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Objective: The conventional Fontan circulation deviates the superior vena cava (SVC =

1/3 of the systemic venous return) toward the right lung (3/5 of total lung volume) and the

inferior vena cava (IVC = 2/3 of the systemic venous return) toward the left lung (2/5 of

total lung volume). A “physiological” Fontan deviating the SVC toward the left lung and the

IVC toward the right lung was compared with the conventional setting by computational

fluid dynamics, studying whether this setting achieves a more favorable hemodynamics

than the conventional Fontan circulation.

Materials and Methods: An in-silico 3D parametric model of the Fontan procedure

was developed using idealized vascular geometries with invariant sizes of SVC, IVC, right

pulmonary artery (RPA), and left pulmonary artery (LPA), steady inflow velocities at IVC

and SVC, and constant equal outflow pressures at RPA and LPA. These parameters

were set to perform finite-volume incompressible steady flow simulations, assuming

a single-phase, Newtonian, isothermal, laminar blood flow. Numerically converged

finite-volume mass and momentum flow balances determined the inlet pressures and

the outflow rates. Numerical closed-path integration of energy fluxes across domain

boundaries determined the flow energy loss rate through the Fontan circulation. The

comparison evaluated: (1) mean IVC pressure; (2) energy loss rate; (3) kinetic energy

maximum value throughout the domain volume.

Results: The comparison of the physiological vs. conventional Fontan provided these

results: (1) mean IVC pressure 13.9 vs. 14.1 mmHg (= 0.2 mmHg reduction); (2) energy

loss rate 5.55 vs. 6.61 mW (= 16% reduction); (3) maximum kinetic energy 283 vs. 396

J/m3 (= 29% reduction).

Conclusions: A more physiological flow distribution is accompanied by a reduction

of mean IVC pressure and by substantial reductions of energy loss rate and of peak

kinetic energy. The potential clinical impact of these hemodynamic changes in reducing

the incidence and severity of the adverse long-term effects of the Fontan circulation, in

particular liver failure and protein-losing enteropathy, still remains to be assessed and will

be the subject of future work.

Keywords: congenital heart defects, congenital heart surgery, Fontan procedure, flow modeling, computational

fluid dynamics, performance prediction, physiological design, univentricular heart
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INTRODUCTION

The principle of the Fontan circulation, successfully introduced
by Frances Fontan for a patient with tricuspid atresia (1)
in the early seventies, has been since applied to a huge
variety of congenital heart defects, with various morphologies.
All these complex congenital heart defects share the same
characteristic of having “functionally” univentricular hearts,
because of the presence of only one ventricle morphologically
and/or functionally adequate to support the systemic circulation,
pumping the oxygenated blood into the aorta (2–7). In the
Fontan circulation, the low oxygen saturation blood returning
from the superior vena cava (SVC) and from the inferior vena
cava (IVC) is deviated directly through the lungs by various types
of surgical connections with the pulmonary arteries (8).

A preparation is generally required in the neonatal period to
either increase (9–11) or decrease (12–17) the pulmonary blood
flow, or to use the right ventricle and the proximal pulmonary
artery to provide blood flow to the systemic circulation (18–
20), with the pulmonary blood flow obtained with either a
modified Blalock-Taussig shunt (21, 22) or with a right ventricle
to pulmonary artery conduit (23).

The vast majority of children with balanced forms of
univentricular heart require a surgical palliation early in life
(4, 24–26). After the neonatal palliation, the Fontan circulation
is generally established in two stages: an end-to-side connection
between the SVC and the right pulmonary artery (bi-directional
Glenn) (27–31), followed later by the Fontan completion, with
the connection of the IVC to the pulmonary artery. Early
techniques of direct atrio-pulmonary connection have been
virtually abandoned in subsequent years, so that the two Fontan
completion techniques most frequently utilized nowadays are the
lateral tunnel, or intra-cardiac Fontan (32–34), and the extra-
cardiac Fontan, connecting the transected stump of the IVC
to the pulmonary artery with the interposition of a tubular
prosthesis (35–38).

