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Introduction: High dose methotrexate (HD-Mtx) is highly effective and significantly

improves overall acute lymphoblastic leukemia (ALL) patients survival. The

pharmacodynamics of Mtx depends on the polymorphism of genes encoding proteins

engaged in the folate metabolism pathway. The aim of the current study is to determine

the relationship between variants of folate metabolism-related genes and the frequency

of acute toxicities of HD-Mtx.

Material and Methods: A group of 133 patients aged 1.5–18.1 years (median: 6.3)

was treated in accordance with the ALL-IC-2002 and ALL-IC-2009 protocols. The

following polymorphisms were determined: 80 G>A SLC19A1 (solute carrier family

19 member 1; rs1051266) with direct DNA sequencing, as well as 677 C>T MTHFR

(methylenetetrahydrofolate reductase; rs1801133) and the tandem repeats of the TS

(thymidylate synthase) with PCR technique. HD-Mtx organ toxicities were evaluated

based on the laboratory tests results and the National Cancer Institute criteria.

Results: In patients with genotypes AA for SLC19A1 and CC or CT for MTHFR

Mtx steady state concentrations (Css) and AUCinf were distinctly higher. In patients

with genotype 3R/3R for TS initial elimination rate constant was significantly higher

(P = 0.003). Patients receiving Mtx at the dose of 5 g/m2 had lower clearance (4.35

vs. 8.92 L/h/m2) as compared to the ones receiving 2 g/m2 that indicates non-linear

Mtx elimination at the higher dose. Liver impairment was the most frequently observed
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toxicity. The homozygous genotype was associated with a significantly higher incidence

of hepatic toxicity for both the SLC19A1 (P = 0.037) and TS (P = 0.002). Logistic

regression analysis indicated an increased risk of vomiting for the 2R/3R genotype of

the TS gene (OR 3.20, 95% CI 1.33–7.68, P = 0.009) and for vomiting and hepatic

toxicity for the 3R/3R genotype (vomiting: OR 3.39, 95% CI 1.12–10.23, P = 0.031; liver

toxicity: OR 2.28, 95% CI 1.05–4.95, P = 0.038). None of the acute toxicities differed

between the analyzed dosing groups.

Conclusions: Determination of polymorphisms of SLC19A1, MTHFR, and TS genes

might allow for a better prior selection of patients with higher risk of elevated Mtx levels.

Our study is the first one to report the increased risk of hepatotoxicity and vomiting in

patients with TS polymorphisms.

Keywords: acute lymphoblastic leukemia, children, genes, polymorphism, methotrexate, pharmacokinetics,

toxicity

INTRODUCTION

Acute lymphoblastic leukemia (ALL) is diagnosed in about
30% of children with neoplastic diseases and is the most
common neoplasm in pediatric population (1). Methotrexate
(Mtx) is one of the key chemotherapeutic agents used in a high
doses (HD) treatment regimens of childhood ALL. Due to the
observed severe toxicity, HD-Mtx, defined as Mtx doses ≥ 1
g/m2, requires a proper monitoring of drug elimination and
an adequate leucovorin rescue administration. Nonetheless, in
some of ALL patients toxic plasma concentrations of Mtx are
observed, causing severe acute chemotherapy complications. The
resulting modifications of treatment regimens might negatively
affect overall patient survival (2, 3).

