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INTRODUCTION

Myalgic Encephalomyelitis/Chronic Fatigue Syndrome (ME/CFS) is a debilitating disease
characterized by persistent fatigue and post-exertion malaise, accompanied by other symptoms
(1, 2). The direct cause of the disease remains elusive, but it may include genetic factors alongside
environmental triggers, such as strong microbial infections and other stressors (3, 4).

With the aim to identify putative genetic factors that could explain the pathophysiological
mechanisms of ME/CFS, four genome-wide association studies (GWAS) and two targeted-genome
association studies (TGAS) were conducted in the past decade (5–10). In the four GWAS,
thousands of genetic markers located across the whole genome were evaluated for their statistical
association with ME/CFS (5–8). The two TGAS had the same statistical objective of the four
GWAS, but alternatively investigated the association of the disease with numerous genetic markers
located in candidate genes related to inflammation and immunity (9) and in genes encoding
diverse adrenergic receptors (10). The findings from all these different studies suggested conflicting
evidence of genetic association with ME/CFS: from absence of association (7), through mild
association (10) up tomoderate associations of a relatively small number of geneticmarkers (5, 6, 9).
The most optimistic GWAS suggested more than 5,500 candidate gene-disease associations (8).
This inconsistency in the reported findings prompted us to review the respective data. With this
purpose, the present opinion paper first revisits the recommended quality control (QC) checks for
GWAS and TGAS, and then summarizes which ones were performed by those studies on ME/CFS.

Abbreviations: GWAS, Genome-wide association study; HWE, Hardy-Weinberg Equilibrium; MAF, minor allele frequency;

ME/CFS, myalgic encephalomyelitis/chronic fatigue syndrome; QC, quality control; SNP, single nucleotide polymorphism;

TGAS, targeted-genome association study.
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REVIEW OF THE RECOMMENDED QC
CHECKS FOR GENETIC DATA

Current GWAS or TGAS of ME/CFS are based on data of the
so-called single nucleotide polymorphisms (SNPs) located in
specific positions of the human genome. These genetic markers
are short nucleotide sequences that differ in a single position from
each other. Each possible sequence of a SNP is interpreted as a
different allele. In theory, there are up to four alleles of the same
SNP given that there are only four possible nucleotides (A, C,
G, and T). However, by design, classical genotyping technologies
can only assess the two most frequent alleles per SNP. As an
alternative to classical GWAS and TGAS, studies using data
from next-generation sequencing technologies are able to assess
all possible alleles of a given SNP. As far as we know, these
alternative studies have been never performed on ME/CFS.

In general, several QC checks should be performed in the
genetic data before carrying out the association analysis itself.
First, it is important to determine all monomorphic SNPs and to
report the respective number. These SNPs are non-informative
for the subsequent genetic association analysis, because they
show the same allele in all study participants. It is also important
to calculate the so-called minor allele frequency (MAF) of each
SNP. Statistically speaking, the MAF is defined as the frequency
of the least frequent allele of a given SNP. In practice, a very
low MAF is in the same order of magnitude of the underlying
genotyping error rate and, therefore, SNPs under this condition
should be excluded from the study. A typical threshold for a very
low MAF ranges from 1 to 5%. Less stringent thresholds for the
MAF can be used in studies with smaller sample sizes.

Second, the validity of the Hardy-Weinberg Equilibrium
(HWE) should be tested in the observed genotype frequency
distribution of each SNP. The HWE is a mathematical
expectation for the probability of observing a given genotype
under random mating (or panmixia), no selection, no migration,
non-overlapping generations, and no genotyping errors.
According to the HWE, the frequency of a given genotype is
expected to be factorized into the product of the respective allele
frequencies. The HWE is usually tested by the popular Pearson’s
χ
2 goodness-of-fit test. In this statistical test, p-values below the

specified significance level suggest evidence against the HWE.
Since the HWE is supposed to be tested in data of each SNP
separately, the significance level of each individual test should be
adjusted in order to ensure a global significance level for this QC
check. Bonferroni or Sidak-Dunn corrections are two popular
methods to make such adjustment. Alternatively, one can use
procedures based on the control of the false discovery rate, as
proposed by Benjamini and Hochberg (11). In theory, deviations
of the HWE can result from the genetic selection of a specific
allele in patients. Because of this possibility, some researchers
prefer to test the HWE using data from healthy controls alone.
However, this preference has the disadvantage to decrease the
power of the respective statistical test. On the other hand, a
flagrant deviation of the HWE also suggests non-negligible
genotype errors associated with a given SNP. Since one cannot
distinguish selection from eventual genotyping errors, the SNPs
with gross deviations of the HWE are typically excluded from
the analysis.

