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The increased incidence of opioid use during pregnancy warrants investigation to

reveal the impact of opioid exposure on the developing fetus. Exposure during critical

periods of development could have enduring consequences for affected individuals.

Particularly, evidence is mounting that developmental injury can result in immune priming,

whereby subsequent immune activation elicits an exaggerated immune response.

This maladaptive hypersensitivity to immune challenge perpetuates dysregulated

inflammatory signaling and poor health outcomes. Utilizing an established preclinical rat

model of perinatal methadone exposure, we sought to investigate the consequences

of developmental opioid exposure on in vitro activation of peripheral blood mononuclear

cells (PBMCs). We hypothesize that PBMCs frommethadone-exposed rats would exhibit

abnormal chemokine and cytokine expression at baseline, with exaggerated chemokine

and cytokine production following immune stimulation compared to saline-exposed

controls. On postnatal day (P) 7, pup PMBCs were isolated and cultured, pooling

three pups per n. Following 3 and 24 h, the supernatant from cultured PMBCs was

collected and assessed for inflammatory cytokine and chemokine expression at baseline

or lipopolysaccharide (LPS) stimulation using multiplex electrochemiluminescence.

Following 3 and 24 h, baseline production of proinflammatory chemokine and

cytokine levels were significantly increased in methadone PBMCs (p < 0.0001).

Stimulation with LPS for 3 h resulted in increased tumor necrosis factor (TNF-α) and

C-X-C motif chemokine ligand 1 (CXCL1) expression by 3.5-fold in PBMCs from

methadone-exposed PBMCs compared to PBMCs from saline-exposed controls (p <

0.0001). Peripheral blood mononuclear cell hyperreactivity was still apparent at 24 h

of LPS stimulation, evidenced by significantly increased TNF-α, CXCL1, interleukin

6 (IL-6), and IL-10 production by methadone PMBCs compared to saline control

PBMCs (p < 0.0001). Together, we provide evidence of increased production of

proinflammatory molecules from methadone PBMCs at baseline, in addition to sustained

hyperreactivity relative to saline-exposed controls. Exaggerated peripheral immune

responses exacerbate inflammatory signaling, with subsequent consequences on many

organ systems throughout the body, such as the developing nervous system. Enhanced
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understanding of these inflammatory mechanisms will allow for appropriate therapeutic

development for infants who were exposed to opioids during development. Furthermore,

these data highlight the utility of this in vitro PBMC assay technique for future biomarker

development to guide specific treatment for patients exposed to opioids during gestation.

Keywords: methadone, lymphocyte, PBMC, SPIHR, blood mononuclear cell, neuroinflammation, neonatal

abstinence syndrome, prenatal

INTRODUCTION

The incidence of opioid abuse in the United States has steadily
increased since 2000, today reaching epidemic proportions (1, 2).
The crisis is illustrated by data demonstrating that the number
of opioid-related hospitalizations increased by 64%, and the
number of deaths due to opioid overdose increased by 27%
between the years of 2005 and 2014 (3, 4). Mirroring the national
trend, opioid use by pregnant women has escalated to alarming
rates (5). Opioid use in this population increased 5-fold from
2000 to 2009 (6), and the prevalence of women with opioid use
disorders at delivery hospitalizations quadrupled between 1999
and 2014 (7).

Prenatal opioid exposure results frommaternal use or abuse of
illicit opioids, such as heroin, and prescription opioids including
oxycodone, hydrocodone, morphine, codeine, and fentanyl (8).
In addition, the maternal use of buprenorphine or methadone,
two synthetic opioids commonly used in opioid maintenance
therapy for individuals suffering from opioid use disorder (9, 10),
also contribute to prenatal opioid exposure. The growing rate of
women using opioids during pregnancy has led to an increase
in adverse neonatal outcomes (11, 12). Recent studies showing
an association between opioid use during pregnancy and poor
health outcomes for both pregnant women and infants highlight
prenatal opioid exposure as a serious public health concern (13,
14). Opioid-exposed infants represent an extremely vulnerable
patient population (15), with 50–80% experiencing neonatal
abstinence syndrome (16). Indeed, prenatal opioid exposure
is associated with increased risk of fetal growth restriction,
preterm birth, and lifelong motor and cognitive deficits (17–
25). The devastating consequences of opioid exposure on the
physical health and developmental outcomes of exposed children
strengthen the need to advance scientific understanding of the
underpinnings of opioid-induced neural injury and to advance
biomarker development in this patient population.

