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Bronchopulmonary dysplasia (BPD) is one of the common chronic lung diseases (CLD) of

premature infants, which causes unpredictable consequences to the family and society.

Therefore, the pathogenesis and prevention methods of BPD are the focus of current

research, and the establishment of an effective and appropriate animal model of BPD

in premature infants is the key to the research. In this study, premature rats were

exposed to hyperoxia environment. Compared with the air group, the body weight and

alveolar radiation count of the hyperoxia group decreased significantly, but there was no

significant difference in body length. HE staining was used to observe the pathological

changes of BPD in the lung tissue. The above results proved that under the hyperoxia

condition, the BPD animal model of premature infants was successfully established,

which provided a new choice for the future research of BPD.
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INTRODUCTION

In recent years, the birth rate of premature infants, especially very low birth weight infants
(VLBWI) and extremely low birth weight infants (ELBWI), has increased year by year, which
is estimated to account for 11% of all births (1). Bronchopulmonary dysplasia (BPD) is one of
the serious diseases that bring long-term adverse prognosis to premature infants. At present, the
treatment of BPD is mainly in accordance with the symptoms. Therefore, it is very important
to study the pathogenesis, effective prevention, and treatment methods of BPD. The classic
pathological features of BPD are severe airway epithelial lesions, extensive metaplasia, and
hyperplasia of airwaymucous epithelium, extensive alveolar septal fibrosis, and pulmonary vascular
remodeling (2), while the new BPD emphasizes the simplification of alveolar structure, pulmonary
vascular malformation, and interstitial cells and / or fibrous hyperplasia (3). In the study of BPD,
the establishment of animal models is essential. The more commonly used animal models are mice,
rats, rabbits, sheep, and baboons (4–8). At present, most people think that oxidative stress of lung
tissue caused by hyperoxia exposure is an important reason for the occurrence and development of
BPD (9), and preterm is an important risk factor for the occurrence of BPD (10). Thanks to BPD
brings many harmful effects to family and society, it is the main work to seek effective prevention
and treatment strategies, and the establishment of an effective animal model is the basis of the
study of BPD. Therefore, this study proposes that the animal model of BPD in premature rats can
be established successfully when they are exposed to high concentration of oxygen, in order to
provide a new theoretical model for further study on the prevention and treatment of BPD.
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MATERIALS AND METHODS

Ethics Approval
The use and care of laboratory rodents was performed according
to the Animal Laboratory Center of Pediatrics, Children’s
Hospital of Fudan University and approved by the Committee
of Animal Laboratory Management and Ethics, Shanghai
Children’s Hospital.

Experimental Animals
250–300 g healthy adult Specific pathogen Free (SPF) grade
Sprague-Dawley (SD) rats, 25 females and five males, provided
by Shanghai Sipur-Bikai experimental animal Co., Ltd., animal
license No. SCXK (Shanghai) 2018-0006.

Cage Closing and Conception of Rats
Male and female SD rats were fed in metabolic cages at 1:5. The
mat and excrement of the cage were checked at 6 a.m. every day.

FIGURE 1 | (A-C) The premature rats were placed in forage and resuscitated with 100% oxygen by operator.

Check the vaginal plug of females, and the day that vaginal plug
was checked as the day 0 of pregnancy.

Cesarean Section and Milk Substitute of
Premature Rats
On the 21st day of gestation, pregnant SD rats were subjected to
cesarean sections. The anesthetics (pentobarbital sodium 10mg
diluted in normal saline 20ml) were intramuscularly injected at
the dose of 30–50 mg/kg. The induced anesthetics were given at
30 mg/kg.

The abdomen was sectioned, and the uterus were pulled out
gently after anesthesia. The operator pulled out the uterus gently,
and took out the fetal rats quickly. Continue to press the chest
of premature rats (60–100 times/min) and give 100% oxygen
for 30min by the operator. The premature rats were fed with
the breast milk by the mother rats which delivered naturally
(Figures 1A-C).
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TABLE 1 | Comparison of weight between two groups at different time (g).

Groups n 1d 4d 7d 10d 14d F p

Air group 8 6.85 ± 0.65 12.18 ± 1.80 22.27 ± 1.05 26.09 ± 4.60 37.40 ± 8.25 99.914 <0.001

Hyperoxia 8 7.00 ± 0.79 11.39 ± 0.96 16.00 ± 0.83 19.96 ± 1.03 30.12 ± 3.53 338.388 <0.001

t −0.422 1.909 15.247 3.894 2.335

p 0.679 0.063 <0.001 0.004 0.044

FIGURE 2 | Comparison of weight between two groups at different time.

