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Hemodynamic changes during neonatal transition increase the vulnerability of the

preterm brain to injury. Real-time monitoring of brain function during this period would

help identify the immediate impact of these changes on the brain. Neonatal EEG

provides detailed real-time information about newborn brain function but can be difficult

to interpret for non-experts; preterm neonatal EEG poses even greater challenges.

An objective quantitative measure of preterm brain health would be invaluable during

neonatal transition to help guide supportive care and ultimately protect the brain.

Appropriate quantitative measures of preterm EEGmust be calculated and care needs to

be taken when applying the many techniques available for this task in the era of modern

data science. This review provides valuable information about the factors that influence

quantitative EEG analysis and describes the common pitfalls. Careful feature selection is

required and attention must be paid to behavioral state given the variations encountered

in newborn EEG during different states. Finally, the detrimental influence of artifacts on

quantitative EEG analysis is illustrated.
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1. INTRODUCTION

Postnatal adaption presents many challenges for the preterm infant, with hemodynamic changes
increasing the risk of brain injury. An immature cardiovascular system may not be able to
maintain hemodynamic stability, resulting in injuries such as peri/intra-ventricular hemorrhage
with associated adverse outcomes ranging from neurodevelopmental delay to death (1). It is
therefore important to monitor preterm brain function during the transition period. EEG is the
only cot-side tool available in the neonatal intensive care unit (NICU) to do this effectively, as
developing brain injury manifests as changes to baseline EEG (2–8)

Multichannel neonatal EEG contains complex spatiotemporal information that can be difficult
to interpret, especially for non-EEG experts. In preterm infants, the EEG develops in the most
immature neonates at 23/24 weeks’ gestational age through to full term age with three major trends:
increasing continuity, with defined periods of normal EEG quiescence for specific gestational ages;
appearance of several normal transient waveforms of prematurity; and the appearance of sleep
cycling. Assessment of an infant’s EEG against these parameters can indicate whether the maturity
of the brain is appropriate for gestational age. In addition, serial EEGs starting soon after birth
have been shown to be of use in both determining the timing and severity of brain injury and for
outcome prognosis (9). Therefore, the EEG is critical for diagnosis, treatment, and prognosis in the
newborn period.
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Experts with the level of experience required to interpret
neonatal EEG are scarce and are certainly not always available
when this information is needed, which, in the NICU, can be
at any time, day or night. As a result, in many NICUs around
the world, a simpler EEG method, using a restricted number of
spatial channels (1–2 channels) and a compressed EEG display
has been adopted—the amplitude integrated EEG or aEEG, see
example in Figure 1. aEEG was developed in the 1960s for
monitoring comatose adults in intensive care and was never
intended for monitoring the neonatal brain. However, it was
launched into a technology vacuum and adopted rapidly by
NICUs for use in full-term infants in the late 1980s because there
was simply nothing else available to provide the much-needed
insight into newborn brain function. Over the years, this device
has proved very useful in the hands of experienced users, and
digital machines now also provide 2 channels of uncompressed
raw EEG data as output (Figure 1). Non-experts still struggle to
interpret the patterns produced and to distinguish seizures from
noisy signals caused by excessive biological or environmental
interference (10, 11). The aEEG is essentially just one way to
represent the EEG quantitatively and has been used extensively
in preterm infants (including during the transitional period) and
scores of aEEG maturation have also been devised. However, this
has happened gradually without any thorough evaluation of the
aEEG as an appropriate tool for the assessment of preterm brain
function. In addition, other forms of quantitative analysis of the
preterm EEG are now being used, as outlined in the next section.

The aim of this paper is to provide an overview of quantitative
measures for the analysis of neonatal EEG that can be used
to assess neonatal brain function during transition and to
highlight the challenges that can be encountered from both
a neurophysiological and signal processing perspective. The
measures derived from the EEG using quantitative methods are
only of use if there is careful data preparation and management
prior to analysis but these steps are easy to overlook in the current
era of powerful data science techniques.