To date, well-known risk factors of toxicity after prolonged
Mtx exposition include drug-drug interactions, insufficient
prehydratation, older age, obesity or so called “third space
fluid collections.” However, they do not explain all the
changes observed in pharmacokinetics (PK) of Mtx in patients
with childhood ALL. Numerous centers have performed
comprehensive studies to explain the molecular basis of Mtx
pharmacological activity and to identify genetic risk factors
of its abnormal PK (3–6). As determined, Mtx enters the
cell through the cell membrane by binding to the solute
carrier family 19 member 1 (SLC19A1) (7–9). Inside the cell
Mtx and its more active derivatives—polyglutamates block
function of several enzymes of folate cycle, mainly dihydrofolate
reductase (DHFR) responsible for production of active form
of folate—tetrahydrofolate and thymidylate synthase (TS),
involved in DNA synthesis (6, 10, 11). The final effect of Mtx
pharmacological activity is blocking purine de novo synthesis and
cells division. One of the main enzymes of the complex folate
metabolism is methylenetetrahydrofolate reductase (MTHFR),
that catalyzes the conversion of 5,10-methylenetetrahydrofolate
to 5-methyltetrahydrofolate. Although Mtx does not directly
inhibit MTHFR function, the activity of this enzyme is crucial for
the body resources of tetrahydrofolate, that are necessary in DNA
synthesis, as well as in methylation of DNA, lipids and proteins,
including transformation of homocysteine into methionine. All

aspects of Mtx disposition and mechanism of action that we
attempt to consider are summarized in Figure 1.

As has been shown previously SLC19A1, TS and MTHFR
genes polymorphisms are common in the European population
(12, 13). Different variants of these proteins can influence
cytotoxic effect of Mtx and contribute to acute side effects of
HD-Mtx therapy (12, 13). Although published, until now, results
regarding relationship between polymorphisms of SLC19A1, TS,
and MTHFR genes, increased Mtx plasma concentrations and
intensive toxicities caused by HD-Mtx indicated importance of
genetic polymorphisms, they have been sometimes conflicting
(6, 8, 14–16). There are also studies showing a clear relationship
between the polymorphisms of above-mentioned genes involved
in folate metabolism with worse therapeutic prognosis for
children with ALL (14, 17).

The aims of the current study were to assess the prevalence of
SLC19A1 80 G>A and MTHFR 677 C>T genes polymorphisms
as well as TS gene tandem repeats in the group of children
treated due to ALL and its influence on Mtx pharmacokinetics
and incidence of acute toxicities caused by HD-Mtx.

MATERIALS AND METHODS

Patients
The study group included 133 patients (Table 1), 1.5–18.1 years
old (median: 6.3 years), treated in Department of Oncology
and Hematology University Children’s Hospital in Krakow,
Poland, in accordance with ALL-IC-2002 (132 patients) and
ALL-IC-2009 (1 patient) protocols. Both protocols for SR
and IR risk pre-B ALL as well as T-ALL patients had the
same frame. They were composed of induction (prednisone,
vincristine, daunorubicin, L-asparaginase, cyclophosphamide,
arabinoside cytosine, 6-mercaptopurine, and intrathecal
methotrexate); consolidation (high dose methotrexate, 6-
mercaptopurine); reinduction (dexamethasone, vincristine,
doxorubicin, L-asparaginase, cyclophosphamide, arabinoside
cytosine, 6-thioguanine and intrathecal methotrexate) and
maintenance therapy (6-mercaptopurine, low dose methotrexate,
and intrathecal methotrexate). The consolidation Mtx dose in
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FIGURE 1 | The presentation of intracellular methotrexate metabolism pathways. Factors that may be responsible for the inconsistency among studies assessing the

role of SLC19A1/TS/MTHFR polymorphisms in methotrexate toxicity are marked with an asterisk (*).5,10-mTHF, 5,10-methylenetetrahydrofolate; ABC, ATP-binding

cassette; DHFR, dihydrofolate reductase; FPGS, folylpolyglutamate synthase; GGH, γ-glutamyl transferase; miR-595, micro RNA 595; MTHFR,

methylenetetrahydrofolate reductase; Mtx, methotrexate; OATP1A/1B, organic anion–transporting polypeptides 1A/1B; p53, p53 protein; SLC19A1, solute carrier

family 19 member 1; TS, thymidylate synthase.

TABLE 1 | Characteristic of patients according to Mtx dose.