Insult during the prenatal period affects ongoing
developmental processes in the fetus, leading to lifelong
consequences and health challenges. Both the central nervous
system (CNS) and the immune system undergo complex and
incremental steps toward maturation during gestation (26–
28). New advances in molecular neuroscience have begun to
elucidate the importance of the multifaceted interplay of central
and peripheral immune system in regulating and supporting
ongoing brain development. Moreover, these advances highlight
the neurodevelopmental consequences of perinatal immune
activation following perinatal insult (29–33). The findings
from both clinical and preclinical studies implicate perinatal

immune activation in the pathophysiology of numerous
neurodevelopmental disorders, such as cerebral palsy, autism
spectrum disorders, Down syndrome, and fetal alcohol spectrum
disorders (33–41).

Previously, we reported evidence of neural injury and
reduced cognitive functioning in a model of prenatal
opioid exposure, with multiple assays reflecting significant
neuroinflammation (42). In the aforementioned study, analysis
of serum inflammatory cytokine expression of opioid-exposed
animals compared to saline-exposed controls demonstrated
elevated levels of interleukin 1β (IL-1β), tumor necrosis factor α

(TNF-α), IL-6, and C-X-C motif chemokine ligand 1 (CXCL1),
indicating systemic inflammatory response syndrome induced
by opioid exposure. Additionally, initial in vitro assessment
of isolated PBMC from opioid-exposed animals challenged
with lipopolysaccharide (LPS) suggested heightened immune
reactivity and immune priming toward exaggerated responses to
stimuli (42).

Here, we extend our investigation of opioid-induced
inflammation by thoroughly defining the peripheral immune
signaling and reactivity of opioid-exposed PBMCs using an
established in vitro assay and biomarker platform (35, 37, 43–
50). These data enhance the understanding of important
inflammatory mechanisms, an essential step to inform future
development of appropriate therapeutic interventions for infants
who are exposed to opioids during gestation.

MATERIALS AND METHODS

Animals
Sprague–Dawley rat dams and litters were maintained in a
12-h dark–light cycle (lights on at 0800 h), temperature, and
humidity-controlled facility with food and water available ad
libitum. All experiments were performed in strict accordance
with protocols approved by the Institutional Animal Care and
Use Committee at the University of NewMexico Health Sciences
Center. Protocols were developed and performed consistent with
National Research Council and ARRIVE guidelines (51).

Opioid Administration
Methadone is a full µ-, δ-, and κ-opioid receptor agonist, similar
to heroin, morphine, and fentanyl, whereas buprenorphine
is a partial µ-opioid receptor agonist and κ-opioid receptor
antagonist (52). The use of methadone in our experiments allows
us avoid differential pharmacology related to partial antagonism
and study the effects from of full agonism at the predominant
opioid receptor subtypes. As previously published (42), osmotic
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minipumps (model 2004; Alzet, Cupertino, CA, USA) primed
with 12 mg/kg of methadone or normal saline were implanted
in embryonic day (E) 16 timed-pregnant rat dams (Charles River
Laboratories, Wilmington, MA, USA) (Figure 1). Implantation
on E16 allows in utero opioid exposure from E16 to birth and
postnatal opioid exposure via milk from birth to postnatal day
(P) 7 (blood collection). These minipumps allow for continual
infusion of methadone or saline at a rate of 0.25µL per hour for a
maximum of 28 days. Under isoflurane-induced anesthesia, dams
underwent a minipump placement procedure. Subcutaneous
minipump placement was achieved by transverse 1.5-cm incision.
The subcutaneous area was opened by careful blunt dissection,
and the prefilled, primed osmotic minipump was placed in the
opened space. Following closure of the incision with sutures,
dams were then returned to their respective home cages, where
their recovery was closely monitored. When pups were born
on E22, they then received methadone through milk ingestion.
Postnatal methadone exposure was confirmed by measuring the
concentration of methadone in dam and offspring urine (42). As
previously reported, this paradigm of opioid exposure results in
significant pup weight loss at the neonatal and perinatal period.
Opioid exposure via 12 mg/kg minipump results in a significant
10% reduction in offspring weight at P1 and 23% reduction in
weight by P21 compared to saline exposed controls (42). These
preclinical data reflect data from clinical studies showing that
infants of mothers who exclusively used opioids suffered from a
2 to 10% decrease in birth weight compared to healthy controls
(53, 54). Further, another study found that infants of mothers
on methadone replacement therapy suffered a 19% reduction in
birth weight compared to age-matched controls (55). Thus, this
model replicates the systemic consequences of extended prenatal
opioid exposure observed in human infants.

