4
(BMP4) mediated remodeling of mesenchymal cells (104). Of
note, BMP4 is also immunodetected in the walls of human
embryonic bladders (105) and other experiments suggest its
expression is under the control of sonic hedgehog, a growth factor
secreted by embryonic urothelium (65, 105). Several studies
have sought copy number variants in the bladder extrophy-
epispadias spectrum, and a small but statistically significant
subset of affected individuals have duplication of chromosome
22q11.2 (106–108). The critical region contains numerous genes
expressed in the developing kidney and urinary tract including
CRKL, encoding a transforming protein kinase, that itself has
been implicated as causing the kidney malformation found
in DiGeorge syndome (109). In this context, however, the
gene dosage is reduced (i.e., “haploinsufficiency”) rather than
amplified and, moreover, the DiGeorge syndrome does not
feature bladder extrophy.

CONCLUSIONS AND NOVEL
THERAPEUTIC PERSPECTIVES

As discussed above, the genetic breakthroughs in this field of
human disease have come from investigating families with rare
congenital urinary tract diseases. Here, studies are indicating
that the implicated genes encode smooth muscle, neural or
urothelial molecules, or master transcription factors that regulate
their expression. To date, however, variants in these same
genes do not appear to explain the more common human
non-syndromic urinary tract malformations such as primary
VUR. Whole exome sequencing, a technology that seeks
variants in the protein coding regions of all genes, is being
applied to seek likely pathogenic mutation in clinical cohorts,
including adult with chronic kidney disease (110) and children
born with a range kidney malformations (111). Such research
exercises have yielded useful genetic information in 10–14% of
cases tested.

In future, it may be informative to apply these technologies
to groups of patients born with the urinary tract malformations
described in the current review. It is important to remember,
however, that mutations may not be the only explanation
for congenital urinary tract malformations. As alluded to in
the Introduction, the fetal environment can be modified by
alterations in maternal diet or the presence of maternal disease,
such as diabetes mellitus (11–14). These non-genetic changes

might themselves perturb the normal trajectory of organogenesis.
Along the same lines, epigenetic alternations, such as DNA
methylation, may profoundly affect expression of renal genes
and thus impact on the propensity to disease. For example, such
a mechanism has recently been implicated in gene expression
of aging human kidneys (112) and there exists preliminary
evidence that similar mechanisms may be operative in human
renal malformations (113).

At least for the rare syndromes discussed in this review,
as the genetics and pathobiology becomes defined, it is
possible to begin to envisage smart biological therapies for
these diseases to complement conventional pharmacological
and surgical clinical interventions. Indeed, gene therapy, for
example mediated by viral vectors, may offer promise. In
a recent striking breakthrough, babies with spinal muscular
atrophy 1 caused by survival motor neuron 1 mutations were
intravenously administered adeno-associated virus (AAV) that
transduced SMN1, the gene that is at fault in this disease.
By 20 months the infants were alive and developing well,
whereas untreated individuals would have been expected to
have died or alive but severely paralyzed (114). The AAV viral
vector used is a non-pathogenic virus that rarely integrates
into the host genome, and numerous trials with AAV vectors
have been registered for monogenic and other disorders.
Of note, specific AAV serotypes can deliver reporter genes
into developing mouse renal tracts after maternal, embryonic
and neonatal administration; proven targets include kidneys
(AAV9), urinary bladders (AAV9) and autonomic and dorsal
root and gut ganglia (AAV8 and 9) (115–118). The urinary
tract diseases with defined genetic bases, described in this
review, meet key criteria for being suitable to be treated
with viral gene delivery. Current management for these
diseases only attempts to control symptoms, for example
with physical bladder drainage, rather than cure the disease
process. The diseases are genetically defined, with well-defined
links between the normally encoded proteins and disease
phenotypes. Moreover, there are phenotypically faithful genetic
mouse models on which to test novel biological treatments
as first steps to the clinic. The selection of patients who
may benefit from novel therapies would, however, have to be
highly judicious because the presence of a mutant gene may
not in itself be sufficient to generate a clinically significant
malformation. This is because the severity of disease in an
individual may theoretically be altered by as-yet poorly defined
modifying genes, epigenetic changes, and alterations of the
fetal environment.
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