Mtx dose

g/m2

Patients nb. Chemotherapy

cycles (%)

Age

(median)

Gender

(%)

BSA

(%)

Type of ALL Risk

group

Cycles with

delayed Mtx

elimination (%)

2 123 478 (91%) 1.7–16.2

(4.9)

64 girls (52)

59 boys (48)

75: N (61)

29: > 75p. (23.6)

19: <3 p. (15.4)

121–pre B

2–pre T

SR 58.5%

IR 41.5%

69 (14.4)

5 13 47 (9%) 1.5–18.1

(7.3)

2 girl (15.4)

11 boys (84.6)

9: N (69.2)

3:>75 p. (23.1)

1: < 3 p. (7.7)

1–pre B

12–pre T

IR 100% 28 (59.6)

p., percentyl.

ALL-IC-2002 was 2 g/m2 for all children with precursor-B,
standard and intermediate risk ALL group. For T-ALL the dose
was 5 g/m2. In ALL-IC-2009 the IR group and T-ALL were
treated with Mtx at the dose of 5 g/m2, SR patients had the same
dose of 2 g/m2. In both protocols the only additional drug given
simultaneously was 6-mercaptopurine at the dose of 25 mg/m2.
Together, 525 Mtx-chemotherapy cycles given in consolidation
phase (protocol M) were studied. Two patients were given 1 cycle
at the Mtx dose of 2 g/m2, and 3 cycles at the dose of 5 g/m2. One

patient was given 3 cycles at the Mtx dose of 2 g/m2, and 1 cycle
at the dose of 5 g/m2 (Table 1).

Genetic Analysis
Genetic analysis was performed in the laboratory with the
international QC certificates (EMQN). DNA for molecular
analyses was extracted with standard methods from blood
mononuclears (0.5ml of blood was collected from every patient;
QIAamp DNA Blood Mini Kit was used, manufactured by
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QIAGEN). Assessment of 80 G>A SLC19A1 polymorphism was
performed with direct DNA sequencing (Sanger’s method). In
turn, 677C>T MTHFR polymorphism was analyzed with PCR-
RFLP technique and TS tandem repeats were assessed based on
the PCR with subsequent agarose gel electrophoresis (12). Based
on genotyping results the patients were divided into 3 groups
(“wild” genotype, heterozygotes, homozygotes). The sequences
of primers that were used for genotyping were presented in the
Supplementary Material.

Pharmacokinetic Analysis
Pharmacokinetic parameters of Mtx were calculated based
on the routinely measured concentrations after the HD-Mtx
administration. The blood samples were taken at the end of 24 h
infusion (steady state) and in the elimination phase at 36, 42,
and 48 h from the beginning of the Mtx administration (i.e.,
12, 18, and 24 h after the end of infusion). In the cases where
the last concentration measured was above 0.4µM (indication
of prolonged Mtx elimination) subsequent samples were taken
at the selected time points until the Mtx level decreased
below 0.25µM. Because of the potential for capacity-limited
intracellular transport and renal clearance the elimination of Mtx
is not accurately described by linear pharmacokinetic model.
However, relatively simple two-compartment model appears
to represent quite well the elimination phase. Therefore, the
elimination constants (kel) for both initial α (up to 12 h after
the end of infusion) and terminal β (from 12 to 24 h after the
end of infusion) phases were calculated by log-linear regression
of the drug concentration data in the appropriate phase. The
area under the concentration vs. time curve extrapolated to
infinity (AUCinf) was estimated using the log-linear trapezoidal
rule and the total clearance (normalized per m2 of BSA) was
calculated from dose/AUCinf. Mtx concentrations were analyzed
with immunoenzymatic method on the VIVA-Vitalab analyzer,
DADE-BEHRING, USA.