Compare with the air group, weight of premature rats in hyperoxia group at 1d,

and the weight of the rats in the hyperoxia group increased slowly at the 7, 10,

and 14d, which was statistically significant (*p < 0.05, **p < 0.01, ***p <

0.001).

Premature Rats Exposed to Hyperoxia
Eighty preterm rats were randomly divided into two groups
24 h after birth: the air group and the hyperoxia group. The air
group was exposed to room air, and the hyperoxia group was
exposed to oxygen concentration with 80 ± 5%. At 1, 4, 7, 10,
and 14 days after hyperoxia exposure, the lungs of preterm rats
were embedded in paraffin and made into 5µm sections for
HE staining.

General and Pathological Observation of
Lung Tissue
All analyses were performed by the same author. The color of the
lung surface was observed by naked eyes, and the morphology
of the histology slides were analyzed by Hematoxylin-Eosin
(HE) staining.

Morphology of Lung Tissue
Morphological changes of lung tissue structure at different time
points: the basic morphology of lung tissue, alveolar septal
thickness, degree of alveolalization, inflammatory cell infiltration
were observed under microscope.

Radial alveolar count (RAC): a vertical line was drawn from
the center of respiratory bronchioles to the nearest pleura or
fibrous septum. The number of alveoli on this line is called the
RAC. One section was randomly selected from each preterm
rat and observed under microscope (X 100). Five visual fields
were randomly selected from each section to calculate the

average number, reflecting the number of alveoli in the end
respiratory unit.

Statistical Analysis
The experimental data were analyzed by spss20.0 statistical
software. The data were expressed by x ± s. The results of each
time point in the two groups were tested by onewayANOVO, and
the results of air group and hyperoxia group were tested by two
independent samples T-test. p < 0.05 was statistically significant.

RESULT

General Condition of Premature SD Rats
Fifteen SD female rats were successfully pregnant, and 116
premature rats were produced during the operation. Twelve
premature rats died due to various reasons such as hemorrhage,
poor resuscitation, and rescue effect, feeding difficulties in 24 h
after the operation, trampled by adult rats, and so on. Finally, 80
premature rats were divided into two groups: the air group and
the hyperoxia group. There was no death in the air group, three
premature rats died in the hyperoxia group on the 4th day. Each
groupwas divided into five subgroups, the 1, 4, 7, 10, and 14-days.
Each subunit contained eight rats.

There was no significant difference in weight between air
group and hyperoxia group at 1d (p = 0.679). In the air group,
the rats had good response, rapid weight growth, and normal
growth and development. In the hyperoxia group, the rats began
to show poor response, decreased autonomous activity, increased
respiratory rate, cyanosis of mouth, nose, and limbs, and other
dyspnea symptoms gradually increased in the 4d. At 10d, the rats
in the hyperoxia group appeared whole body twitch and head
tremor without oxygen, and recovered to normal after oxygen
supplied. Compared with the air group, the weight of the rats
in the hyperoxia group increased slowly at 7, 10, 14 days, the
difference was statistically significant (p < 0.05) (Table 1 and
Figure 2). At the same time, the color of hair was poor and the
time of opening eyes was prolonged. There was no significant
difference between the air group and the hyperoxia group in
length (p > 0.05) (Table 2 and Figure 3).

Histopathology of Lung Tissue in Two
Groups of Preterm Rats
Generally speaking, the lung tissue of the two groups was mainly
composed of pulmonary interstitium at 1d, the respiratory
and circulatory vascular system was immature, the respiratory
bronchioles, and their alveoli were less, the lung parenchyma
gradually increased and the interstitial decreased at the 4d,
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TABLE 2 | Comparison of length between two groups at different time (mm).

Groups n 1d 4d 7d 10d 14d F p

Air group 8 49.40 ± 2.07 60.00 ± 1.41 69.47 ± 5.08 74.67 ± 6.30 86.62 ± 7.53 84.363 <0.001

Hyperoxia 8 50.60 ± 1.35 59.77 ± 1.36 68.47 ± 1.77 74.53 ± 1.06 86.00 ± 2.71 684.800 <0.001

t −1.538 0.415 0.721 0.081 0.245

p 0.154 0.682 0.481 0.936 0.809

FIGURE 3 | Comparison of length between two groups at different time.