Peripheral Blood Mononuclear Cell
Isolation
At P7, rats are developmentally equivalent to human infants
between approximately 32 and 38 weeks’ gestation (56–62).
From P7 to P10 in rats and 36–40 weeks’ gestation in humans
(term infant), overall brain growth peaks while important neural
developmental processes, such as gliogenesis and expansion of
axonal and dendritic density, occur (60, 63–65, 65–69). During
this same developmental period, consolidation of the immune
system in humans and rats occurs, whereby the functional
capacity of immune cells evolves, and the number of circulating
leukocytes, neutrophils, and monocytes increases (26–28, 60,
70–72). At P7, PBMC isolation was performed as previously
published (41). Venous blood was collected from the right atrium
of deeply anesthetized P7 pups and pooled across three animals
in pyrogen-free K2 EDTA Vacutainer tubes (366643; Becton
Dickson, Franklin Lakes, NJ, USA). Each n represents PBMCs
isolated from blood pooled across three separate animals. In
this study, equal numbers of male and female pups were used
throughout. Peripheral blood mononuclear cells were isolated
by Ficoll gradient separation (37), whereby equal volumes of
peripheral blood and RPMI 1640 media (Gibco, Waltham, MA,
USA) were combined and layered atop 3mL of Ficoll-Plaque Plus

(17144002; GE Healthcare, Chicago, IL, USA) within sterile 15-
mL conical tubes. Following centrifugation at 400 g for 30min
at room temperature, the PBMC cell layer was transferred to
a new centrifuge tube and resuspended in three volumes of
RPMI media. Two wash cycles were performed, consisting of
centrifugation at 400 g for 10min at room temperature, disposal
of the supernatant, and resuspension of the pellet in three
volumes of RPMI media. Isolated PBMCs resuspended in media
were plated in triplicates at a density of 1 × 106 cells/mL on
3.5-cm Petri dishes.

Peripheral Blood Mononuclear Cell
Treatment With LPS
Plated PBMCs from saline and methadone groups were
stimulated with 10, 50, or 100 ng/mL of LPS to generate a dose
response curve. Based on TNF-α secretion levels at 3 h, we
determined that stimulation with 100 ng of LPS was ideal to
produce a robust PBMC secretory response in both treatment
groups. Therefore, consistent with previous studies, 100 ng
of LPS was used for LPS challenge experiments (41, 45, 73).
Supernatant samples were collected at 3 and 24 h in sterile 2-mL
Eppendorf tubes, snap frozen on dry ice, and stored at −80◦C
until biochemical analysis.

Multiplex Electrochemiluminescent
Immunoassay
To capture the secretory activity of PBMCs prior to protein
synthesis, and then after protein synthesis, the supernatants
from plated PBMCs were assayed at 3 and 24 h, respectively.
Subsequently, secreted cytokine and chemokine expression
was quantified using a V-PLEX Proinflammatory Panel 2
Rat Kit (K15059D; Meso Scale Diagnostics, Rockville, MD,
USA) created to detect levels of interferon γ, IL-1β, IL-
4, IL-5, IL-10, IL-13, IL-6, CXCL1, and TNF-α. The V-
PLEX multielectrochemiluminescent immunoassay (MECI) was
performed according to manufacturer instructions with <5%
interassay variation. Specifically, supernatants from cultured
PBMCs were diluted 1:4 and, together with prepared standards,
were loaded in duplicate onto the manufacturer-provided
blocked and washed 96-well plates. Then, following a series of
washes and incubation with the antibody detection solution,
plates were washed and loaded with the manufacturer-provided
Read Buffer and read on a Quickplex SQ 120 Imager. Here, we
report data on the levels of TNF-α and CXCL1 production at 3 h
and TNF-α, CXCL1, IL-6, and IL-10 at 24 h. Of note, levels of
IL-6 and IL-10 at 3 h were below the detectable limit in baseline
conditions, as were other cytokine levels in the panel.