2. QUANTITATIVE EEG ANALYSIS

Quantitative EEG (qEEG) represents an alternative to the
visual interpretation of the EEG. This quantitative approach
has the potential to replace the complex, time-consuming, and
subjective process of the human interpretation of the EEG with
a simple, quick, and reproducible computer-based approach.
As a computer requires clear instructions, a mathematical
approach is needed to compute a characteristic of the EEG. This
characteristic, known as a feature, is a mathematical summary
of the EEG which reduces 1 epoch (time period) of EEG into 1
number. For example, if we calculate the standard deviation of
the EEG voltage for the two 40-s EEG epochs in Figure 3, we find
that this feature, averaged over the 6 EEG channels, is 37 µV in
Figure 3A and 53 µV in Figure 3B. Thus, we have reduced the
40-s epoch, across the 6-channels, to 1 number. The term qEEG
typically refers to a collection, or set, of these features. This set
can include a diverse range of statistical and signal processing
features, from the simple, such as the standard-deviation of the

EEG, to the more complex, such as the nonlinear, time-varying
connectivity among the EEG channels.

Quantitative EEG has been used extensively in preterm EEG
analysis. For example, for preterm infants<32 weeks of gestation,
qEEG has been shown to mirror maturation (12–26) and has
been used to identify and quantify a temporal evolution of
the EEG after birth (27–30). Quantitative EEG has also been
used to detect bursts within the EEG (23, 31–39), detect early
brain injury (7), and to predict neurodevelopmental outcomes
(29, 40–42). However, the real power of qEEG may lie in
coupling the feature set with machine learning methods to
develop specific classification and regression algorithms. These
algorithms are trained and tested on human annotations of
the EEG. Recent developments in this area include regression
algorithms for estimating the functional maturation of cortical
activity (30, 43–45) and classification algorithms for determining
sleep cycles (46–48).

We now present examples of qEEG features used in this
report. Probably the most common qEEG feature is spectral
power. This feature describes the average power for different
frequency bands. Suitable bands for preterm EEG are 0.5–
3, 3–8, 8–15, and 15–30 Hz (30, 39, 49). An example of
these different frequencies are presented in Figure 2A, where
a filter splits the EEG into the four frequency bands. The
higher frequencies comprise of the faster oscillations whereas the
lower frequencies comprise of the slower oscillations. Figure 2B
shows the spectrum of the same EEG signal, plotted in decibels
(dB) to highlight the contribution of the higher frequencies.
(Without this logarithmic plot it is difficult to visually assess
the contribution of the higher frequencies because they are of
such low power.) Also included in Figure 2B is the spectral
power values (in units of µV2) for each frequency band. Relative
spectral power, another qEEG feature, is the proportion of power
in each frequency band. For our example in Figure 2B, we find
that 95.6% of the spectral power is concentrated in the 0.5–3 Hz
band, compared to just 0.3% of the spectral power in the 15–
30Hz band. And the last frequency-related feature presented here
is the fractal dimension. This feature captures a measure of the
shape of the frequency spectrum. If we plot the spectrum on a
log–log scale and then fit a line to this plot, the slope of the line is
proportional to the fractal dimension (50, 51). Figure 2C shows
an example of this, where we find that the slope of the fitted line,
−26 dB/decades, equates to a fractal dimension of 1.2 (50, 51).

