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The majority of children undergoing Hematopoietic Stem cell Transplantation (HSCT)
require conditioning therapy to make space and prevent rejection of the donor stem cells.
The exception is certain children with Severe Combined immune deficiency, who have
limited or no ability to reject the donor graft. Transplant conditioning is associated with
significant morbidity and mortality from both direct toxic effects of chemotherapy as well
as opportunistic infections associated with profound immunosuppression. The ultimate
goal of transplant practice is to achieve sufficient engraftment of donor cells to correct the
underlying disease with minimal short- and long-term toxicity to the recipient. Traditional
combinations, such as busulfan and cyclophosphamide, achieve a high rate of full
donor engraftment, but are associated with significant acute transplant-related-mortality
and late effects such as infertility. Less “intensive” approaches, such as combinations
of treosulfan or melphalan with fludarabine, are less toxic, but may be associated
with rejection or low level chimerism requiring the need for re-transplantation. The
major benefit of these novel approaches, however, which we hope will be realized in
the decades to come, may be the preservation of fertility. Future approaches look to
replace chemotherapy with non-toxic antibody conditioning. The lessons learnt in refining
conditioning for HSCT are likely to be equally applicable to gene therapy protocols for
the same diseases.

Keywords: conditioning, hematopoietic stem cell transplant (HSCT), chemotherapy, immunotherapy,
immunoablation

KEY POINTS

e Conditioning is required for the majority of children with non-malignant diseases.

e Some children with severe combined immune deficiency require little or no conditioning—but
this usually only corrects T cell function.

e Mixed chimerism may indicate that re-transplantation may be required.

e Less intensive conditioning is:

o Less toxic.
o Associated with more mixed chimerism and may require further procedures.
o May allow long term preservation of fertility.
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INTRODUCTION

With the exception of some children with severe combined
immunodeficiencies (SCID, see review on SCID), all patients who
undergo allogeneic Hematopoietic Stem cell Transplantation
(HSCT) require therapy prior to receipt of the graft. This
conditioning therapy plays a vital role in allowing engraftment
of new Hematopoietic progenitor cells (HPC) in the patient.
These new HPC can correct some, or occasionally all, of the
manifestations of a non-malignant disease.

THE NEED FOR CONDITIONING

In the original publications of HSCT for malignant disease,
intensive  high-dose combinations of irradiation and
chemotherapy were used to eradicate resistant leukemia
and ablate the bone marrow. These myeloablative combinations
(MAC) achieved prolonged aplasia, and were associated with
full donor chimerism (DC). However, such therapy is associated
with a significant burden of early and late toxicities, making
MAC less suitable for older patients, or those with significant
co-morbidities. This led to the concept of reduced intensity
(RIC) regimens, which are defined as regimens containing
reduced doses of myeloablative drugs (or radiotherapy), which
are therefore less likely to achieve marrow ablation and more
likely to produce mixed chimerism (MC). For the vast majority
of HSCTs, namely older adults with malignant disease, the
balance between MAC and RIC is a clear trade off: more
transplant-related mortality (TRM) is seen with MAC, and
more relapse with RIC; these 2 often counter-balancing each
other. Multiple attempts to define RIC in terms of specific
drug doses were made during 2006-2009, however, there is a
spectrum of conditioning and it is preferable to define truly non-
myeloablative or minimally intensive conditioning protocols
(MIC) where the initial neutrophil recovery is frequently
recipient, MAC protocols which mostly achieve sustained full
donor chimerism, and then RIC protocols which comprise all
those in-between (1). The spectrum of conditioning is shown
in Figure 1.

CONDITIONING, CHIMERISM, AND
CONSIDERATIONS IN NON-MALIGNANT
DISEASES

Full myeloablative conditioning is most likely to achieve full
donor chimerism. In non-malignant disease, correction of
the underlying disease may be achievable with stable mixed
chimerism. It appears that a level of 20-30% donor chimerism
in the diseased lineage can achieve correction of the phenotype
in, for example, CGD or SCD. But achieving stable mixed
donor chimerism reliably with a specific conditioning regimen
has been challenging, and 10-20% of patients will require a
further procedure such as DLI or 2nd HSCT. This is because
patients with non-malignant diseases, who have often had no
prior therapy, are more able to reject a graft unless adequate
conditioning has been given. In a cohort of over 600 patients
with non-malignant disease having unrelated transplants, the

cumulative incidence of primary or secondary graft failure at
1 year was 17% (2). Risk factors for graft failure were HLA
mismatch and use of RIC.