Statistical Analyses
To determine appropriate sample size, statistical power was
calculated using G∗Power 3.1.9.7 (Institut für Psychologie, Kiel,
Germany) (74), using estimated means from previous studies
(33, 42). Here, we prepared an n of three per treatment group,
whereby each n represents isolated PBMCs from three animals
pooled into one sample. Comparisons to determine statistical
significance, defined as p < 0.05, were performed within Prism
7.05 (GraphPad software, San Diego, CA, USA). For comparisons
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FIGURE 1 | Experimental timeline. Perinatal methadone exposure was accomplished by minipump implantation on E16, permitting pup exposure to methadone during

critical stages of immune and neurological maturation. On P7, PBMCs from methadone- or saline-exposed pups were isolated for culture and biochemical analysis.

between saline and methadone PMBC secretion, a Student t-test
was used to determine significance. For statistical analysis of the
dose response to LPS, a one-way analysis of variance (ANOVA)
with Bonferroni multiple comparisons was performed. To make
comparisons between treatments (baseline secretion vs. LPS-
stimulated secretion) and to make comparisons between time
points (3- vs. 24-h secretion), two-way ANOVA was performed
with Bonferroni post-hoc analyses.

RESULTS

Methadone Alters Baseline Peripheral
Immune System Signaling
At 3 h, unstimulated PBMCs from methadone-exposed pups
produced significantly augmented levels of the inflammatory
cytokine TNF-α (methadone: 3.589 pg/mL, saline: 0.8142 pg/mL,
t-test, p < 0.0001), as well as CXCL1 (methadone: 1.280 pg/mL,
saline: 0.0, t-test, p= 0.0004) (Figure 2A).

After 24 h, the level of TNF-α secreted by saline PBMCs
was 41% increased from levels measured at 3 h, whereas
methadone PBMCs demonstrated a 152% increase from levels
measured at 3 h (two-way ANOVA, p < 0.0001). Increased
production of TNF-α by methadone PBMCs at 24 h (methadone:
9.047 pg/mL, saline: 1.148 pg/mL, t-test, p < 0.0001) was
accompanied by increased secretion of CXCL1 by methadone
PBMCs relative to saline PBMCs (methadone: 2.950 pg/mL,
saline: 0.0 pg/mL, t-test, p = 0.0004) (Figure 2B). By 24 h,
CXCL1 secretion by methadone PBMCs was 130% increased
from measurement at 3 h (t-test, p < 0.0002), whereas levels of
CXCL1 production by saline PBMCs remained below detectable
levels at both the 3- and 24-h time points. Moreover, after 24 h
in culture, methadone PBMCs demonstrated additional evidence
of dysregulated immune signaling, evident by increased IL-6
(methadone: 39.82 pg/mL, saline: 0.0 pg/mL, t-test, p < 0.0001)
and decreased IL-10 expression (methadone: 0.0 pg/mL, saline:
1.712 pg/mL, t-test, p= 0.0001) (Figure 2C). Together, these data
show significantly altered baseline production of inflammatory
signaling molecules by methadone-derived PBMCs at 3 and 24 h
compared to controls.

Methadone Primes the Peripheral Immune
System Toward Hyperreactivity
To illuminate potential discrepancies in reactivity to immune
stimulus between treatment groups, PBMCs from methadone
and saline exposed pups were challenged with LPS in vitro. By
increasing the dose of LPS from 10, to 50, to 100 ng/mL, we
observed a dose-dependent increase in TNF-α secretion from
both saline and methadone PBMCs, compared to PMBCs in
media alone (one-way ANOVA, p < 0.0001) (Figure 3). In
this assay, addition of media alone resulted in levels of TNF-
α production that were not statistically different from baseline
levels of TNF-α measured at 3 h, as reported earlier in this
study (one-way ANOVA, p > 0.05). With each dose of LPS,
PBMCs derived from methadone-exposed animals produced
greater levels of TNF-α compared to saline PBMCs (one-way
ANOVA, p < 0.001). As 100 ng/mL LPS elicited a significant
response in PBMCs from both methadone- and saline-exposed
pups, we stimulated a separate cohort of PBMCs with this dose
and measured cytokine and chemokine levels at 3 and 24 h.