Compare with the air group, there was no difference in length of the premature

rats in the hyperoxia group, shows that the premature rats exposed to

hyperoxia did not affect the development of length.

the number of alveoli gradually increased, and the pulmonary
bronchi and vascular system at all levels were refined and
increased. In the air group, the structure and morphology of
alveoli were clear and regular, the alveoli were well-developed,
the size of alveoli was uniform, the walls of alveoli were smooth,
the alveoli space was thin, no inflammation or exudate was
found in the alveoli. Under the light microscope, the alveoli in
the hyperoxia group lost normal regular shape and disordered
structure, the alveoli became thinner and enlarged, the number
of alveoli decreased, especially at 10 and 14d (Figure 4).

RAC of Lung Tissue in Two Groups of
Preterm Rats
At each time point, the RAC of hyperoxia group was significantly

lower than that of air group (p < 0.05), and the RAC of air
group gradually increase, while the hyperoxia group gradually
decreased (Table 3 and Figure 5).

DISCUSSION

In recent years, with the improvement of treatment for premature
infants, the survival rate of premature infants, especially very
low birth weight infants (VLBWI) and extremely low birth
weight infants (ELBWI) has increased significantly (11), and the
incidence rate of bronchopulmonary dysplasia has increased (12).
BPD is a kind of chronic lung disease (CLD) that causes the poor
long-term prognosis in premature infants. Because the children
with BPD need longer hospitalization and long-term oxygen
therapy, it has many adverse effects on family and society, it

is important to research the etiology, pathophysiology, and the
corresponding prevention and treatment measures of BPD. To
establish an effective and reliable animal model of BPD is the first
problem to be solved by researchers. The main inducing factors
of BPD animal model are hyperoxia, mechanical ventilation
injury, intrauterine inflammation, postnatal continuous hypoxia,
and intrauterine hypoxia (13). At present, it is considered that
oxidative stress is one of the main risk factors for BPD, and its
pathogenesis is the interruption of lung development through
the mechanism of interrupting growth factor signal transduction,
cell proliferation, apoptosis, and angiogenesis (14). In 2014, Yang
et al. observed that the development of alveoli in lung tissue
was weakened, and isolated alveolar epithelial cells (AT2 cells)
showed epithelial mesenchymal transition (EMT) in newborn
rats by hyperoxia exposed for 21 h after birth (15). Therefore, up
to now, the animal model of BPD induced by hyperoxia is still the
most commonly used.

The development of lung in human usually goes through
five stages, including embryonic stage, pseudoglandular stage,
tubule stage, vesicle stage, and alveolar stage (16). The relevant
time point of lung development is located in the vesicular
phase, usually between the 24 and 38th weeks of pregnancy
(corresponding to d0, d4) (17). In the alveolar type II epithelial
cells of the full-term rats, the existence of pulmonary surfactant
indicates that the lung tissue of the full-term rats is functionally
mature (18). The development of lung in premature rats
(gestational age 21 days) is in the initial stage of the vesicle,
which is closer to the stage of BPD in premature infants. At
present, BPD animal models are mainly come from hyperoxia
induced animal models, which rodents are the most widely
used. As early as 1932, some researchers place newborn rats
in an environment having an 83.6% oxygen concentration.
A month later, there are thickening and hyalinization of the
walls with ultimate thrombosis of many in the lung tissue
of rats (19). In the next 100 years, many studies established
the animal model of BPD by exposing newborn rats to high
concentration of oxygen. In 1978, Yam et al. detected the increase
of superoxide dismutase (SOD), glutathione peroxidase (GP),
glutathione reductase (GR), and glutathione (GSH) in newborn
rats increased by exposing to hyperoxia, which proved that
the above substances increased the tolerance of lung tissue to
hyperoxia injury, and successfully established a BPD animal
model of newborn rats with hyperoxia (20). Recent studies have
shown that newborn rats are exposed to different concentrations
of oxygen (60, 80, and 100%, respectively), and the probability
of BPD is not the same. When FiO2 is <60%, the probability
of BPD is low (21). In this study, the premature SD rats were
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FIGURE 4 | (A) HE staining of lung tissue at different time in two groups (×100). (B) HE staining of lung tissue at different time in two groups (×400). When HE stained

lung tissue was placed under 100 and 400 times light microscope, it can be seen that compared with the air group, the alveoli in the hyperoxia group lost their normal

regular shape and structure disorder, the alveoli space became thinner, the alveoli cavity increased, and the number of alveoli decreased, especially at 10 and 14d.