Other qEEG features are estimated directly on the time-
domain EEG signal. An example of this is the maximum duration
of the inter-burst interval (IBI). To distinguish the bursts from
the inter-bursts, we use an automated method to detect the inter-
bursts (39). Everything not detected as inter-burst is classified
as bursts, which may include continuous EEG activity (39).
Figure 2D shows an example of the annotations generated by
this automated method. From this burst/inter-burst annotation,
we then generate quantitative features such as maximum IBI or
percentage of bursts. Next, to capture a long-duration trend of the
EEG we use the range-EEG (rEEG) (18, 38). This was proposed
as an alternative to the aEEG because the aEEG—despite its
widespread use—is lacking a common definition and will differ
from EEGmachine to EEGmachine. From the rEEG, we estimate
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FIGURE 1 | Eight hours of aEEG from a preterm neonate (28 weeks’ gestational age) from 6 h of birth. Top two channels show the aEEG from the right and left

fronto-central region of the brain and the bottom two channels show 26 s of raw EEG for a point in time marked with an arrow. The aEEG is a compressed EEG signal

that has been heavily filtered and then displayed on a semi-log scale. Short duration features of the EEG are impossible to recognize but overall trends are evident.

trends such as the median, lower- and upper-margins as plotted
in example in Figure 2E, and then average over time to generate
the feature.

And finally, to quantify some form of connectivity between
brain regions, a simple and robust approach is to quantify inter-
hemispheric connectivity using EEG coherence. This approach
summarizes global connectivity by estimating the coherence
between all channel pairs on the 2 hemispheres, for example
between F3-C3 and F4-C4, C3-T3, and C4-T4, and so on.
Figure 2F shows 2 examples for 2 preterm infants, one with
a higher level of coherence (left) comparative to the other
(right). After coherence is estimated between channel pairs, a
global average (median value) is generated as the frequency-
dependent inter-hemispheric coherence. This coherence value
is then summarized by taking the average for each of the four
frequency bands, similar to the process for spectral power. The
threshold in Figure 2F eliminates spurious coherence values by
re-defining the zero-coherence level (52).

Before implementing qEEG analysis, it is important to
consider a number of factors. First, the selected epoch must
be representative of the EEG record, as different EEG activity
states influence the qEEG. Second, the feature set is dependant
on the application. And third, the EEG must be free from
artifacts, otherwise this will distort the analyses. Therefore, it
is important to consider the different activity states, before
analysis. To highlight the seriousness of these points, we next
present 3 qEEG examples generated from different cohorts of
newborn EEG. The qEEG features are generated using NEURAL
[a neonatal EEG feature set in Matlab, version 0.3.3 (53)]; full
implementation details can be found in O’Toole and Boylan (54).
We also recommend a procedural approach for qEEG analysis to
avoid common pitfalls.

3. EXAMPLE 1: QUANTITATIVE FEATURES
TO CAPTURE DIFFERENT EEG STATES

This first example examines the importance of selecting the right
feature set. We compared quantitative features in different EEG
vigilance states in preterm infants <32 weeks of gestation. The
EEG of preterm infants at this age cycles between two different
states of EEG activity. Discontinuous activity consists of short-
duration, high-amplitude bursts intermixed with periods of low-
amplitude activity, known as inter-bursts; continuous activity
consists of mixed frequency activity, without bursts or inter-
burst periods. Figure 3 shows an example to illustrate the large
differences between these two types of EEG activity.

To be of use, quantitative analysis should be able to capture
the complexity of the preterm EEG, and thus should discriminate
between segments of discontinuous and continuous activity.
Standard deviation of the EEG, the first example feature we
presented in the previous section, would not be a useful feature,
as there is little difference between the two values (37 and 53 µV)
for the two visually different epochs in Figure 3.

We used fully anonymized EEGs from 21 preterm infants
recorded within the first few days of birth and selected 2–3
epochs of well-defined continuous activity, and 2–3 epochs of
well-defined discontinuous activity, from each EEG record. Each
epoch was selected to be artifact free and was approximately 60
s in duration. The median gestational age of the infants was 27.7
weeks, ranging from 25.1 to 31.3 weeks of gestation.