At 3 h following stimulation with 100 ng/mL LPS, TNF-
α (methadone: 215.8 pg/mL, saline: 59.08 pg/mL, t-test, p <

0.0001) and CXCL1 (methadone: 53.29 pg/mL, saline: 14.33
pg/mL, t-test, p < 0.0001) production by PBMCs from P7
methadone-exposed pups was increased compared to PBMCs
from saline-exposed controls, representing a 265 and 272%
increase, respectively (Figure 4A). Compared to baseline levels of
unstimulated PBMCS, LPS-stimulated PBMCs derived from both
saline and methadone animals produced significantly increased
levels of TNF-α and CXCL1 3 h (two-way ANOVA, p < 0.0001).

Following 24 h of LPS stimulation, levels of TNF-α
(methadone: 412.6 pg/mL, saline: 102.8 pg/mL, t-test, p <

0.0001) and CXCL1 (methadone: 231.6 pg/mL, saline: 38.34
pg/mL, t-test, p < 0.0001) produced by methadone PBMCs were
increased by 301 and 504%, respectively, compared to levels
from saline PBMCs (Figure 4B). Compared to measurements
taken at 3 h following LPS stimulation, TNF-α secretion at
24 h increased by 74% in saline PBMCs, whereas methadone
PBMCs demonstrated a 91% increase (two-way ANOVA, p
< 0.0001). A similar pattern arose with CXCL1 production.
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FIGURE 2 | At baseline, PBMCs from methadone-exposed pups demonstrated dysregulated production of inflammatory signaling molecules. (A) At 3 h following

isolation from P7 pups and plating in media alone, PBMCs from methadone-exposed pups produced significantly increased levels of TNF-α and CXCL1, compared to

PBMCs from saline-exposed control PBMCs. (B) After 24 h, TNF-α and CXCL1 levels from methadone PBMCs compared to saline were further augmented. (C)

Additionally, methadone PBMCs produced significantly higher levels of IL-6 and significantly lower levels of IL-10, compared to saline controls (n = 3 per treatment

group, ***p < 0.001, ****p < 0.0001).

FIGURE 3 | Peripheral blood mononuclear cells isolated from P7 pups exhibit LPS induced dose-responsive increases in TNF-α production. (A) Increasing doses of

LPS (10, 50, or 100 ng/mL) elicited significantly augmented secretion of TNF-α from saline and (B) methadone PBMCs, compared to PMBCs in media alone (n = 3

per treatment group, 1 way ANOVA, ****p < 0.0001).

By 24 h, CXCL1 production by saline PBMCs increased 164%
from levels measured at 3 h, whereas CXCL1 produced by LPS-
challenged methadone PBMCs rose 334% (two-way ANOVA, p

< 0.0001). At 24 h, we also found significantly increased levels
of IL-6 (methadone: 409.4 pg/mL, saline: 111.7 pg/mL, t-test,
p < 0.0001) and IL-10 (methadone: 20.35 pg/mL, saline: 1.442
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FIGURE 4 | Stimulation with LPS revealed hyperreactivity of PBMCs from methadone-exposed pups. (A) At 3 h, TNF-α and CXCL1 production by PBMCs from P7

methadone-exposed pups was significantly increased compared to PBMCs from saline exposed controls. (B) After 24 h, TNF-α and CXCL1 levels from methadone

PBMCs were significantly increased compared to saline levels. (C) Additionally, production of IL-6 and IL-10 by methadone PBMCs was significantly augmented,

compared to saline controls (n = 3 per treatment group, unpaired t-test, ****p < 0.0001).

pg/mL, t-test, p < 0.0001) from methadone PBMCs, compared
to saline controls (Figure 4C).

DISCUSSION

As the opioid crisis continues to grow, increasing numbers
of pregnant women and infants are affected. While mounting
evidence indicates that prenatal opioid exposure is associated
with significant and long-lasting neurological injury (17–19, 25),
information on the pathophysiology of opioid exposure during
the perinatal period is limited. Increasing our understanding
of the cellular and molecular mechanisms that are impacted in
circumstances of in utero opioid exposure is important for the
development and implementation of informed clinical practices,
in addition to the improvement of therapeutic options to support
opioid-exposed infants.