Pharmacodynamic Analysis
The pharmacodynamics study was concentrated on the analysis
of acute toxicity observed during the chemotherapy cycles at the
Mtx doses of 2 and 5 g/m2. Every cycle, independent of HD-Mtx
dose, was administered to a patient in good clinical condition,
after exclusion of acute infection and with normal renal and
liver functions. The routine blood tests panel included complete
blood count, blood urea nitrogen, creatinine, total protein,
albumin, bilirubin, alanine transaminase, aspartate transaminase,
and electrolytes (all tests were measured in SI units). Tests
were performed 1 day before HD-Mtx administration and 48 h
after starting the infusion (24 h after the end of infusion).
HD-Mtx toxicity was evaluated based on the analysis of
laboratory tests results and clinical features according to the
National Cancer Institute criteria (NCI 3.0 version). Liver
(SGOT/SGPT, bilirubin), blood/bone marrow (WBC, PLT, Hgb,
ANC) and gastrointestinal (vomiting, stomatitis) toxicities as well
as concomitant infections were studied. Grades ≥ 2 according to
NCI criteria were analyzed. Liver function was considered to be
impaired if the following criteria (based on our own experience)
were met: increase in transaminases level at least 1 grade and/or

bilirubin grade ≥ 2 and/or decrease in protein level at least 13%
comparing to the values observed before the actual cycle. Data
concerning toxicity were collected prospectively at each cycle of
chemotherapy, and were the basis for the subsequent therapeutic
decisions, than all patients charts were reviewed.

Statistical Analysis
Statistical analyses were performed with Statistica 12.0 (StatSoft,
Statistica 12.0, Tulsa, Oklahoma, USA) software. Chi-square,
Pearson chi-square and Fisher exact tests were used to identify
relations between categorical variables. Comparison of numerical
variables was performed using one-way ANOVA with post-hoc
Tukey test or non-parametric Kruskal-Wallis test depending
on the sample size. Allelic separation consistency within
observed group of patients with expected allele distribution
according to Hardy-Weinberg’s rule was checked with use of
the Chi-square test. Multiple logistic regression analysis was
performed to identify risk factors of increased HD-Mtx therapy
toxicities. Bonferroni correction for multiple comparisons was
applied when assessing associations of toxicities and genetic
variants, separately for each gene assessed. P-value of <0.05 was
considered statistically significant.

RESULTS

The distribution of observed genotypes was consistent with the
Hardy-Weinberg equilibrium (Table 2).

Pharmacokinetic Results
As expected, steady state concentrations of Mtx in patients
treated with 5 g/m2 were significantly higher than in those
receiving 2 g/m2 (137 vs. 38.5µM). Moreover, the overall
mean AUCinf values were higher than proportionally expected
(2,510 µM·h for 5 g/m2 vs. 717 µM·h for 2 g/m2) indicating
lower total clearance in patients receiving Mtx at the dose
of 5 g/m2 as compared to the ones receiving 2 g/m2 (4.35
vs. 8.92 L/h/m2, respectively). Furthermore, the percentage of
patients with prolonged elimination, defined as the concentration
> 0.4µM at 48 h after the beginning of infusion, was much
higher in the group receiving Mtx at the dose of 5 g/m2 (59.6
vs. 14.4%) (Table 1). These data might indicate that at the higher
dose Mtx elimination process approaches saturation resulting
in non-linearity of PK (Tables 3, 4). The possible variations
in the Mtx levels resulting from non-linear elimination could
influence the statistical analysis of the relationship between the
genetic polymorphism and Mtx PK parameters. Moreover, due
to limited number of observations, in the group receiving Mtx
at the dose of 5 g/m2 the non-parametric statistical tests were
used which are less powerful. Therefore, analysis of the influence
of genetic polymorphism on PK of Mtx was mostly based on
the parameters calculated after the dose of 2 g/m2. All the
obtained results are presented in Tables 3, 4 as well as in Figure 2

(multiple comparison). Mean steady state concentrations of
Mtx were significantly higher (42.9 vs. 36.9 or 37.3µM) in
homozygotes AA of 80 G>A gene SLC19A1 polymorphism
(P = 0.0467). Also homozygotes CC and heterozygotes 677
C>T of MTHFR gene had significantly higher (41.3 or 37.3
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TABLE 2 | The distribution of observed genotypes.