In contrast, patients with primary immune deficiency (PID),
with a partial or complete inability to reject a graft, can
achieve MC or full DC with no conditioning or RIC. The first
successful allogeneic transplantation reported was performed
without conditioning (or graft-versus-host disease prophylaxis)
in a patient with X-linked Severe Combined Immunodeficiency
(SCID) in 1968 (3). Although engraftment of peripheral T-
lymphocytes alone is reliably achieved without conditioning in
children with SCID, and this is sufficient to at least transiently
allow control of infections and survival, the omission of
conditioning also has risks. This was observed in this first patient:
by 3 months after administration of the unmanipulated graft
from the HLA-identical sibling, the patient developed trilineage
aplasia and needed a boost of donor stem cells for hematological
reconstitution (4). This graft-versus-marrow (GvM) effect is
caused by the donor T-lymphocytes targeting recipient bone
marrow cells, leading to a clinical picture of aplastic anemia.
This effect is normally hidden by the more obvious marrow
depleting effects by chemotherapeutic agents. This effect is more
relevant with less intense conditioning regimens, and can be
best observed in SCID patients, but is abolished if the graft is
also T-cell depleted. Factors that can impact on the outcome of
transplant are shown in Table 1.

TYPES OF CONDITIONING IN CLINICAL
USE

For decades, a combination of myeloablative doses of busulfan
(Bu) and cyclophosphamide was used for many children with a
wide variety of non-malignant diseases. Its efficacy, in reliably
achieving full DC, is not questioned. However, the profile
of toxicity, in particular with endothelial injury, most often
manifested as veno-occlusive disease (VOD) means we have
continued to look for alternatives.

Reducing the Bu dose and increasing the immunosuppression,
e.g., by replacing cyclophosphamide with fludarabine (mirroring
the RIC approach), has produced good results (5), particularly
in CGD. Retrospective comparisons have shown a similar rate
of survival with BuFlu and BuCy (6), but some physicians have
been troubled by the increased MC seen with Bu Flu in contrast
to BuCy.

Substituting treosulfan (Treo) for Bu is undoubtedly less
toxic, with a low rate of VOD. Although the term “reduced
toxicity” was first used to describe a Treo-based regimen (7), the
combination of Treo Flu does not consistently achieve full DC
and so is perhaps better labeled as RIC (See Figure 1). Treo may
have a further advantage over Bu, for instance in young children
with SCID, in that it does not cross the blood brain barrier
and may therefore have less neurotoxic properties. On the other
hand, for children with MPS1 and MLD, engraftment of brain
microglial cells is dependent on Bu (at high doses) for ablation,
and is superior to Treo or irradiation (8, 9). This is one example
where MAC may be preferable to RIC in the non-malignant
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Monoclonal antibodies

RIC

Melphalan (<140)/ Flu
Treosulphan/Flu

Bu (AUC<65)/ Flu or Cyclo /
MAC

Treosulphan/FIu/TT

Bu16/Flu

Bu(14-16)/Cy(2120)

TBI > 8Gy fractionated.

FIGURE 1 | Spectrum of conditioning used.

+/- ATG, Alemtuzumab

setting. Although Treo Flu can produce adequate levels of MC in
children with PID, including CGD and WAS (10-12), for those
with more active marrow function, the frequency of MC can
be reduced by adding a third agent, thiotepa, and this 3 drug
combination is usually myeloablative (13). In addition, there are
diseases where more complete DC may be necessary to control
some aspects of the disease, such as the auto-immunity that is
seen in WAS (14) and a variety of other monogenic disease, many
of which are collectively referred to as Tregopathies (15).

The combination of Flu with Melphalan was the first
widely used RIC protocol in PID (16). However, its reduced
myeloablation often leads to excessive MC (17), although when
followed by DLI achieves excellent results in HLH (18).