The long-term results of the Fontan circulation are
complicated by substantial morbidity. This includes: chronic
venous hypertension with increased hydrostatic capillary
pressure, recurrent pericardial and pleural effusions, ascites,

generalized fluid retention, renal failure, hepatic failure,
gastro-intestinal dysfunction, supra-ventricular and ventricular
arrhythmias, pulmonary and systemic thromboembolism,
protein-losing enteropathy, pulmonary arterio-venous
malformations and veno-venous collaterals, persistent
and/or progressive hypoxemia, progressive impairment
of the ventricular function, exercise intolerance, plastic
bronchitis (39–69).

Mathematical models and computational fluid dynamic
(CFD) studies have been extensively applied to assess the various
types of cavo-pulmonary connections (70–87).

All current surgical techniques for the completion of the

Fontan circulation deviate the blood from the SVC, which

constitutes approximately 1/3 of the systemic venous return, to

the right lung, occupying 60% of the total lung volume, while
the blood from the IVC, which constitutes ∼2/3 of the systemic
venous return, is deviated to the left lung, with 40% of the

FIGURE 1 | Conceptual arrangement of the new physiological

Fontan procedure.

total lung volume. Deviating the larger flow rate towards the
lower volume lung and the converse suggests an unfavorable
flow distribution, which may contribute to the poor long-term
outcomes listed above.

The purpose of this study is to evaluate, using CFD models,
a new “plumbing” for the completion of the Fontan circulation,
with the SVC smaller venous return channeled toward the smaller
left lung and the IVC larger venous return deviated toward
the larger right lung, so that the ranking of the two blood
flow rates matches the size ranking of the lungs. This study
investigates whether this new proposal for the Fontan procedure,
herein named “physiological” Fontan, can provide a better flow
distribution than the “conventional” extra-cardiac Fontan.

MATERIALS AND METHODS

An in-silico three-dimensional (3D) parametric model of
the physiological Fontan circulation was developed with the
positions of the SVC and IVC connections varied along the
pulmonary arteries (Figure 1). Idealized vascular geometries
were constructed with constant dimensions of the SVC, the IVC,
and the right and left pulmonary arteries. Steady velocity inflows
for the IVC and SVC and constant equal outflow pressures for
the right and left pulmonary arteries were set accordingly to
established literature reports (70–84), to obtain finite-volume
incompressible steady flow simulations, assuming a single-phase,
Newtonian, isothermal, laminar blood flow.

The key reference data for dimensioning the vascular
geometry were a 3.5 year old subject, body weight 16 kg, height
98 cm, body surface area 0.65 m2, and total cardiac output
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2.6 L/min, with an indexed cardiac output of 4 L/min/m2.
The pulmonary artery length ℓ, measured as the straight-
line distance between the first branching of the right and left
pulmonary arteries, was 7.3 cm. For comparison purposes, a
baseline configuration was defined by modeling the conventional
Fontan circulation, with the SVC confluence at 0.9 ℓ from the
left pulmonary artery and the IVC confluence at 0.6 ℓ from the
left pulmonary artery, with a right-angle (90◦) connection for
the SVC and a 75◦ connection facing toward the left pulmonary
artery for the IVC. In the parametric model of the physiological
Fontan, the IVC confluence was varied over the range 0.77 ℓ ≤

x ≤ 0.92 ℓ from the first branching of the left pulmonary
artery. The IVC confluence angle with the pulmonary artery was
varied with 15◦ increments between 60◦ and 90◦. The SVC was
connected to the pulmonary artery at a fixed angle of 60◦. This
connection was held at 0.50 ℓ from the first branching of the left
pulmonary artery considering this as the maximum free length of
transected SVC available after adequate surgical dissection when
performing a bidirectional Glenn procedure.

These parametrized geometries defined the computational
domain for finite-volume steady incompressible flow
simulations, assuming a single-phase, Newtonian, isothermal,
and laminar blood flow, of constant density ρ = 1060 kg m−3

andmolecular viscosity 3.5 ×10−3 kgm−1 s−1. A 3D solid model
of the computational domain was obtained using the commercial
Computational Aided Design (CAD) package Solidworks 2018
(Dassaut Systèmes, Vélizy-Villacoublay, France), in which all
surfaces were rendered as non-uniform rational basis splines
(NURBs) for dimensional accuracy. Two mm radius fillets were
applied at the edges of all vascular intersections to reproduce the
natural behavior of the tissue that rounds off at the anastomoses.