Gene Variant 1 Variant 2 Variant 3 Consistent with the Hardy-Weinberg

80 G>A gene SLC19A1 GG−45 patients (33.8%) AG−50 patients (37.6%) AA−38 patients (28.6%) (P = 0.054, χ
2
= 5.84, df = 2)

677 C>T gene MTHFR CC−66 patients (49.6%) CT−54 patients (40.6%) TT−13 patients (9.8%) (P = 0.89, χ
2
= 0.22, df = 2)

TS gene tandem repeats 2R/2R−29 patients (21.8%) 2R/3R−76 patients (57.1%) 3R/3R−28 patients (21.1%) (P = 0.37, χ
2
= 1.99, df = 2)

TABLE 3 | Methotrexate (Mtx) steady-state concentrations and basic pharmacokinetic parameters, calculated after administration of Mtx at the dose of 2 g/m2,

depending on the observed genotype.

Total (n = 478) GG (n = 175) GA (n = 180) AA (n = 123) P value

SLC19A1 gene

Prolonged 69 (14.4%) 26 (14.9%) 31 (17.2%) 12 (9.8%) NS

elimination

CSS [µM] 38.5 (36.5–40.5) 36.9 (33.6–40.1) 37.3 (34.4–40.2) 42.9 (38.3–47.6) 0.0467

kel alfa [1/h] 0.30 (0.29–0.30) 0.29 (0.28–0.30) 0.29 (0.28–0.30) 0.31 (0.31–0.32) 0.0007

AUCinf [µM·h] 717 (680–755) 690 (630–740) 696 (640–751) 797 (712–883) 0.0566

CL [L/h/m2 ] 8.92 (7.96–9.88) 9.51 (8.06–10.97) 9.25 (7.22–11.3) 7.40 (6.55–8.25) NS

Total (n = 478) CC (n = 246) CT (n = 184) TT (n = 48) P value

MTHFR gene

Prolonged 69 (14.4%) 37 (15.0%) 25 (13.6%) 7 (14.6%) NS

elimination

CSS [µM] 38.5 (36.5–40.5) 41.3 (38.3–44.3) 37.3 (34.3–40.3) 28.4 (24.4–32.9) 0.0007

kel alfa [1/h] 0.30 (0.29–0.30) 0.30 (0.29–0.31) 0.30 (0.29–0.31) 0.28 (0.26–0.30) 0.0465

AUCinf [µM·h] 717 (680–755) 770 (714–826) 694 (639–750) 531 (452–611) 0.0073

CL [L/h/m2 ] 8.92 (7.96–9.88) 8.42 (6.9–9.9) 8.66 (7.71–9.61) 12.50 (8.10–16.91) 0.0496

Total (n = 478) 2R2R (n = 100) 3R2R (n = 283) 3R3R (n = 95) P value

TS gene

Prolonged 69 (14.4%) 12 (12.0%) 43 (15.2%) 14 (14.7%) NS

elimination

CSS [µM] 38.5 (36.5–40.5) 35.9 (31.1–40.7) 37.9 (35.5–40.3) 42.9 (37.9–47.7) NS

kel alfa [1/h] 0.30 (0.29–0.30) 0.28 (0.27–0.30) 0.30 (0.29–0.30) 0.31 (0.30–0.32) 0.0034

AUCinf [µM·h] 717 (680–755) 680 (589–771) 705 (661–751) 792 (702–881) NS

CL [L/h/m2 ] 8.92 (7.96–9.88) 10.29 (7.88–12.70) 8.96 (7.62–10.3) 7.35 (6.31–8.38) NS

Values are given as mean and 95 CI. Comparisons were performed using one-way ANOVA. The number of patients with prolonged elimination (Mtx concentration measured at 48 h

from the beginning of the infusion ≥ 0.4µM) is given in both unrelative (N) and relative (%N) way. Pearson chi-square was used to identify relations between prolonged Mtx elimination

and genotype. Css, steady state concentration; kel alfa, initial elimination rate constant; AUCinf , area under the concentration-time curve extrapolated to infinity; CL, clearance; NS,

non significant.