We then estimated qEEG features on each epoch, taking the
median across the 2–3 segments for each infant for each activity
type. The feature set included spectral power, relative spectral
power, interhemispheric coherence, spectral edge frequency,
fractal dimension, the median, lower-margin, and upper margin
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FIGURE 2 | Calculating quantitative EEG features. Clockwise from top left (A): sample of 1 channel of EEG (top) filtered into 4 frequency bands (below). Note the

low-amplitude of the higher frequency bands (>15 Hz). (B) Spectrum of the EEG signal in (A) in decibels. Includes spectral power values and relative-spectral power

for each frequency band. Blue arrow at 2.7 Hz marks the spectral edge frequency, indicating that 95% of the signal power is contained within 0–2.7 Hz. (C) Log-log

plot of the spectrum of the EEG signal from (A). Fractal dimension is a measure of the slope of the line (red line) fitted to the spectrum. (D) Two epochs of EEG (from 2

preterms) with annotated inter-bursts (the area not annotated is considered as a burst). Burst/inter-bursts annotation generated from a preterm burst-detector

algorithm. (E) Range-EEG (rEEG) for 1 h of EEG for 1 channel with median, lower-, and upper-margins highlighted. (F) Inter-hemispheric coherence (bottom)

estimated from 10 min of EEG (spectra, top) from 2 preterm infants (left and right).
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FIGURE 3 | Examples of continuous (A) and discontinuous (B) EEG activity from 2 preterm infants of gestational age 30 weeks 0 days in (A) and 27 weeks 0 days in

(B). Quantitative features in (C) distinguish between continuous and discontinuous EEG activity. EEG from 21 infants recorded within days after birth. Dots represents

AUC (area under the receiver operator characteristic) and lines represent 95% confidence intervals. AUC values of 0.5 represents random chance and 1 represents

maximum separation. IBI, inter-burst interval; rEEG, range-EEG; LM, lower margin; UM, upper margin; SP, spectral power; FD, fractal dimension. Frequency bands:

f1, 0.5–3 Hz; f2, 3–8 Hz; f3, 8–15 Hz; and f4, 15–30 Hz.

of the rEEG (54). Absolute and relative spectral power, in
addition to coherence, were estimated in the four frequency
bands: 0.5–3, 3–8, 8–15, and 15–30 Hz (39, 44); rEEG was
estimated in 1–20 Hz bandwidth. We also included a burst
detection algorithm to estimate the burst ratio and maximum
IBI (39). This feature set was introduced in the previous section
and in Figure 2. We then calculated the area under the receiver
operator characteristic (AUC), with 95% confidence intervals
(CIs) using bootstrapping with 1,000 iterations.

The features were ranked according to AUC in Figure 3C.
Maximum IBI and burst-ratio were the most discriminating
features—not surprising given that discontinuous activity is
defined by the presence of bursts and inter-burst. Features of
the range EEG (median and lower-margin) also performed well,
indicating that the peak-to-peak analysis of the EEG is a good
discriminating factor for the two activity types. Lower down the
list is spectral power, with relative spectral power even lower.
We concluded from this experiment that multiple features, in
this case features of the temporal organization of the EEG, are
relevant to this specific application. Whereas, the more common
features such as spectral power (absolute and relative) and
spectral edge frequency are less useful at describing the visually
obvious differences between EEG activity types.

4. EXAMPLE 2: MATURATION AND QEEG

To highlight again the importance of the right feature for the
right application, we show how some features are representative
of increasing maturation of the preterm brain, whereas other
features do not quantify this change. For this we use the same

feature set from the preceding example, which includes spectral
measures (absolute and relative powers, coherence, fractal
dimension, and spectral edge), connectivity (interhemispheric
coherence), measures of peak-to-peak amplitude (features of
the range EEG), and measures of the burst-inter-burst pattern
(features from the burst annotation).

We then selected a 1 h fully anonymized EEG epoch from
23 preterm infants at 24 h postnatal age. Gestational age ranged
from 24 to 31.6 weeks, with a median of 28.4 weeks. These
EEGs were determined to be appropriate for gestational age,
without abnormalities and free from major artifacts (44). The
infants had a normal clinical course, without significant adverse
events or medication likely to alter the EEG at this time point.
An algorithm was used to identify and remove segments of
the EEG epoch with artifacts, such as movements or electrode
problems (54).

