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Osteosarcoma and Ewing’s sarcoma are the most common primary bone malignancies

affecting children and adolescents. Optimal treatment requires a combination of

chemotherapy and/or radiation along with surgical removal when feasible. Advances

in multiple aspects of surgical management have allowed limb salvage surgery (LSS)

to supplant amputation as the most common procedure for these tumors. However,

individuals may experience significant impairment after LSS, including deficits in range of

motion and strength that limit function and impact participation in work, school, and the

community, ultimately affecting quality of life. Muscle force and speed of contraction are

important contributors to normal function during activities such as gait, stairs, and other

functional tasks. Muscle architecture is the primary contributor to muscle function and

adapts to various stimuli, including periods of immobilization-protected weightbearing

after surgery. The impacts of LSS on muscle architecture and how adaptations may

impact deficits within the rehabilitation period and into long-term survivorship is not

well-studied. The purpose of this paper is to [1] provide relevant background on bone

sarcomas and LSS, [2] highlight the importance of muscle architecture, its measurement,

and alterations as seen in other relevant populations and [3] discuss the clinical relevance

of muscle architectural changes and the impact on muscle dysfunction in this population.

Understanding the changes that occur in muscle architecture and its impact on long-term

impairments in bone sarcoma survivors is important in developing new rehabilitation

treatments that optimize functional outcomes.

Keywords: bone sarcoma, limb salvage surgery, muscle architecture, lower extremity, muscle adaptation,

ultrasound, physical therapy

INTRODUCTION

Bone sarcomas, particularly osteosarcoma and Ewing’s sarcoma, are primary malignant
musculoskeletal tumors affecting ∼650 children and adolescents yearly in the United States with a
5-years survival rate of 65–75% for localized disease after treatment (1, 2). These tumors often occur
near major joints and require extensive bone and soft tissue removal, restoration of a mechanically
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stable skeleton, and muscular or tendon reconstruction in order
to salvage the limb (3). Although limb salvage surgeries (LSS)
offer many benefits, extensive reconstruction and interruption
of musculoskeletal structures likely contribute to lifelong
functional impairments.

Survivors of childhood bone sarcomas demonstrate deficits
of range of motion (ROM), strength, and increased pain (4–
14). These impairments contribute to restrictions in gait, limb
function, and physical activity ultimately affecting quality of life
(QoL) (10, 15–20). Alterations in muscle function resulting from
chemotherapy, surgery, and/or radiation likely impact muscle
force production needed during activities of daily living.

Muscle architecture, defined as the size and orientation of
muscle fibers in relation to the tendon of insertion, is known
to be a primary determinant of muscle function (21). Fiber
length contributes significantly to maximal contraction velocity,
affecting the ability to generate muscle force quickly during
functional activities (22). Muscle size, commonly measured via
cross-sectional area or volume, also has significant contributions
and correlates with muscle force (21, 23). Alterations in
muscle architectural parameters have been observed in stroke,
sarcopenia, cancer, cerebral palsy, and orthopedic conditions
such as knee osteoarthritis and anterior cruciate ligament
reconstruction (ACLR) (24–43). However, while much of this
research has been in adult populations, studies of muscle
architectural changes in postoperative pediatric and adolescent
populations have been lacking. Architectural adaptations may
significantly impact muscle force production and activities
dependent on substantial force generation such as climbing stairs.
Despite a clear link between muscle architecture and muscle
function, little is known about the impact of LSS on muscle
architecture. Given the unique medical and surgical management
that these individuals undergo, multiple factors likely influence
alterations in muscle architecture, contributing to functional and
activity-related restrictions commonly observed.

The purpose of this review is to inform health care
professionals on potential muscle architectural changes in
individuals with LSS for bone sarcomas in order to optimize
current rehabilitation strategies and highlight areas in need of
further research. This review will focus on three areas: [1]
current medical and surgical management of sarcomas and
its impact on muscle, [2] measurement of muscle architecture
and its impact on function, and [3] recommendations for
future research in order to improve outcomes and optimize
muscle and functional performance in long-term survivorship.
Literature targeted for this review included peer-reviewed cross-
sectional, epidemiological, longitudinal, and clinical studies in
the pediatric, adolescent, and young adult population. Relevant
studies in adult populations will be highlighted to inform
readers on related research and its relevance to the population
of interest.