The computational domains were meshed by a five-layers
thick prism carpet mesh lining the walls that surrounds
an unstructured tetrahedral mesh. A sample mesh of a
conventional Fontan configuration is shown in Figure 2. The
spatial discretization was obtained by the commercial CFD pre-
processor ICEMCFDbyANSYS Fluent (Ansys Inc., Canonsburg,
Pennsylvania, USA). Care was taken to produce meshes with
adequate cell orthogonality and aspect ratio in light of current
CFD practice. The cell orthogonality and aspect ratio were used
as mesh quality parameters. In the conventional Fontan, 1% of
the cells have orthogonality <0.4 and 1% of the cells have aspect
ratio higher than 11.1. These values were also representative
of the meshes obtained for the parametrized geometry for
the physiological Fontan. A judicious selection of the spatial
discretization level was used, based on textbook examples of
laminar flows in pipes (88). The appropriateness of this selection
is tested later on in this article by determining the variability
of the predictions over six different computational meshes, with
1M, 2M, 4M, 8M, 12M, and 18M cells, respectively, for both the
conventional and the physiological Fontan settings.

Boundary conditions were imposed over all cells outwards-
facing the computational domain. The no-slip condition was
applied on all walls. Parabolic velocity profiles at SVC and
IVC inlets were used with a prescribed steady mass flow rate.
Specifically, the SVC drained 1/3 and the IVC carried 2/3 of
the total systemic venous return. The right and left pulmonary
arteries were set at constant equal outflow pressures as previously

FIGURE 2 | Computational domain of the conventional Fontan configuration

meshed by a five-layers thick prism carpet mesh lining the walls that surrounds

an unstructured tetrahedral mesh.

reported in other CFD studies (87). This fully defined the
boundary value problem in hand.

Numerical solutions of the flow were obtained using
the commercial CFD package ANSYS Fluent (Ansys Inc.,
Canonsburg, Pennsylvania, USA). Laminar flow simulations
were obtained by application of the Semi-Implicit Method for
Pressure Linked Equations (SIMPLE) (85), using a second order
accurate upwind scheme for the velocity components (86). For
numerical stability, under-relaxation factors of 0.7 and 0.4 were
used for velocities and pressure, respectively. The convergence
of the numerical solution was monitored by the residuals of the
mass and of the momentum balances. Convergence was taken as
a reduction to below 10−4 of the starting value of these residuals.

Numerically converged finite-volume mass and momentum
flow balances determined the pressures and flow rates at
the inlets and outlets from solving the model. Numerical
closed-path integration of the energy fluxes across the domain
boundaries determined the flow energy loss rate through the
Fontan plumbing.

With invariant sizes of SVC (diameter = 7.5mm), IVC
(=18mm conduit), right (diameter= 7.5mm) and left (diameter
= 7.5mm) pulmonary arteries, invariant flows from SVC and
IVC (output indexed/body surface area = 4 L/min/m2 of
body surface area), and invariant right and left pulmonary
artery outflow pressures (=12mm Hg), the comparison between
the conventional extra-cardiac Fontan and the physiological
Fontan plumbing evaluated: (1) mean IVC pressure; (2) energy
loss rate; (3) kinetic energy maximum value throughout the
domain volume.
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TABLE 1 | Energy loss rate in mW from 21 configurations of “physiological”

Fontan as predicted by CFD.

θ = 60◦
θ = 75◦

θ = 90◦

0.77 ℓ 5.66 5.94 6.02

0.78 ℓ 5.70 5.91 6.12

0.81 ℓ 5.55 5.80 5.79

0.85 ℓ 5.57 5.75 5.96

0.88 ℓ 5.71 5.91 6.08

0.91 ℓ 5.84 5.98 6.10

0.92 ℓ 5.88 6.01 6.19

Twenty-one numerical experiments were conducted by
systematically varying the IVC angle and location of confluence
with the pulmonary artery (three angles and seven locations).
The most promising configuration was identified based on the
predicted lowest energy loss rate.

RESULTS

Energy loss rates for all the 21 tested configurations are reported
in Table 1. Reported values are of the same order of magnitude
as in previous CFD simulations of the Fontan circulation (75, 88,
89). The physiological Fontan with the IVC angle of confluence
of 60◦ and centerline confluence x = 0.81 ℓ is the configuration
that has comparatively the lowest energy loss rate among the 21
variants considered in this study. Hence this is singled out as the
preferred configuration.