TABLE 3 | RAC of lung tissue in two groups at different time points.

Groups n 1d 4d 7d 10d 14d F p

Air group 8 2.90 ± 0.30 5.09 ± 0.32 7.18 ± 0.18 8.03 ± 0.31 9.09 ± 0.13 720.663 <0.001

Hyperoxia 8 2.44 ± 0.56 3.14 ± 0.23 5.25 ± 0.38 4.41 ± 0.44 3.41 ± 0.13 63.987 <0.001

t 2.083 11.989 13.069 18.961 87.910

p 0.056 <0.001 <0.001 <0.001 <0.001

used as the experimental objects to make the animal model
of BPD by exposing to hyperoxia, which has the advantages
of easy access to rodents, relatively short pregnancy cycle
and convenient management. At present, most of the known
experimental animal models of BPD are full-term animal models,
and a few are preterm animal models (22). The smaller the
gestational age, the higher the severity of BPD, suggesting
that premature is another important risk factor for BPD (23).
The development of lung in the 21-days pregnant SD rats
was in the period of vesicle during delivery, similar to that
of the premature infants (24). A number of studies at home

and abroad have proved that hyperoxia exposure causes the
structural abnormality of pulmonary microvasculature in rats,
which is similar to the pathological changes of lung tissue in
premature infants with BPD (25). In 1998, the premature rats
delivered by cesarean section on the 21st day of pregnancy
were exposed to high concentration of oxygen. By comparing
the production of pulmonary surfactant, it was confirmed that
premature exposure to more than 95% of oxygen for 7–14 days,
the clinical morphological characteristics of lung in preterm rats
was similar to that of human premature infants (26). Similarly,
Zhu et al. proposed that hyperoxia induce lung injury in preterm
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FIGURE 5 | RAC of lung tissue in two groups at different time points. From the

center of respiratory bronchioles to the nearest pleura or fibrous septum, a

vertical line is drawn. The number of alveoli on this line is the RAC, which

reflects the development of alveoli. Compare with the air group, the RAC of

hyperoxia group was significantly lower than that of the air group (p < 0.05).

The RAC of the air group increased while the hyperoxia group decreased

gradually after 7 days. ***p < 0.001.

rats, in order to explore the dynamic expression and role of
SUMO modified C/EBP α in BPD (27). In this experiment,
premature SD rats were used as the experimental objects. The
rats in hyperoxia group were exposed to high concentration
oxygen at 0, 4, 7, 10, 14d, respectively. The experimental results
showed that the animal model was established successfully by
comparing the weight, length, pathological changes of lung tissue,
and RAC count of premature rats, the results have continuity in
time as well. Postnatal growth restriction (PTGR) and hyperoxia
can reduce the VEGF signal conduction in the lung, and cause
abnormal pulmonary vascular and alveolar development in
premature and rodent models, resulting in bronchopulmonary
dysplasia, and pulmonary hypertension (28). Some studies have
confirmed that malnutrition in the early postnatal period will
increase the risk of BPD in premature infants (29), so the impact
of PTGR on the lungs cannot be ignored.

In this study, compare with the air group, the premature rats
in hyperoxia group showed poor response, decreased activity,
and dyspnea with the increase of exposure to hyperoxia, and
the weight growth was slow from the 7d, the difference was
statistically significant (p < 0.05), However, there was no
significant difference between the two groups in length (p >

0.05). Histopathology of lung tissue showed that the alveoli
in hyperoxia group lost normal regular shape and structure
disorder, the alveoli became thinner and the alveoli cavity
enlarged, the number of alveoli decreased, especially on the

10d and 14td, and the RAC was significantly lower than that
in air group (p < 0.05), these changes are consistent with the
pathological changes of BPD in preterm infants (30), indicating
that we has successfully established an animal model of hyperoxia
exposure to BPD.

The animal model of BPD provides an important basis for
the study of the possible mechanism and prevention and control
strategy of the disease. However, due to the diversity of the
etiology of BPD, there are many ways to establish the animal
model of BPD. It is still necessary to further study to find a
simpler and more similar with premature infants in BPD. But
no matter which animal model is used, it needs to combine
the clinical significance to make the experimental data better to
reduce the disease.
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