Abbreviations: ACLR, ACL reconstruction; CCS, childhood cancer survivor; CT,
computed tomography; LE, lower extremity; LSS, limb salvage surgery; MRI,
magnetic resonance imaging; ROM, range of motion; TKA, total knee arthroplasty;
US, ultrasound.

LOWER EXTREMITY SARCOMAS AND
SURGICAL MANAGEMENT

Diagnosis and Surgical Management of
Lower Extremity Sarcoma
Individuals with bone sarcomas are frequently diagnosed in the
2nd decade of life, at a time of continuing development and
growth (3, 44, 45). A majority of these bone sarcomas occur
in the appendicular skeleton, especially in the femur or tibia
adjacent to the knee (45, 46). Management of bone sarcomas
includes chemotherapy, surgical resection, and/or radiation (45).
The most common surgical option for local control is complete
surgical resection of the tumor with reconstruction of the
resulting defect, referred to as limb salvage surgery (LSS) (47,
48). While LSS has the main advantage of limb preservation,
surgical decisions must be individually-based and are dependent
on patient age, tumor location and size, expected growth plate
involvement (and therefore anticipated limb length discrepancy),
and desired functional outcome (3, 46, 49). To ensure adequate
removal of the entire tumor, a cuff of surrounding normal
tissue, often including adjacent muscle, tendon, fascia, and
neurovascular structures, must be removed (3).

The most common site involved is the knee, affecting
either the distal femur or proximal tibia. Wide resection
often requires sacrifice of joint surfaces and/or adjacent
ligamentous restraints, with a joint-replacing endoprosthesis that
restores skeletal stability used as the most common form of
reconstruction (3, 46). Due to its anatomic location, proximal
tibial reconstruction requires augmentation of the soft tissue
coverage and reconstruction of the patellar tendon extensor
mechanism. This is most commonly done with a medial
gastrocnemius rotational muscle flap positioned over the anterior
portion of the tibial implant (3, 7, 49). In skeletally immature
children, extendible endoprosthesis devices may be used to
accommodate expected limb length discrepancies through
sequential surgical or non-invasive lengthening procedures
(47). For a more detailed information on surgical options
and procedures, the reader is referred to other references for
additional detail (3, 46–48, 50).

Post-operative Medical Management and
Rehabilitation
After surgery, individuals require careful monitoring for wound
complications related to swelling and vascular compromise of
tissue flaps and secondary infections related to the complexity
of the surgical procedure and an immune-compromised state
induced by chemotherapy and malnutrition in this population
(48). Postoperative precautions include elevation, splinting and
joint immobilization to facilitate wound healing, the duration
of which can vary depending on the tumor location (femur
vs. tibia), the type of endoprosthesis fixation used and other
patient-specific factors. After distal femur reconstructions, post-
operative knee immobilization ismaintained until wound healing
is accomplished, typically 2–3 weeks (51). Following proximal
tibia reconstructions, a period of strict immobilization in knee
extension is necessary to protect the reconstructed patellar
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tendon insertion during the healing phase, commonly around
6–8 weeks (13, 51). Early therapy interventions include active
and passive ROM of the adjacent hip and ankle, along with
transfer training and mobilization with partial or weight-bearing
as tolerated while maintaining immobilization of the knee to
protect the healing structures (13, 51). Rehabilitation is advanced
after discontinuation of post-operative precautions with the goal
of optimizing knee ROM, strength, balance, proprioception and
functional gait.

IMPAIRMENTS IN BODY STRUCTURE,
FUNCTION, AND ACTIVITY ARE COMMON
IN SURVIVORSHIP

Common Impairments After Limb Salvage
Procedure
Although some individuals achieve excellent function, many
survivors experience residual impairments that impact function
and activities of daily living. Common impairments include
restrictions in ROM, strength deficits, and gait dysfunction (8,
9, 52). Impaired ROM, notably in knee flexion, is observed
with two studies reporting an average flexion range between
106.1 and 109.3◦ in the surgical limb (compared to an average
of 134.1 for the non-surgical limb) (6, 9). Importantly, while
these studies included participants with both tibia and femur
sarcomas, a separate study found patients with endoprosthesis
management of proximal tibia tumors had a mean knee flexion
ROM of only 60◦ (7). This difference may be due to the extended
immobilization period required for healing of the knee extensor
mechanism (13).