A more detailed comparison between this configuration and
the conventional Fontan was performed to identify flow features
potentially responsible for the observed changes in the energy
loss rate. Figure 3A shows the ribbons representing the predicted
streamlines from the conventional Fontan model, using the 1M
cells discretization. The ribbons were color coded by kinetic
energy per unit volume. Most of the streamlines from the IVC
were predicted to confluence toward the LPA, while the SVC was
predicted to mainly supply the RPA (Figure 3A). The confluence
from the SVC and IVC toward the RPA was characterized by
localized flow acceleration that generated a kinetic energy peak
shown in red in Figure 3A. This peak was about 350 J/m3. In the
modeled laminar flow, energy was lost by viscous stresses caused
by the velocity gradients in the flow. The kinetic energy peak
indicated local high values of velocity and, by inference, a high
velocity gradient to the surrounding stationary walls.

Figure 3B shows the corresponding predictions from the
physiological Fontan, using the same notation and color scale
for kinetic energy per unit volume as Figure 3A. Approximately
the same spatial discretization of 1M cells was used. In the
physiological Fontan, most of the streamlines from the IVC were
predicted to confluence toward the RPA. The IVC confluence
angle of 60◦ appeared to yield a less tortuous flow path through
the PA compared to Figure 3A, as suggested by a reduced
twisting in the ribbons just above the IVC anastomosis. In this
configuration, the kinetic energy peak per unit volume was
reduced to about 250 J/m3, as shown by the green iso-level,

FIGURE 3 | Streamlines predicted by CFD colored by the flow kinetic energy

per unit volume: (A) conventional extracardiac Fontan; (B) new

physiological Fontan.

representing the peak iso-level in these ribbons. This reduced
peak kinetic energy was expected to reduce the flow shear rate
and thereby to reduce the viscous losses. This hypothesis was
confirmed by the evaluation of the energy loss rate by integration
over the inlets and outlets of the modeled vascular systems.

The comparison of the physiological vs. the conventional
extra-cardiac Fontan provided the following results: (1) mean
IVC pressure 13.9 vs. 14.1 mmHg (=0.2 mmHg reduction); (2)
energy loss rate 5.55 mW vs. 6.61 mW (=16% reduction); (3)
peak kinetic energy per unit volume 283 J/m3 vs. 396 J/m3

(=29% reduction).
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TABLE 2 | Performance of six realizations of the “physiological” Fontan, predicted

on different CFD meshes.

Mean IVC pressure

(mmHg)

Energy loss rate

(mW)

Peak kinetic energy

(J/m3)

1M 13.92 5.55 284

2M 13.92 5.55 289

4M 13.95 5.66 290

8M 13.94 5.65 288

12M 13.96 5.67 292

18M 13.96 5.61 290

Mean 13.94 ± 0.017 5.62 ± 0.05 289 ± 3

TABLE 3 | Performance of six realizations of the conventional Fontan, predicted

on different CFD meshes.

Mean IVC pressure

(mmHg)

Energy loss rate

(mW)

Peak kinetic energy

(J/m3)

1M 14.05 6.61 396

2M 14.07 6.66 424

4M 14.05 6.54 421

8M 14.05 6.53 415

12M 14.05 6.53 423

18M 14.05 6.54 436

Mean 14.05 ± 0.008 6.57 ± 0.05 419 ± 13

At this point, we tested the sensitivity of the predictions to
the spatial discretization used in the model, which, although
judiciously selected based on the established CFD practice (88),
represented an arbitrary model input. To this end, the best
performing physiological Fontan geometry was modeled on six
different computational meshes of approximate node numbers of
1M, 2M, 4M, 8M, 12M, and 18M. Table 2 shows the predicted
values from each computation, the ensemble mean, and the
95% confidence interval for the ensemble mean, based on the
t-distribution of six samples. Table 3 shows the corresponding
values from the conventional Fontan simulations.

Table 2 shows that the ensemble mean and 95% confidence
interval for energy loss rate for the physiological Fontan is
5.62 ± 0.05 mW against the corresponding result for the
conventional Fontan of 6.57 ± 0.05 mW from Table 3. There
was no overlap between the confidence interval bands, therefore
the two groups of simulations were separable. As a result, the
reduction in energy loss rate was statistically significant, to a
95% confidence, as determined by the t-test. The physiological
Fontan was confirmed as having a lower energy loss rate than the
conventional Fontan.