vs. 28.4µM) mean Mtx steady state plasma concentrations in
comparison to TT homozygotes (P = 0.0007). In the case
of TS gene polymorphism slightly higher (42.9 vs. 35.9 or
37.9µM) concentrations were observed for homozygotes 3R/3R
for tandem repeats of the TS gene however the difference did not
reach statistical significance. In the patients receiving Mtx at the
dose of 2 g/m2 initial elimination rate constant and AUCinf were
significantly lower (P = 0.0465 and P = 0.00073, respectively)
in homozygotes TT C>T of MTHFR gene, thus indicating
higher clearance (12.5 vs. 8.42 L/h/m2 in e.g., homozygotes CC).
Furthermore, the significant correlation has been found between
initial elimination rate constant and polymorphism of SLC19A1
and TS genes. Elimination rate constant was significantly higher
in homozygotes 3R/3R for tandem repeats of the TS gene (P

= 0.00343) and in homozygotes AA of 80 G>A gene SLC19A1
(P = 0.0007), however in the latter case the AUCinf was also
higher (P = 0.05). On the contrary, for the dose of 5 g/m2 in
homozygotes AA of 80 G>A gene SLC19A1 initial elimination
rate constant was significantly lower (GG vs. AA P = 0.0319)
(Figure 2C). There was no significant influence of studied
genetic polymorphism on the terminal elimination rate constant,
although this is not a surprise since most of Mtx is eliminated
during the α phase.

Pharmacodynamic Results
In the case of homozygotes AA (80 G>A gene SLC19A1
polymorphism), a statistical trend for higher incidence of
transaminase elevation was observed (P = 0.037 without
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TABLE 4 | Methotrexate (Mtx) steady-state concentrations and basic pharmacokinetic parameters, calculated after administration of Mtx at the dose of 5 g/m2,

depending on the observed genotype.

Total (n = 47) GG (n = 4) GA (n = 20) AA (n = 23) P value

SLC19A1 gene

Prolonged 28 (59.6%) 1 (25.0%) 14 (70.0%) 13 (56.5%) NS

elimination

CSS [µM] 137 (24–230) 185 (139–230) 147 (42–200) 76 (24–200) 0.0015

kel alfa [1/h] 0.33 (0.18–0.46) 0.43 (0.35–0.46) 0.34 (0.21–0.41) 0.32 (0.18–0.39) 0.0345

AUCinf [µM·h] 2510 (446–5467) 3617 (2527–4216) 2718 (776–3645) 1392 (446–5467) 0.0019

CL [L/h/m2 ] 4.35 (0.80–24.6) 3.11 (2.61–4.35) 4.05 (3.02–14.17) 6.66 (0.8–24.6) 0.0295

Total (n = 47) CC (n = 13) CT (n = 30) TT (n = 4) P value

MTHFR gene

Prolonged 28 (59.6%) 11 (84.6%) 15 (50.0%) 2 (50.0%) NS

elimination

CSS [µM] 137 (24–230) 140 (24–197) 138 (35–230) 109 (89–146) NS

kel alfa [1/h] 0.33 (0.18–0.46) 0.34 (0.27–0.37) 0.33 (0.18–0.46) 0.34 (0.21–0.36) NS

AUCinf [µM·h] 2510 (446–5467) 2551 (446–3603) 2519 (680–5467) 1985 (1626–2727) NS

CL [L/h/m2 ] 4.35 (0.80–24.6) 4.31 (3.0–24.6) 4.28 (0.8–16) 5.55 (4.0–6.8) NS

Total (n = 47) 2R2R (n = 16) 3R2R (n = 19) 3R3R (n = 12) P value

TS gene

Prolonged 28 (59.6%) 7(43.8%) 13 (68.4%) 8 (66.7%) NS

elimination

CSS [µM] 137 (24–230) 109 (24–200) 145 (44–230) 122 (35–195) NS

kel alfa [1/h] 0.33 (0.18–0.46) 0.34 (0.21–0.37) 0.33 (0.18–0.46) 0.32 (0.18–0.41) NS