Strength deficits are also common, with ratios of surgical to
non-surgical knee strength between 37.4 to 47.5% for extension
and 54.5 to 71.7% for flexion (6). Strength deficits have also been
observed in the non-surgical (contralateral) limb (53). A case
series reports decreased unimpaired knee and hip muscle force
production compared to normative values for knee flexion (74%),
knee extension (63%), hip flexion (35%), and hip extension (13%)
(12). Individuals with proximal tibia reconstructions have the
additional challenge of achieving full active knee extension (the
deficit of which is referred to as extensor lag) due to the necessary
reconstruction of the distal insertion of the patellar tendon
remnant onto the endoprosthesis after tumor resection (13).

Impairments in ROM and strength also contribute to gait
dysfunction in this population. Spatiotemporal gait changes after
LSS include decreased gait speed, stride length, and cadence,
as well as changes to the time spent in single and double limb
support (6, 12). The amount of soft tissue removed during
surgery, knee extension strength, and knee flexion ROM are all
predictive of impaired gait in individuals 1-year after LSS (10).

Functional and Activity Impairments Limit
Full Participation After LE Sarcoma Limb
Salvage Procedures
Residual impairments after LSS may be expected to impact
functional activities after the immediate and subacute
rehabilitation period. Due to continued impairments, LSS
patients may have difficulty with functional activities that are

required for full participation in work, school or the community.
Marchese et al. (9) examined functional mobility, QoL, and
ROM in individuals after LSS and found significant correlations
between ROM restrictions and functional and QoL measures
(9). Additionally, performance limitations affect participation
in childhood cancer survivors (CCS). In the Childhood Cancer
Survivor Study, 29.1% of osteosarcoma survivors reported at
least one limitation in physical ability, while 22.1% reported
lingering pain from their medical condition (4). When compared
to siblings, bone sarcoma CCS are 6.3 times more likely to have
decreased attendance at school or work, with 11% reporting that
poor health prevented their regular attendance (16). In addition,
51.8% of adult CCS managed with LSS are physically inactive
and less likely to exercise compared to their siblings (54). When
compared to other pediatric cancer diagnoses, survivors of bone
sarcomas have the 2nd highest rate of performance limitations
and participation restrictions, surpassed only by survivors of
brain tumors (16). Although there have been vast improvements
in medical and surgical management of bone sarcomas, the role
and impact of muscle alteration remains largely unexamined in
this population despite the likelihood that minimizing adverse
effects of muscle dysfunction may have a significant role in
improving function and participation in these individuals.

MUSCLE ARCHITECTURE DETERMINES
MUSCLE FUNCTION

What Is Muscle Architecture and How
Does It Relate to Muscle Function?
Muscle architecture refers to the size and orientation of muscle
fibers and is highly predictive of muscle function (21). It is
represented by a few key parameters, namely optimal fiber
length (the length at which peak isometric tension is generated),
physiological cross-sectional area (PCSA, a representation of the
cross-sectional area (CSA) perpendicular to the muscle fibers),
and the pennation angle (the angle of fiber insertion into the
tendon) (22, 55–57). PCSA is distinct from purely anatomical
cross-sectional measures in that the latter does not take into
account the pennation or orientation of the fibers, and is usually
in an anatomical plane rather than oriented in cross-section
to the specific muscle’s line of action. PCSA is the strongest
predictor of optimal force generation in skeletal muscle, and
therefore important to functional demands where optimal force
is required (22, 57–60). While production of muscle force is
complex, muscle architecture is one of the primary determinants
of force production (21). Muscles important to human function
vary with respect to their muscle architecture. For example, the
soleus muscle, vital to posture and gait, has shorter fibers but
one of the highest PCSAs in the lower limb (61). Conversely,
the sartorius, a muscle with very long fibers related to its high
lengthening capabilities, has a small PCSA and thus lower force-
generating capabilities (61).