THE ROLE OF GRAFT-VERSUS-HOST
DISEASE PROPHYLAXIS AND
SEROTHERAPY

In addition to the conditioning therapy given to allow
engraftment of donor cells, it is also important to prevent
allogeneic T-lymphocytes from the graft reacting against the
donor (or host), which causes graft-versus-host disease (GVHD).

Ex-vivo T-Cell Depletion (TCD)

Some of the earliest HSCT were done using mismatched donors,
often haploidentical parents. Here the risk of GvHD is so
high that methods were developed to deplete the T cells from
the graft, so reducing the risk of GvHD. Over the years, the
techniques have become more sophisticated, from ex-vivo Sheep
red cell rosetting and soybean lectin (19), to CD3/19 depletion

TABLE 1 | Factors that may affect outcome of transplant.

Relevant factors for therapeutic ~ With an influence on...

strategy

Genetic disease, PID Ability to reject a graft
Cellular lineages to be corrected (myeloid
engraftment needed?)

Intensity of tolerable conditioning

Clinical condition (infections, organ Intensity of tolerable conditioning

damage)

Donor availability HLA match
rejection
GvHD

Graft-versus-marrow effect

Stem cell source (bone marrow, Quantity and quality of cellular

PBSCs, CB) (sub-)populations in the graft
GvHD
Graft-versus-marrow effect
Graft manipulation (in vitro or in-vivo) ~ GvHD

T-cell depletion) Graft-versus-marrow effect

and now TCRaf-depletion (20). Although TCD also depletes
cells that may be important in controlling residual leukemia, in
immune deficient patients this is much less important. However,
the depletion of cells that can control opportunistic infections,
particularly viral infections, does contribute to morbidity and
mortality after these mismatched procedures.

In vivo-TCD

A variety of drugs are used to deplete T cells pre and
post transplant.
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Serotherapy

Serotherapy is used, as part of conditioning therapy, to deplete
function of specific host immune cells, which are able to reject
the graft. As these agents have long half-lives, they persist
after the graft is infused and so, by depleting allogeneic T-
lymphocytes from the graft, can reduce GvHD (21). Two main
types of “sero’therapy are in use: polyclonal preparations of
anti-thymocyte globulin (ATG) from immunized rabbits or
horses and a humanized monoclonal antibody targeting CD52
(Alemtuzumab). It is well-known that different brands of ATG
clear at different rates, so impacting on subsequent rates of
GVHD, infection and immune reconstitution (22). In the absence
of any prospective head-to-head study, a retrospective study
showed that immunological reconstitution was more rapid after
the use of ATG (Thymoglobubulin®) 10 mg/kg in comparison
to alemtuzumab (1 mg/kg), as expected from the longer half-
live of the latter (23). In recent years important novel aspects
beyond dosage have been considered in more detailed studies. As
the therapeutic antibodies persist over several days, the timing
of the administration before or even after transfusion of the
transplant has an impact on the rate of GVHD and the delay in the
reconstitution of donor T-lymphocytes, as shown for umbilical
cord blood transplantation (24). Beyond dosage and timing, the
abundance of target structures, namely T-lymphocytes has been
shown to have fundamental impacts on the pharmacokinetics
and the effects of ATG (25). Similar studies with Alemtuzumab,
in the context of Flu MLP, have shown the expected relationship
of higher peritransplant serum-levels of alemtuzumab being
associated with less GVHD, slower immune reconstitution and
more mixed chimerism (26). Pharmacokinetic (PK) targeting
of serotherapy in conditioning is probably as desirable as PK
monitoring of chemotherapy and, particularly in RIC, might
achieve maximum GvM with minimal GvHD.

A variety of other drugs are used to inhibit T cell
activation post-HSCT, such as ciclosporin and Tacrolimus.
Certain chemotherapy drugs are used widely to target
cells proliferating in response to allo-antigens, such as
methotrexate and, most notably in the past few years, post-
transplant cyclosphosphamide. The powerful effect of 2 days of
cyclophosphamide given in the first few days after haploidentical
HSCT has made this technique readily available to centers that
do not have the laboratory skills, resources and money to support
the complex procedures such as TCRap-depletion. Admittedly,
this is more widely used in malignant disease and hematological
diseases but has been used in immune deficiencies as well (27).