Using the same model of perinatal opioid exposure
employed in the current study, we previously provided
evidence of neuroinflammation, microstructural brain injury,
persistent cognitive deficits, and peripheral immune activation
following perinatal opioid exposure (42). Here, we expand
our understanding of the systemic immune dysfunction
through an in-depth characterization of peripheral immune cell
activity and reactivity following perinatal methadone exposure.
Utilizing a clinically applicable in vitro cell culture protocol and
translational multiplex immunoassay inflammatory biomarker
panel (36, 37, 75–80), we found that at baseline PBMCs
derived from methadone-exposed P7 pups hypersecreted
proinflammatory molecules. Consistent with our previous
findings that PBMCs derived from methadone-exposed rats
secreted increased levels of TNF-α at 3 and 24 h after collection
(42), here, we demonstrate that methadone PBMCs also secrete
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elevated levels of CXCL1 at 3 h. Increased expression of TNF-α
and CXCL1 relative to PBMCs derived from saline-exposed
controls was still evident at 24 h, demonstrating sustained
peripheral immune activation of methadone-derived PBMCs
at P7. Interestingly, after 24 h in culture, we observe additional
evidence of dysregulated immune signaling with elevated IL-6
and diminished IL-10 in methadone-exposed animals relative
to saline controls, in addition to the increased TNF-α and
CXCL1 levels from methadone PBMCs. Despite probing for
the presence of IL-6 and IL-10 at 3 h, the levels from both
saline- and methadone-derived PBMCs remained below the
detectable limits of the MECI. In summary, this evidence of
elevated PBMC baseline production of known proinflammatory
molecules TNF-α, CXCL1, and IL-6, with decreased levels of
anti-inflammatory IL-10 from methadone-exposed animals,
likely contributes to a proinflammatory environment within the
systemic circulation (81).

To further characterize altered immune function, we
stimulated cultured PBMCs with 100 ng/mL of LPS to represent
an immune challenge and then quantified the chemokine and
cytokine profile signature. While the addition of 100 ng/mL
of LPS is a supraphysiological dose, it was formulated in
consideration of our previous work (41, 42) and based on
the dose response measured in TNF-α secretion to 10, 50,
and 100 ng/mL of LPS that we performed in this study. We
demonstrate that 100 ng/mL produces a robust PBMC response
in the in vitro PBMC culture assay we performed, allowing us
to examine chemokine and cytokine production by PBMCs
from both saline and methadone treatment groups. Following
3 h of LPS stimulation, we detected levels of TNF-α and
CXCL1 that were elevated from baseline in both methadone-
and saline-exposed groups. Lipopolysaccharide-stimulated
methadone PBMCs produced significantly more TNF-α and
CXCL1 compared to PBMCs from stimulated saline control
PBMCs. At 24 h, hyperreactivity of methadone PBMCs was
evident from significantly elevated levels of TNF-α, CXCL1,
IL-6, and IL-10 compared to saline controls. Taken together,
these data provide evidence of increased sensitivity and a
priming effect to subsequent inflammatory challenge in PBMCs
from methadone-exposed pups. This suggests a mechanism of
deleterious feed-forward inflammatory pathophysiology and
fetal programming of immune system activation induced by
methadone. Indeed, immune plasticity altered by methadone
exposure may have long-lasting effects on the inflammatory
responses of circulating leukocytes later in life. Future studies
that assess the secretome and reactivity of PBMCs derived from
opioid-exposed subjects at later developmental time points
beyond P7 would be important to answer these questions.