How Is Muscle Architecture Normally
Measured?
Direct measures of muscle architecture, such as muscle optimal
fiber length and PCSA can be difficult to obtain, due to the
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need for several relatively invasivemeasures. Optimal fiber length
requires not only direct knowledge of muscle fiber length but
also concomitant measurement of sarcomere length. Fiber length
is most commonly measured using direct dissection in either
cadaveric specimens or utilizing muscle biopsy mechanisms,
often during surgical procedures (21, 58, 62). Sarcomere length
measurement has typically been performed on dissected fiber
bundles or during surgery using laser diffraction methodologies
(63–67), although newer techniques such as microendoscopy can
measure sarcomere length in vivo without need for a surgical
procedure (68, 69). However, microendoscopy still requires a
needle insertion into themuscle to obtainmeasurements (70, 71).
For these reasons, muscle fiber length is often estimated by using
fascicle length as a proxy (21, 72).

Fascicle length, an important indicator of muscle excursion,
is most commonly imaged with ultrasound (22, 73, 74).
Ultrasound (US) is a validated technique that is accessible,
cost-effective, and has been widely used for determining
fascicle length in musculature across numerous populations
(23, 38, 40, 72, 74–76). However, ultrasound imaging does not
have the spatial resolution and field-of-view as other imaging
modalities, including magnetic resonance imaging (MRI) and
computed tomography (CT). In addition, operator-dependent
error associated with excessive transducer pressure and/or
probe orientation can occur, although careful utilization of
reproducible methods enhances accuracy of this method (77–79).
A 2013 systematic review concluded that ultrasound has good
reliability for measurement of fascicle length across multiple
conditions, and validity, although not as widely investigated,
has also been reported as good, especially under reproducible
conditions and during passive conditions (77).

Finally, PCSA is calculated using muscle volume measures
and optimal fiber length. Whole muscle volume can be
estimated using imaging (e.g., MRI), although may not take
into account contractile content vs. other tissue (extracellular
matrix, fat infiltration) within the muscle (59, 80, 81). In
biological samples, PCSA is calculated using muscle mass
(obtained by direct dissection) and muscle density measures
from the literature and may take into account the pennation
angle as well (21, 56, 58, 60, 82). Because of the complexity
in obtaining the measures required for calculation of PCSA,
measures of muscle size are often reported as anatomical CSA
or volumetric measures. Multiple imaging modalities have been
used to obtain surrogate measures of muscle size, including MRI,
CT, and US (37, 83, 84). MRI provides excellent distinction
between soft tissues and is well-suited for volume and CSA
measurements. CT is also a valid and reliable modality for
assessing muscle volume/CSA, but may not provide as much
spatial resolution as MRI, and also comes with the risks of
ionizing radiation. CT is faster and cheaper compared with MRI,
although both have artifacts associated with metal implants that
affect image quality (32, 85). Muscle thickness, as measured
with US, can also provide an indicator of muscle size, although
much like cross-sectional measures, this measurement will vary
depending on the location of the image along the length of
the muscle.

CHANGES IN MUSCLE ARCHITECTURE
AFFECT HUMAN FUNCTION

Changes in Muscle Size With
Immobilization
Muscle CSA, specifically PCSA, is a strong indicator of force
generation capacity, which is often limited in bone sarcoma
childhood cancer survivors (CCS) (6, 8, 9, 12, 53, 86). We are
unaware of any studies measuring any aspect of muscle size
(PCSA, CSA, volume, or thickness) in this population. However,
there are reports of changes in muscle size in populations
related to the LSS population. Immobilization in particular
is a potent catalyst for muscle atrophy, which occurs rapidly
during periods of inactivity (33, 87–89). Seminal work in animal
models demonstrated the dramatic effect of immobilization
on a muscle’s response, where animals immobilized with
the soleus in a shortened position had significantly more
atrophy than those immobilized in the lengthened position
(90, 91). Interestingly, additional studies demonstrate that once
immobilization is discontinued and normal joint function is
returned, immobilization-induced changes can be reversed in
as little as a few weeks (91–93). Although a return to normal
muscle size and length would also be expected in healthy
humans after immobilization, this may depend on the population
and whether or not the normal catalyst for healthy muscle
function can be restored. Research has shown that in healthy
young males, a significant decrease (∼3.5%) in quadriceps CSA
occurred with as little as 5 days of leg immobilization, with
even larger decreases (∼8.4%) in those immobilized for 14 days
(33). Concurrent decreases in strength of 9.0% and 22.9% with
5 and 14 days of immobilization also occurred (33). Given
the immobilization and inactivity that occurs after limb salvage
surgeries, it is expected that muscle atrophy could be one factor
in the strength deficits seen in this population, especially given
the concomitant medical therapies and altered function that this
population experiences.