The corresponding result for the mean IVC pressure is 13.94
± 0.017 mmHg for the physiological Fontan against 14.05
± 0.008 mmHg for the conventional Fontan. There was no
overlap between the confidence interval bands, therefore the
two groups of simulations were separable and showed that the
mean IVC pressure from the physiological Fontan is numerically
lower than that of the conventional Fontan. Specifically,
the t-distribution suggests that, with a 95% confidence, the

physiological Fontan is reducing the mean IVC pressure
compared to the conventional Fontan. As these simulations used
an idealized geometry, the magnitude of the change in IVC
pressure has lower significance than the sign of this change,
since the magnitude of this change is likely to differ from subject
to subject.

Finally, Tables 2 and 3 report the maximum kinetic energy
predicted by the two sets of simulations, as determined from
the largest value of the scalar product of the velocity vectors in
the computational domain interior. The kinetic energy values
in Tables 2 and 3 are reported per unit volume, in the form
and units of the flow dynamic pressure. This permitted to
evaluate and locate the maximum of this intensive property
in the modeled flow domain. The conventional Fontan is
predicted to produce a flow with peak kinetic energy of 419
± 13 J/m3, which is about one and a half the peak kinetic
energy of 289 ± 3 J/m3 from the physiological Fontan. The t-
distribution analysis indicates that the two sets of simulations
(conventional and physiological Fontan) are also separable
based on peak kinetic energy, as their mean difference is 130
J/m3 against a statistical uncertainty of 13.3 J/m3, to a 95%
statistical confidence.

DISCUSSION

The idea of deviating the systemic venous return from the SVC
toward the left lung and the systemic venous return from the IVC
toward the right lung was already a matter of discussion between
one of the authors (AFC) and Dr. Hillel Laks, cardiac surgeon
at University of California, Los Angeles. Dr. Laks realized in
a series of patients a modified connection of the SVC to the
left pulmonary artery and of the IVC to the right pulmonary
artery by completely dividing the right and the left pulmonary
artery (90). This surgical technique obtained the distribution
of the systemic venous returns to the appropriate size lungs,
but unfortunately the separation of right and left pulmonary
artery resulted in the left lung receiving only the blood from
the SVC, therefore without the hepatic factor contained in the
blood drained from the IVC. This combination is documented to
cause pulmonary arterio-venous fistulas within a few years, with
the subsequent reduction of oxygen saturation, with very poor
clinical tolerance (39, 42, 44, 45, 49, 54, 55, 61).

The new physiological Fontan proposed in this study can
obtain the appropriate blood flow distribution, matching the
ranking of the systemic venous returns to the lung sizes ranking,
without separating the right and left pulmonary arteries, and
therefore allowing the blood from the IVC, containing the hepatic
factor, to reach both lungs and hence prevent the complications
of pulmonary arterio-venous fistulas.

The reduction in energy loss rate in the physiological Fontan
was positively correlated to the reduction in the peak kinetic
energy in the flow, which, as reported in Tables 2 and 3, was
also separable and statistically significant. Flow visualization
located the kinetic energy peak of the conventional Fontan at the
confluence between the SVC and the IVC, toward the LPA. This
peak is detrimental to the circulation effort through the vascular
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system, as kinetic energy is irreversibly lost by viscous stresses
due to the velocity gradient between this fast moving flow and
the stationary fluid wetting the walls of the Fontan vessels.

The reduction in energy loss rate associated to the
physiological Fontan is enabled by the shallower confluence
angles of the SVC and IVC with the PA, deviating these inflows
respectively toward the LPA and RPA, thereby preserving the
inflow momentum, compared to more right-angle confluences
present in the conventional Fontan. In the clinical practice, the
shallower angle confluence can be surgically accomplished only
if the anastomoses of the SVC and IVC are transposed as in the
physiological Fontan.

The physiological Fontan was also predicted, with 95%
statistical confidence, to lower the IVC pressure compared to the
conventional Fontan. The certainty in the direction of change
of the IVC pressure is of prime importance, since high blood
pressure has a strong causation link to liver and kidney failure
in patients with Fontan circulation in the 20–30 years age group
(43, 47, 50, 51, 60, 62, 64, 67, 69). The authors have used
an idealized model for this comparative analysis, therefore the
magnitude of the IVC pressure change is comparatively less
significant, as this is dependent on the specific vascular geometry
of the subject that is not rendered by the generalized geometry
used in this work.