Third, the proportion of heterozygous genotypes (i.e.,
heterozygosity rate) across all SNPs should be calculated for
each individual sample. Excessive heterozygosity rate suggests
a possible contamination of the respective biological sample,
while reduced heterozygosity rate indicates genetic inbreeding.
The usual practice is to exclude samples from individuals whose
heterozygosity rates are not falling into a “confidence” band. This
confidence band is usually defined by the average heterozygosity
rate of all the samples plus/minus a given number of times the
standard deviation of the heterozygosity rate. The heterozygosity
of SNPs located in the X chromosome is also used to confirm the
gender of a sample and to detect putative label swaps.

Fourth, data of SNPs or of individuals with low genotyping
rates should be excluded from the analysis. The genotyping
rate of a given SNP is the proportion of individuals with fully
determined genotypes of that SNP, whereas the genotyping
rate of a given individual is the proportion of SNPs with a
fully determined genotype of that individual. A low genotyping
rate of a given SNP suggests that the genomic site associated
with that SNP includes another type of genetic variation
(e.g., deletion or insertion). A low genotyping rate of a given
individual indicates a low quality of the DNA material used for
genotyping. Again, researchers must decide what is considered a
reasonable genotyping rate for their study. In addition, different
exclusion criteria can be applied to the genotyping rates of SNPs
and individuals.

Additional QC checks (e.g., assessing the genetic distance
between sampled individuals or checking their ancestry) can
also be performed in GWAS and TGAS, as reviewed elsewhere
(12). However, they are more relevant for large-scale population
genetic studies.

ANALYSIS OF QC CHECKS FROM
CURRENT GWAS AND TGAS ON ME/CFS

Table 1 summarizes the QC checks performed by each GWAS
and TGAS on ME/CFS. On the one hand, the study of Perez
et al. (8) only performed the QC check based on the MAF. This
study also used a non-standard criterium for selecting SNPs:
those withMAF<0.10 in either patients or reported in the Kaviar
database were excluded from the analysis. On the other hand,
Herrera et al. (7) performed all QC checks recommended for a
GWAS. The remaining studies performed almost all standard QC
checks with the exception of the one based on the heterozygosity
rate. Interestingly, Johnston et al. (10) mentioned this QC check
in the Materials & Methods of their study. However, they
neither provided any specific information about how this QCwas
actually performed nor showed any statistical summary of the
heterozygosity rate. Finally, Smith et al. (5) did not exclude any
SNP based on a too-low MAF.

DISCUSSION

This opinion paper shows partial QC checks in the majority
of the published genetic association studies on ME/CFS, the
exception being the study carried out by Herrera et al. (7).
The assessment of the performed QC checks is essential to
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TABLE 1 | Summary of the QC checks performed in published GWAS and TGAS on ME/CFS.

Reference,

type of study

Monomorphic SNPs or SNPs

with low MAF

HWE Heterozygosity Genotyping rate

Smith et al. (5),

GWAS

• The total number of

monomorphic SNPs was

reported

• SNPs were not excluded

according to MAF

• The HWE was tested using

data from healthy controls alone

• A significance level of 0.05 was

used in the statistical tests

• Heterozygosity of SNPs in the X

chromosome was used for

confirming gender of the samples

• SNPs with genotyping rates

<80% were excluded

• Individual samples with

genotyping rates <92%

were repeated

Schlauch et al.

(6), GWAS

• The total number of SNPs with

too-low MAF was reported

• SNPs with MAF<0.05

were excluded

• The HWE was tested using

data from both healthy controls

and patients

• A significance level of 0.0008

was used in the statistical tests

• Heterozygosity of SNPs in the X

chromosome was only used for

confirming gender

• SNPs with genotyping rates

< 95% were excluded

• Individual samples with

genotyping rates <95%

were excluded

Herrera et al.