Importantly, our in vitro approach allowed us to study
PBMC responsiveness and sensitivity in isolation of potential
confounders such as Toll-like receptor–stimulating agents in the
peripheral circulation (82). Our in vitro data showing increased
proinflammatory signaling at baseline from methadone-exposed
PBMCs, without any immune stimulation, are distinct to
this paradigm of perinatal injury and highlight this in vitro
assay for use as a potential biomarker. The in vitro LPS

challenge we perform here is a method that has been used
clinically in children with developmental disorders and brain
injury (35, 37). For instance, in a clinical study of children
born preterm with cerebral palsy (37) and preclinical model
reminiscent of preterm CNS injury (41), PBMCs were assayed
consistent with the in vitro approach employed in the current
study. Interestingly, in these studies, baseline secretion of
PBMCs did not differ between treatment groups (37, 41).
Only after stimulation with LPS did appreciable differences in
PBMC chemokine and cytokine production appear in subjects
with cerebral palsy (37), similar to preclinical studies (41,
45, 73). Perinatal insult–specific PBMC properties, revealed
using this in vitro approach, support the potential use of
secreted protein profiles from isolated PBMCs as a biomarker
to discern distinct pathologies and potentially guide clinical
treatment. Indeed, elucidating these profiles of immune signaling
molecules holds potential for use as a biomarker to determine
vulnerability to sustained peripheral immune hyperreactivity.
Specifically, biomarkers in neonates could provide estimation
of extent of immune system abnormalities and CNS injury
and provide pharmacodynamic support to guide duration or
degree of treatment for neonatal opioid withdrawal syndrome
or supportive care in neonatal intensive care units. In this
context, durable changes in PBMC reactivity may be an effective
biomarker, and clinical utility may prove high given the ease
of access to these cells and well-defined clinical stimulation
protocols (37, 43). However, while these in vitro PBMC
assays are clinically relevant, they are distinctly different than
studying the complex, multidimensional in vivo response to
inflammation, sepsis, and systemic sensitization catalyzed by
an LPS challenge. Unquestionably, further study is required to
validate how circulating leukocytes respond to LPS immune
challenges in vivo and in the context of complex inflammatory
networks, systemic circulating factors, and all cells that
express TLR4.

Peripheral blood mononuclear cell hypersecretion of
proinflammatory molecules and PBMC hyperreactivity resultant
of gestational opioid exposure have important implications for
the developing CNS. Our previous preclinical report strongly
implicates brain injury secondary to opioid-induced systemic and
neuroinflammation (42). In alignment with the aforementioned
study, we now provide evidence of PBMC hypersection and
hyperreactivity, which could contribute to increased systemic
inflammation during the term equivalent developmental time
point, coinciding with the brain growth spurt, peak myelination
and gliogenesis, and astrocyte production (60, 63, 65–69, 83).
Increased chemokine and cytokine production by PBMCs
during the perinatal period jeopardizes proper neural cell
development and circuitry maturation. Indeed, inflammation
during perinatal development results in lasting neurological
impairment (77, 80, 84, 85). While future studies are needed
to clarify if methadone elicits PBMC systemic inflammation
via PBMC activation throughout the methadone exposure, it is
well-established that elevated levels of circulating inflammatory
proteins during later stages in brain development (late third
trimester, term equivalent) are associated with brain injury,
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characterized by increased structural and functional neurological
deficits (80, 84, 86–89). Specifically, in a recent study of
systemic TNF-α inhibition in preterm fetal sheep exposed to
LPS-induced inflammation, researchers identified circulating
TNF-α as a critical contributor to neuroinflammation and
pathogenesis of impaired neurodevelopment (90). Cytokine
and chemokines produced by circulating leukocytes are able
to cross the blood–brain barrier via selective transporters
(91). Furthermore, as in the specific case of TNF-α, increased
levels can contribute to impairment of the blood–brain barrier
function (92–94), allowing for increased proinflammatory
molecule access to the developing CNS. Opioids are able to
cross from maternal circulation through the placenta to fetal
circulation owing to their low molecular weight, moderate
lipid solubility, and low protein binding (95). Once in fetal
circulation, opioids are able to cross the fetal blood-brain barrier
by means of numerous transporters (96, 97). Thus, not only
are developing neural cells and circuitry exposed to elevated
levels of proinflammatory molecules in the context of opioid
exposure, but they are directly exposed to opioids as well. In
the developing CNS, neurons in addition to oligodendrocytes,
astrocytes, and microglia express opioid receptors (98).
Intriguingly, oligodendrocytes express opioid receptors in a
maturation-dependent manner, in which immature stages of
oligodendrocytes have increased opioid receptor expression
(98), rendering this population more vulnerable to opioid
exposure. Ultimately, exposure to opioids in conjunction with
the proinflammatory profile produced by opioid exposure
characterized in the current investigation could contribute to
observed brain injury in preclinical studies (42), as well as clinical
studies indicating particular vulnerability to major white matter
tracts in infants exposed to opioids during brain development
(20, 22, 24, 25).