The feature set was generated from the 1 h epochs and each
feature was correlated with gestational age. We used gestational
age as a marker for functional brain maturation, as functional
activity is linked to growth (maturation) of the preterm brain
(55). We generated Pearson’s correlation with 95% CI for each
feature, using bootstrapping to generate the CIs. Features are
ranked accorded to correlation in Figure 4B, and we observed
varying degrees of performance for the different features. Note
that the highest ranking features in Figure 3C for the previous
application are not always the same features ranked highly in
Figure 4B. For example, fractal dimension is the highest (1st)
ranking feature in Figure 4B but the lowest (last) in Figure 3C.
Again, the common spectral power measures (absolute and
relative) are not the highest ranking features. Figure 4A shows
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an example of significant correlation between the features and
gestational age for both the fractal dimension feature and the
maximum inter-burst interval features. Figure 4A also shows
how the 0.5–3 Hz relative spectral power is, for this example,
completely independent (|r| < 0.01) of gestational age.

5. EXAMPLE 3: ARTIFACT AND EEG

In this last example we examined the effects of artifacts on
the qEEG. Artifacts can be biological in origin, such as muscle
movement or ECG, and non-biological in origin, such as
electrical interference or changing electrode impedance; a more
thorough description of common neonatal EEG artifacts can
be found elsewhere (56, 57). In a clinical setting it is difficult
to record neonatal EEG without encountering some artifacts.
Typically, the quantity of artifacts increases with duration of EEG
monitoring and the frequency of clinical or routine interventions.
The purpose of this example is to show how the qEEG features
change when EEG becomes contaminated with artifacts.

We examined the fully anonymized EEG from 38 term
infants recorded in the NICU within days after birth. Artifacts
were annotated on a channel-by-channel basis and included
artifacts from cardiac and respiratory sources, artifacts caused by
movement and muscle activation, and artifacts caused by poor
electrode contact. Examples of different artifacts are presented in
Figure 5. This cohort was used in a previous study to develop an
automated artifact detection system (58). For each EEG recording

from each infant, one epoch of artifact-free EEG was selected
and combined with the artifact to build varying percentages of
artifact-to-EEG. Specifically, we generated epochs with 15, 30, 60,
and 100% of the duration consisting of artifacts.

A set of qEEG features were computed for each epoch,
consisting of spectral power (absolute and relative), spectral
edge frequency, fractal dimension, skewness of the EEG, and 3
rEEG features (mean, lower- and upper-margins). The spectral
power and EEG skew features were computed for four frequency
bands: 0.5–4, 4–7, 7–13, and 13–30 Hz; the rEEG was computed
on the 1–20 Hz band. Before generating the feature set, the
EEG was low-pass filtered to 30 Hz and then downsampled
to 64 Hz. Figure 6 shows how a feature (spectral power at
different frequency bands) changes over time in response to an
artifact, thus highlighting the deleterious nature of the presence
of artifacts.

To assess the influence of artifacts on the estimation of
the features, we compare the segments of each epoch without
artifacts to the epoch containing a percentage of the epoch. For
example, we compared the spectral power generated using an
artifact-free epoch to the spectral power generated from an epoch
containing 10% artifact. These results are plotted in Figure 7 for
the four different percentage of artifacts. To plot all features side-
by-side, the features are normalized by subtracting the median
and dividing by the interquartile range of the feature estimated
on the artifact-free epoch. Figures 7A,B show that there is no
difference for all features between the epochs without artifacts
and the epochs containing 15 and 30% artifacts. In Figure 7C,

FIGURE 4 | Tracking maturation with quantitative features. Three features in (A) showing high (top), medium (centre), and low (bottom) levels of correlation with

gestational age (GA). Lines represent least-squares fit (red, centre) with 95% prediction intervals (yellow, top and bottom). Plots show features for 1-h epochs of EEG