Evidence for Muscle Atrophy After Surgery
Atrophy has been observed after knee surgery, as reported in total
knee arthroplasty (TKA) and ACL reconstruction (ACLR). After
TKA, studies have documented reductions in muscle volume
between 5 to 20%, with ∼10% reduction seen within the first
month (30, 41). This atrophy explains much of the variance in
strength deficits after TKA, with impaired voluntary activation
another important factor (41, 94). Similarly, reductions in
quadriceps voluntary activation and muscle CSA/volume occur
within 12 weeks after ACLR, with atrophy accounting for almost
half of observed strength deficits; neuromuscular recruitment
deficits also likely contribute during this timeframe (26). Atrophy
has been shown to impact function, with quadriceps weakness
linked to fall risk, decreased gait speed, and stair-climbing
difficulty (30).

While voluntary activation deficits greatly impact muscle
strength in the acute timeframe, there is evidence that atrophy
plays a larger role later in recovery. Studies report quadriceps
central activation ratio near normal (>90%) at both 3 and

Frontiers in Pediatrics | www.frontiersin.org 4 June 2020 | Volume 8 | Article 292

https://www.frontiersin.org/journals/pediatrics
https://www.frontiersin.org
https://www.frontiersin.org/journals/pediatrics#articles


Nelson et al. Muscle Alterations After Limb Salvage

6-months post-surgery, and that decreased quadriceps CSA
explained more of the variance in strength than did activation
deficits after ACLR (29, 43). In individuals cleared to return to
activity post-ACLR, researchers found that partial quadriceps
volume was significantly and strongly correlated (r = 0.830,
p < 0.001) with knee extension strength (95). Furthermore,
there is evidence that differences in quadriceps muscle thickness
exist even 2-years post-ACLR (96). Although much of this
evidence is limited to the adult population, post-operative muscle
atrophy and activation deficits are also likely to occur in the
LSS population.

Changes in Fascicle Length Affect Muscle
Properties and Function
Changes in fascicle length have been observed in various
populations and have a substantial effect on total muscle
excursion as well as contraction velocity. Shorter fascicles
have been observed in the gastrocnemius, biceps brachii, and
brachialis in adults post-stroke, potentially due to the limited
active ROM available in this population (37–39). In addition,
changes in fascicle length in the gastrocnemius after stroke
have been shown to alter the active force-length properties
of that muscle (39). Shorter fascicles have also been observed
in the biceps femoris in adults with history of ACLR (97).
Although altered fascicle length cannot independently explain all

changes in force-generating characteristics, concurrent changes
in sarcomere length and number, both of which have been
reported in animal and human studies, could have implications
on generation of muscle force (91–93, 98, 99). Importantly,
muscle excursion and the length at which it is immobilized has
been shown to be an important stimulus for muscle growth
by serial sarcomere addition (92, 100, 101). Although there
is limited evidence of fascicle or sarcomere length changes in
populations similar to LSS, limitations in active joint function
could also be expected to result in fascicle length and/or
sarcomere changes in the LSS population and could potentially
affect force-length properties.