AUCinf [µM·h] 2510 (446–5467) 1985 (446–3645) 2645 (861–5467) 2229 (680–3533) NS

CL [L/h/m2 ] 4.35 (0.80–24.6) 5.55 (3.0–24.6) 3.89 (0.8–12.8) 5.0 (1.29–14.2) NS

Values are given as median and range. Comparisons were performed using Kruskal-Wallis test (small samples size). The number of patients with prolonged elimination (Mtx concentration

measured at 48 h from the beginning of the infusion ≥ 0.4µM) is given in both unrelative (N) and relative (%N) way. Pearson chi-square was used to identify relations between prolonged

Mtx elimination and genotype. Css, steady state concentration; kel alfa, initial elimination rate constant; AUCinf , area under the concentration-time curve extrapolated to infinity; CL,

clearance; NS, non significant.

correction for multiple comparisons). Furthermore, similar trend
was observed in the case of 3R/3R genotype of TS tandem
repeats (P = 0.002 without correction for multiple comparisons
or 0.01 with Bonferroni correction). No significant influence of
all analyzed polymorphisms on the incidence of hematological
toxicity, vomiting, gastrointestinal mucositis, and infections was
observed (Table 5).

Occurrences of particular acute toxicities induced by HD-
Mtx were also analyzed with logistic regression models (Table 6).
All commonly known risk factors of acute adverse reactions to
HD-Mtx, such as: dose, prolonged drug exposure, age, as well
as genotype were included. Heterozygous genotype 2R/3R of
TS tandem repeats was associated with significant increase in
stated intensive vomiting (OR adjusted to the wild-type genotype
3.20, 95% CI 1.33–7.68; P = 0.009). Similar relationship was
also observed in the case of 3R/3R homozygotes (adjusted OR
3.39, 95% CI 1.12–10.23; P = 0.031). Additionally, as also
demonstrated by logistic regression, 3R/3R polymorphism was
associated with a higher risk of hepatotoxicity (adjusted OR
2.28, 95% CI 1.05–4.95; P = 0.038). No such relationships were
observed for the other analyzed polymorphisms as well as for
other acute toxicities.

Impact of Particular Mtx Dosage (2 vs.
5 g/m2) on Toxicity
In this study, 525 chemotherapy cycles with 2 and 5 g/m2

Mtx doses (478 and 47 cycles, respectively) were analyzed.
Impaired liver function, the most common acute toxicity,
was observed with the same frequency in both groups. For
the dosing of 2 and 5 g/m2 it was 68.4 and 66.7% of all
patients, respectively (P = 0.816). Surprisingly, none of the acute
toxicities differed between the analyzed groups (Table 7). Only an
insignificant relationship was observed toward a higher incidence
of hematological toxicity in the group treated with higher doses of
Mtx (12.3 vs. 22.9%, P= 0.124) (Table 7). In all patients adequate
antitoxic therapy according to the requirements of protocols
prevented life-threatening complications.

DISCUSSION

We showed in our study that the genetic polymorphisms of the
SLC19A1,MTHFR, and TS genes can influence pharmacokinetics
of Mtx. Importantly, we have observed, for the first time in
the literature, the increased risk of hepatotoxicity (significant
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FIGURE 2 | Results of analysis of influence of genetic polymorphisms on elimination of Mtx in both dosing groups: (A) Relationship between the initial elimination rate

constant (kel alfa) and SLC19A1 gene polymorphism in the patients receiving Mtx at the dose of 2 g/m2. Values are presented as mean and 95CI. (B) Relationship

between the area under the concentration-time curve extrapolated to infinity (AUCinf ) and SLC19A1 gene polymorphism in the patients receiving Mtx at the dose of 2