(dots) in 23 preterm infants. Pearson’s correlation coefficient for all features in (B). Dots represents Pearson’s correlation coefficient and lines represent 95%

confidence intervals. IBI, inter-burst interval; rEEG, range-EEG; LM, lower margin; UM, upper margin; SP, spectral power; FD, fractal dimension. Frequency bands: f1,

0.5–3 Hz; f2, 3–8 Hz; f3, 8–15 Hz; and f4, 15–30 Hz.
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FIGURE 6 | Effect of artifacts on spectral power (SP) measures for the frequency bands 0.5–3 Hz (f1 in A) and 15–30 Hz (f4 in B). SP is calculated within a 4 s window

with 50% overlap for the 50 s EEG (1-channel only). Inset in (B) shows zoom of EEG artifact.

only 4/17 features significantly (P < 0.05) differ for the different
epochs. But in Figure 7D, which compares the EEG to the artifact
(100% artifact), we see greater differences with 12/17 significant
features. This last result is as expected: qEEG features generated
from artifacts will differ to the features generated from non-
artifact EEG. Although what may be of concern is that the 4–7
Hz spectral power feature, the 13–30 Hz relative-spectral power
feature, and none of the rEEG features differed between the EEG
and artifacts. This implies that these features are incapable of
distinguishing between cortical activity generated EEG and non-
cortical activity generated EEG. For the other features, we could
say that these features are robust to EEG contaminated with a
large percentage of artifacts, in some cases up to 30% or even 60%.
Or we could say that because the majority (60%) of the EEG is
artifact in Figure 7C, only a few features differ significantly to the
artifact-free EEG, thus indicating that these features are incapable
of distinguishing between EEG and artifact.

6. PROCEDURE FOR COMPUTING QEEG

Figure 8 presents a process for generating qEEG considering the
issues explored in the previous three examples. The first step

in Figure 8 requires an experienced clinical neurophysiologist
to prune an epoch from the total EEG recording. This epoch
should be as free as possible from contaminating artifacts
and also be of appropriate duration for the application. The
second step acknowledges that there will often be some artifacts
still present in the EEG and that these segments of the
epoch should be excluded from further analysis. This can be
achieved either manually, from visual inspection by the EEG
expert, or using an automated procedure, such as existing
artifact-detection algorithms (54, 58). The third step should
stress the importance of selecting the right feature set for the
application: there is no generic feature that will be optimal
for all applications in preterm EEG. For example, as the
results in Figure 3 show, spectral power does not sufficiently
describe the EEG when distinguishing between different activity
states nor is it sufficient to estimate functional maturation of
the EEG.

7. DISCUSSION

Quantitative EEG is a powerful tool for the objective analysis of
the EEG. Artifacts have a detrimental effect on the qEEG and
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FIGURE 7 | Comparing features with and without varying degrees of artifact. Features generated from 38 term infants EEG with (A) 15%, (B) 30%, (C) 60%, and (D)

100% artifacts. SP, spectral power; FD, fractal dimension; SEF, spectral edge frequency; rEEG, range-EEG; LM, lower margin; UM, upper margin; Frequency bands:

f1, 0.5–4 Hz; f2, 4–7 Hz; f3, 7–13 Hz; and f4, 13–30 Hz. Stars denote statistical significance from Mann–Whitney tests: ***P < 0.001, **P < 0.01, and *P < 0.05

comparing between EEG epochs and EEG epochs with artifacts. Dots represent median values and lines represents inter-quartile range.

should be minimized. Many features are sensitive to maturation
and activity states and both should be considered before analysis.
Different applications will require different feature sets, and
common features such as spectral power or relative spectral
power are not sufficient to represent the complexity of the
preterm EEG.