Potential Muscle Architectural Changes in
Individuals With Bone Sarcoma
Due to the biologic and intrinsic changes in muscle as a
result of chemotherapy and radiation, muscle architectural
changes may amplify continued dysfunction after an individual
undergoes surgery. Chemotherapy and radiation have disruptive
and destructive effects on not only cancerous but also healthy
cells, including skeletal muscle (102, 103). Through oxidative
stress, DNA damage, loss of mitochondria and satellite cell
function, and alterations in blood vessel perfusion, chemotherapy
and radiation induce muscle atrophy and impaired muscle
performance (102–108). Studies in adult survivors of breast

FIGURE 1 | Representative static 2-D ultrasound images of the anterolateral thigh in a 17-years old male who was diagnosed at age 11 with osteosarcoma of the

distal femur and underwent subsequent limb salvage surgery with Stanmore endoprosthesis placement and lengthening. The thickness of the vastus lateralis muscle

(shaded region) is greater in the non-surgical limb (left) compared to the surgical limb (right).
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FIGURE 2 | Extended field-of-view ultrasound images depicting the distal region of the vastus lateralis muscle in the same individual as in Figure 1. Differences in

regional muscle thickness, fascicle orientation, and length (shaded region) can be appreciated between the non-surgical limb (top) and the surgical limb (bottom).

cancer and animal models demonstrate that exercise can mitigate
these negative effects, although it is unclear if this occurs in the
same manner in a skeletally immature population such as in
LSS (109–112).

Finally, limb length discrepancies, common in skeletally-
immature children, may increase functional deficits in this
population. Muscle is capable of rapidly adapting to changes in
limb length, as with limb lengthening. A case report described
changes in fascicle length, sarcomere length, and sarcomere
number in a 17-years old female who underwent a limb
lengthening procedure due to an arrest of her femoral growth
plate (98). Rapid increase in fascicle length during the distraction
period along with a decrease in sarcomere length were reported,
demonstrating an increase in sarcomere number that exceeds that
expected by the femur length change. In the LSS population,
it is anticipated that both muscle thickness and fascicle length
may change given the surgical procedure and post-operative
rehabilitation protocols. Preliminary evidence demonstrates this
possibility, as shown in Figures 1, 2 in a 17-years old after
endoprosthesis reconstruction for a distal femur osteosarcoma.

DISCUSSION AND FUTURE DIRECTIONS
FOR RESEARCH

Effective management of bone sarcomas has led to improved
survival and an increasing population of LSS survivors. However,

individuals continue to experience long-term impairments and
functional deficits even years after treatment. Impaired muscle
function may be due to multiple factors, including chemotherapy
and/or radiation, difficulties with muscle activation, and
surgical interruption of various soft tissues, especially after
muscle flaps and extensor mechanism reconstructions. Muscle
architecture’s significant role in muscle function warrants
continued investigation into these changes and their effect on
muscle properties in this population.

Studies are needed to investigate the mechanisms and
anatomic determinants of muscles affected after LSS. Ultrasound
may provide crucial information about muscle architecture as it
relates to function in this unique population. Changes in muscle
architecture as seen with immobility, may drive secondary
adaptations inmuscles primarily responsible for activities leading
to alterations in gait and overall function. Lastly, how these
architectural changes affect force production and function would
provide insight that may guide surgeons as they perform these
complex, life-saving procedures.

Rehabilitation after LSS, which is not currently standardized,
focuses primarily on functional improvement, protection
of healing tissues, education on potential modifications to
commonly performed functions, strengthening and ROM.
Although weightbearing and ROM restrictions and precautions
may be unavoidable, specific knowledge on how muscle function
is impacted would be valuable in designing specific rehabilitation
programs. For instance, as alterations in fascicle length have
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been shown to change the shape of the force-length curve in
the stroke population, changes in muscle architecture in the
sarcoma population as well as continued growth in this younger
population would be anticipated to alter these important
muscle properties. Clinical knowledge of these processes could
help tailor exercise and strengthening programs to minimize,
reverse or improve properties in specific musculature that
are most affected and important to functional activities after
surgical procedures.

Finally, the long-term significance of these potential
architectural changes for these individuals cannot be understated.
Knowledge of potential muscle architectural ramifications to
function should be considered in order to optimize patient-
specific outcomes. The use of novel imaging techniques,
biomechanical models, and collaborative clinical care may
restore function so that these individuals can return to activities
that are important to their well-being and quality of life.
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