This surgical approach requires the first step of the
Fontan circulation (bidirectional Glenn) with the end-to-
side anastomosis of the superior vena cava obliquely moved
toward the pulmonary artery bifurcation, instead that directly
on the right pulmonary artery. This modification, deviating
the flow toward the left lung, in principle should reduce
the incidence of relative left pulmonary artery hypoplasia
or small size frequently observed during the pre-operative
investigations before Fontan completion, without interfering
with the flow toward the right lung and therefore with
the growth of the right pulmonary artery (91–93). By
deviating the larger flow of the IVC towards the right
lung, this new plumbing should also ensure that the right
lung will not remain hypo-perfused after completion of the
Fontan circulation.

As far as the pulmonary flow distribution is concerned, our
results showed that, in addition to reducing the energy loss rate
and the peak kinetic energy, the flow was uniformly divided
between left and right pulmonary arteries in a very similar way
as with the conventional Fontan.

Limits of the Study
This preliminary CFD study aimed at addressing the
fundamental question of whether a more “physiological”
Fontan could provide a viable alternative to the “conventional”
Fontan. Obtaining a general indication required adopting a
very idealized geometry with uniform anatomy, obtained from
3D reconstruction of investigations in a real patient, that could
express the essence of the difference between the vascular
layouts under consideration. It would be beneficial to perform a
CFD evaluation on subject-specific vascular systems, acquired
by medical imaging, pre-operation, to obtain more specific
predictions about this new surgical option. Pressure and flow
rates acquired from clinical practice can inform the boundary

conditions used in the CFD model, using an approach similar to
the one described in previous reports (70–74, 80–87).

The steady flow modeling approach could be improved by
repeating the simulations in a time-dependent CFD framework,
using prescribed waveforms of mass flow rate at the SVC and
IVC inflows (75) and adding a lumped mass parameter model
of the dependence of the LPA and RPA outflow pressures on the
flow rate through these outlets (75, 91). Here, the challenge is to
obtain a lumped-parameter model that renders the difference in
resistance and blood flow capacitance between the left and the
right lungs (also including the effects of the respiratory cycle),
which has so far not been modeled in numerical studies of
Fontan circulation.

The CFD model assumed rigid and non-compliant walls,
without the interferences with the walls caused by the flow, in line
with a previous CFD study of the Fontan circulation (75). The
significance of the variation of the lumen cross-section during the
cardiac cycle should be assessed, as this may have a significant
impact on temporal effects not rendered by the current steady
flow CFD model.

Finally, whilst the proposed anastomosis of the SVC would
be expected to reduce the incidence of hypoplasia of the left
pulmonary artery, the perfusion of the left and of the right
lungs after Glenn should be investigated numerically, to make
sure the right lung is not significantly hypo-perfused before the
Fontan completion, which may lead to the opposite problem of
hypoplasia of the right pulmonary artery.

Despite all the above limits, mathematical and CFD studies
are still justified as methods for the first step in the “in vitro”
evaluation of the cavopulmonary connections, even though
currently they have to deal with all the variables present in
the biological environment. Animals with univentricular hearts
(such as frogs and turtles), are not suitable for experimental
studies of cavopulmonary connections, and all animal models
used to perform hemodynamic evaluation of cavopulmonary
connections only allowed acute studies, as in our previous
experience (66) and as confirmed by a recent systematic
review (94).

CONCLUSIONS

This in silico study confirmed that the proposed Fontan
configuration characterized by a more physiological flow
distribution is accompanied by a little reduction of mean
IVC pressure and by a substantial reduction of energy loss
rate and of peak kinetic energy. The potential clinical impact
of these hemodynamic changes is to improve the long-term
outcomes of the Fontan circulation, in particular to reduce the
adverse incidence of liver failure and protein-losing enteropathy.
Further studies with in vitro mock circuits should provide more
information about the potential advantages on fluid dynamics
of the new physiological Fontan procedure. In particular, they
could provide more information about the magnitude of the
IVC pressure reduction that can be achieved by the physiological
Fontan compared to the conventional Fontan, by regressing flow
measurements obtained from different vascular geometries based
on subject-specific measurements of the vascular system.
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