Similar to the CNS, the immune system develops and
matures over the course of gestation and the perinatal period.
Dysregulated chemokines and cytokine production, and changes
in immune cells themselves, culminate in impaired immune
function that can last decades (35, 37). Similar to neural cells,
leukocytes are uniquely responsive to their environment.
Indeed, immune plasticity altered by prenatal insults may have
long-term effects on the inflammatory responses of circulating
leukocytes, which may serve as a biomarker of persistent or
prior neuroinflammation and brain injury (99, 100). Infants
exposed to intrauterine inflammation are at an increased risk
of neurodevelopmental disorders (101). Notably, newborns that
have elevated levels of biomarkers of systemic inflammation on
two occasions 1 week apart are at a higher risk of brain injury and
impaired neurodevelopment (77, 80, 84) Thus, understanding the
homeostatic regulation of central and peripheral inflammatory
cells in infants following opioid exposure, and the long-
term consequences of their dysregulation, is essential (102).
Significantly, an increase in chemokines/cytokines can
contribute to perinatal brain injury by multiple overlapping
mechanisms, including direct initiation of programed
cell death pathways, microglial activation, immune cell
recruitment, mitochondrial damage, and endoplasmic reticulum
stress (85, 103, 104).

There are important limitations to this present study. For
instance, here PBMCs were isolated from pooled peripheral
blood from term equivalent male and female rats, limiting
the ability to elucidate differences between individual animals
and between male and female rat pups. Evidence from studies
examining PBMCs isolated from adult humans suggests that
sex differences in stimulated PBMC properties and secretion
exist (105–107). While sex differences in secretion of PBMCs
isolated at neonatal time points are not well-defined (35,
37), evidence exists demonstrating sex-specific differences in
brain inflammation following circulating myeloid cells depletion
in neonatal mice (108) and that inflammatory responses
following immune cell activation in the immature brain differ
between males and females, as reviewed by Mallard et al.
(109). Thus, separate pooling of males and female peripheral
blood from P7 pups for sex-specific analysis represents an
important future direction. Additionally, although pooling of
blood from multiple P7 rat pups was necessary in these
experiments to collect an adequate PBMC fraction following
differential centrifugation, analysis at later time points with
larger animals would not require pooling, allowing for analysis
of individual animal PBMC secretion and reactivity. Peripheral
blood mononuclear cells represent a heterogeneous population
of mononuclear cells in the peripheral circulation composed
of T cells, T regulatory cells, T helper cells, B cells, and
natural killer/dendritic cells/monocytes (110). Undoubtedly, flow
cytometric studies beyond the scope of the present investigation
are needed to define the precise immune cell population
composition of PBMCs isolated from animals exposed to opioids
during development.

In the current study, pregnant ram dams were implanted
with methadone administering osmotic minipumps on E16
prior to complete oligodendrocyte, microglial, and astrocyte
maturation (60), limiting rat pup opioid exposure to E16
through P7 when PBMCs were collected. This prenatal
and postnatal opioid exposure paradigm accomplishes
opioid exposure up until the equivalent end of the
human third trimester. Future studies should now aim to
commence opioid exposure from the onset of pregnancy
(E0), thereby encompassing the entirety of brain and
immune development.

In conclusion, we provide evidence in support of a
systemic inflammatory response to perinatal opioid exposure,
characterized by immune cell reprogramming and priming.
This evidence may in part contribute to the neurological
injury following developmental opioid exposure characterized
in our previous preclinical study (42). The current study
with the study by Jantzie et al. (42) joins a host of new
and intriguing investigations that link developmental
neurological injuries including cerebral palsy (37) and
Down syndrome (35) with underlying systemic inflammation
resultant of abnormal PBMC activity. Treatments that reduce
inflammation or support developing neural cells in the context of
inflammation could rescue the poor neural outcomes observed
in preclinical and clinical investigations of perinatal opioid
exposure. Our future studies will aim to identify appropriate
therapies that target these proinflammatory mechanisms
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underlying brain injury associated with in utero opioid
exposure (33, 111–114).
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