LONG TERM CONSEQUENCES OF
CONDITIONING

For long term survivors of HSCT, some long term toxicities
relate to the conditioning used (see review on “long term
outcome and immune function after haematopoietic stem cell
transplantation for primary immunodeficiency”). In general, the
more myeloablative combinations are associated with gonadal
failure and infertility; whereas the RIC combinations may be
associated with preservation of these important long term

toxicities. Currently, long term follow up data for children treated
with Treo are lacking, but early data looks promising (28).

The development of malignancy is another major long
term consequence of transplant, But the majority of
these appear to be secondary malignancies in patients
transplanted for malignant disease, with the exception of
Fanconi anemia.

EMERGING TYPES OF CONDITIONING
FOR THE (NEAR) FUTURE

As mentioned above, for the sick infant with newly diagnosed
SCID, an unconditioned graft may be required, to achieve
some T-lymphocyte function and control of infection, and then
allow an older child in better shape to tolerate a conditioned
graft and achieve a better functioning (donor) immune system.
With the adoption of newborn screening for SCID, younger,
well infants are being diagnosed earlier, at an age where the
use of conventional chemotherapy is less studied and with
diagnoses (such as Artemis) where the adverse consequences
of chemotherapy are well-known (29). To achieve the desired
outcome of conditioning with minimal toxicity, development
of targeted treatment with monoclonal antibodies and other
biologic agents is underway.

Preclinical studies identified CD45 (30) and CDI117 (31,
32) as targets suitable for antibody mediated depletion of
host hematopoietic cells. CD45, also known as the leukocyte
common antigen (LCA), is expressed on all hematolymphoid
cells. Because CD45 is expressed on the spectrum of primitive
to mature blood cells, targeting this molecule is desirable if a
single agent can safely achieve both myelo- and lymphoablation.
Different forms of anti-CD45 agents have been tested including
“naked” unconjugated, radio-labeled, and toxin-conjugated
CD45 antibodies. Conjugation of antibodies to radio-isotopes
or cytotoxic agents capitalizes on the ability of the antibodies
to deliver toxic payloads to specific cell populations with
the potential for more complete target cell elimination as
compared to the unconjugated versions. However, the risks of
the conjugates may limit the applicability of these agents to only
select disorders.

A synergistic combination of two unconjugated rat anti-
human CD45 antibodies has been tested in two clinical
studies. A Phase 1 dose escalation study used these mAbs in
patients with hematologic malignancies that received standard
conditioning (33) and as part of reduced-intensity conditioning
regimen for congenital immunodeficiencies, in conjunction with
anti-lymphocyte agents (34). The regimen was well-tolerated
and high-level donor chimerism was achieved. However, the
contribution of the lytic anti-CD45 mAbD treatment in the context
of these other agents remains to be further clarified.

Clinical testing of radioisotope-labeled anti-CD45 mAbs are
in the advanced phase in adults with myeloid disorders, and
second generation agents continue to be developed (35) CD45
antibody-drug conjugates (ADC) have been shown promise
in preclinical models evidenced by their ability to efficiently
deplete immune cells in the periphery and HSCs in the bone
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marrow (36). Development of clinical grade CD45-ADC is
currently underway.

Antibodies that target the cell surface receptor CD117 can also
effectively clear host HSC niches. CD117 is a receptor tyrosine
kinase expressed on the surface of HSC and early hematopoietic
progenitors. Interaction of CD117 with its ligand, stem cell factor
(SCEF), provides signals necessary for HSC survival, proliferation,
and differentiation. Treatment of mice with anti-CD117 mAbs
results in transient depletion of HSC with return of normal
blood formation within 2 weeks of antibody administration (37).
This window of depletion is sufficient to permit donor cell
engraftment with minimal to no off target effects.

A humanized anti-CD117 mAb, AMG 191 has been developed
and is currently undergoing testing as sole conditioning for
patients with SCID. Large animal studies support the safety and
efficacy of this agent in depleting HSC (38). Early data from the
Phase 1 dose escalation trial show proof-of-concept that targeting
CD117 with biologic agents may provide a strategy for safely
replacing and/or augmenting the myeloablative component of
conditioning (39). Even at the lowest dose tested sustained
donor HSC engraftment has been observed as evidenced by
long-term myeloid chimerism, and generation of nascent B and
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