As we have shown, it is important that the EEG is free
from artifact or contains only minimal artifact. At the very
least, it is essential to be aware of the quantity and nature
of this artifact before qEEG analysis. This requires human
intervention: an EEG expert must review the EEG and select
segments that are relatively artifact-free before computing the
qEEG features. In the future, automated methods may be
able to replace this step (58–60), but to-date none exist for
preterm EEG. Even when an expert prunes a segment of
EEG for analysis, some artifacts are unavoidable and in this
instance it may be helpful to remove periods of artifacts

using a simple rule-based procedure (54) or more sophisticated
algorithms (60).

Although artifact is a consequence of EEG monitoring in an
intensive care environment, there are specific challenges unique
to the preterm EEG. First, the epoch used to generate the qEEG
must either be long enough, such as 1 h or more, to encompass
different states; or, care must be taken to ensure that the EEG
activity states are similar between comparison groups. We have
demonstrated in section 3 that for many qEEG features, there is
a clear separation between activity states. Second, as highlighted
in section 4, many features are dependent on gestational age;
this extends to maturation in general as there is also a similar
progression for postmenstrual age when the EEG monitoring is
beyond the first days of life (13–26). This relation is so strong
that a combination of qEEG features can be used to predict
gestational age with a high level of accuracy (30, 44, 45). Thus,
in studies comparing between different preterm groups it may
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FIGURE 8 | Procedure for generating qEEG from continuous EEG.

be necessary to control for gestational or postmenstrual age.
And third, a recent study has quantified the impact of postnatal
adaption to extrauterine life on the qEEG (30). Increased cerebral
perfusion during this period may significantly alter cortical
activity and thus the qEEG. This study finds an increase in
cortical activity, as measured by the qEEG, over the first 3 days
of life that is similar to 2–6 weeks of intra-uterine maturation
(30). Thus just as gestational age is integral to the assessment
of preterm EEG, postnatal age (hours after birth) is also an
important factor for preterm qEEG. Postnatal age over the
transitional period should also be considered in addition to
gestational age.

And lastly, two other important considerations for qEEG are
worth mentioning. The first is the problem of how to define
the qEEG feature set. There is no one-size-fits-all solution to
this problem, as there is an ever-increasing array of statistical
and signal processing features that could be considered as
qEEG features. The best approach to tackling this problem
is to focus on the specific application: what feature set best
represents the EEG epochs for this problem? For example, in
Figure 4 we see that fractal dimension is the best feature for
estimating gestational age whereas it is the worst feature for
distinguishing between discontinuous and continuous activity

(Figure 3). In addition, it is better to include a large array of

qEEG features instead of one or two, such as the commonly used
spectral power and relative spectral power measures. A handful
of measures may not be sufficient to represent the complex,
dynamic preterm EEG. For example, the fractal dimension
feature in Figure 4 has the highest ranking correlation with
gestational age of r = 0.75, however when multiple features
are combined using machine learning methods this correlation
has been reported to be as high as r = 0.89 (44) and
r = 0.94 (45).

The second problem is that there is no standard for
how qEEG features are defined. As most publications do
not provide the computer code to generate the features
or provide enough details to implement the features, this
presents an obstacle to reproducible research. But possibly
more troublesome is that the lack of a standard for qEEG
makes it difficult to compare results across different studies.
We have made an attempt to address this problem by
producing open and freely available computer code (53, 61),
with full implementation details (54), to define a standard
for some of the most common qEEG features. This can only
succeed, of course, if the research community engages on
this issue.

In conclusion, qEEG in preterms has been successfully
applied to many applications of clinical relevance, such as
tracking functional maturation, detecting, and even predicting
early brain injury, and predicting long-term outcome. We have
outlined some key issues that should be considered before
implementation, such as artifacts, use of representative epochs,
appropriate feature sets for the right application, and the
advantages associated with a standard qEEG implementation.
Future directions could include the development of an
automated scoring system of the preterm EEG using qEEG,
a system to quantify the level of abnormalities in the EEG
with application to grading EEGs and predicting long-term
neurodevelopmental outcome. Clearly, there are many problems
to solve before qEEG can be used for routine preterm
EEG analysis and more specifically during the vulnerable
transition period.
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