(7), GWAS

• SNPs with MAF < 0.01 were

excluded

• The HWE was tested using

data from both healthy controls

and patients

• A significance level of 0.00001

was used in the statistical tests

• Samples with heterozygosity rate

higher or lower than two standard

deviations of the average

heterozygosity for all samples

were excluded from the analysis

• Heterozygosity of SNPs in X

chromosome was also used for

confirming gender

• SNPs with genotyping rates

<97% were excluded.

• Individual samples with

genotyping rates <90%

were excluded

Perez et al. (8),

GWAS

• SNPs with MAF <0.10 in either

patients or reported in the

Kaviar database were

excluded.

• Not reported • Not reported • Not reported

Rajeevan et al.

(9), TGAS

• SNPs with MAF<0.05 were

excluded

• The HWE was tested using

data from both healthy controls

and patients

• A significance level of 0.01 was

used in the statistical tests

• Not performed • SNPs with genotyping rates

<80% were excluded

• Genotyping rates were

performed in each

individual sample

Johnston et al.

(10), TGAS

• SNP with MAF <0.01 were

excluded

• Not reported • Heterozygosity was reported as a

QC check but there was no

information about the criterium

used

• Not reported

ascertain the quality of the respective genetic data. In this regard,
the genetic data from Perez et al. (8) deserves to be further
analyzed to ascertain the validity of the reported findings. Such
assessment can follow the QC steps outlined here and exemplary
performed by Herrera et al. (7). The remaining studies can also
benefit by an additional quality check related to heterozygosity
rate so that possible sample contaminations can be ruled out.
The absence of this check does not immediately invalidate the
genetic data of these studies. We could have done such check
if the corresponding genetic data were available either in an
open-access repository or as a Supplementary File within the
respective publication, a data-sharing practice followed by several
ME/CFS researchers (13–15). Consequently, it is unclear whether
aberrant heterozygosity rates (due to sample contamination) are
one of the explanations for the conflicting evidence of genetic
associations reported by these studies. In this regard, Herrera
et al. (7) excluded five out of their 109 samples (5%) based on
the heterozygosity rate. In simple statistical applications using
large sample sizes, a 5% sample contamination might be too
low to have a substantial impact on the respective findings.
However, in the specific context of GWAS and TGAS where
stringent significance levels are used to control for multiple
testing, such a level of sample contamination could reduce
the underlying statistical power and leave relevant disease-gene
associations undetected.

Besides the partial QC checks, the investigated genetic
data on ME/CFS suffer from the curse of not having an
objective biomarker for disease diagnosis. Similar problem can
be envisioned for other complex diseases lacking a biomarker,
such as Fibromyalgia and the Gulf War Syndrome. The absence
of a biomarker is likely to introduce a possible misclassification
of the true disease status of the recruited patients (16). To
illustrate this putative problem, Herrera et al. (7) recruited
nine obese (with body mass indexes equal or higher than
35 kg/m2) out of 61 patients based on the 1994 Center for
Diseases Control Criteria (1) and Canadian Consensus Criteria
(2). Notwithstanding controlling for the body mass index in
the respective association analysis and the exclusion of known
diseases, it is unclear whether the obesity observed in these
patients was a direct consequence of ME/CFS or instead caused
by another ongoing disease strongly associated with fatigue. A
solution to this problem is to use more advanced statistical
methodology where misclassification can be directly included in
the data analysis (17, 18). However, given the complexity of this
methodology, we argue that a stronger collaboration between the
ME/CFS research community and statistical geneticists should be
reached. In principle, this collaboration is expected to promote
better statistical analyses, to improve data interpretations and,
ultimately, a better assessment of the genetic component
in ME/CFS.
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In summary, given the partial QC checks performed in
current GWAS and TGAS, the question of a genetic component
in ME/CFS remains open for investigation. To accelerate the
discovery of promising disease-gene association, future genetic
studies of ME/CFS should set data and methodological standards
as high as those followed by the 1,000 Human Genome Project
and the UK10K project (19, 20). Data sharing should also be
a general practice to provide the researcher community the
opportunity to perform additional checks or alternative analyses
of the same data.
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