g/m2. Values are presented as mean and 95CI. (C) Relationship between the initial elimination rate constant (kel alfa) and SLC19A1 gene polymorphism in the patients

receiving Mtx at the dose of 5 g/m2. Values are presented as median and range. (D) Relationship between the initial elimination rate constant (kel alfa) and TS gene

polymorphism in the patients receiving Mtx at the dose of 2 g/m2. Values are presented as mean and 95CI. (E) Relationship between the area under the

concentration-time curve extrapolated to infinity (AUCinf ) and MTHFR gene polymorphism in the patients receiving Mtx at the dose of 2 g/m2 Values are presented as

mean and 95CI. (F) Relationship between the initial elimination rate constant (kel alfa) and MTHFR gene polymorphism in the patients receiving Mtx at the dose of 2

g/m2. Values are presented as mean and 95CI.
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TABLE 5 | Statistical significance (*Bonferroni correction for multiple comparisons) of particular acute toxicities depending on the three analyzed genes polymorphisms.

Type of toxicity AA SLC19A1, N (%) TT MTHFR, N (%) 3R/3R N (%)

P value P value TS,

P value

Features of impaired liver function 0.037 (*NS) 110 (75.3) 0.609 (*NS) 38 (73.1) 0.002 (*0.01) 83 (76.9)

Hematological toxicity 0.657 (*NS) 17 (11.6) 0.248 (*NS) 5 (9.6) 0.453 (*NS) 18 (16.7)

Vomiting 0.056 (*NS) 19 (13.0) 0.682 (*NS) 7 (13.5) 0.102 (*NS) 15 (13.9)

Mucositis 0.590 (*NS) 10 (6.9) 0.341 (*NS) 2 (3.9) 0.207 (*NS) 14 (13.0)

Infections 0.056 (*NS) 12 (8.2) 0.424 (*NS) 6 (11.5) 0.560 (*NS) 7 (6.5)

NS, non significant.

TABLE 6 | Logistic regression analysis of acute toxicities adjusted to prolonged exposure to methotrexate, drug dose, age, and genotype.

Polymorphism Genotype Hepatotoxicity P value Vomiting P value

80 G>A SLC19A1 hom GG

het GA

hom AA

1.00 (–)

1.44 (0.81–2.55)

1.87 (0.96–3.63)

–

NS

0.066

1.00 (–)

0.40 (0.16–1.02)

0.85 (0.35–2.03)

–

0.054

NS

2R>3R TS hom 2R/2R

het 2R/3R

hom 3R/3R

1.00 (–)

1.46 (0.78–2.73)

2.28 (1.05–4.95)

–

NS

0.038

1.00 (–)

3.20 (1.33–7.68)

3.39 (1.12–10.23)

–

0.009

0.031

677 C>T MTHFR hom CC

het CT

hom TT

1.00 (–)

1.07 (0.63–1.81)

1.22 (0.65–2.29)

–

NS

NS

1.00 (–)

0.83 (0.43–1.63)

1.34 (0.32–5.59)

–

NS

NS

Data are shown as odds ratios with 95% confidence intervals.

NS, non significant.

TABLE 7 | The incidence of chemotherapy toxicities depending on the

methotrexate doses.

Toxicity 2 g/m2 5 g/m2 P

N (%) N (%) value

Impaired liver function 327 (68.4) 32 (66.7) NS

Vomiting 52 (10.9) 9 (18.8) NS

Stomatitis/skin inflammation 42 (8.8) 4 (8.3) NS

Infections 39 (8.2) 4 (8.3) NS

Hematological toxicity 59 (12.3) 11 (22.9) NS

NS, non significant.

even with Bonferroni correction) and vomiting in patients
with particular TS polymorphism and for the second time the
increased risk of hepatotoxicity in the SLC19A1 homozygous
genotype. Surprisingly, the Mtx dose did not affect the incidence
of individual toxicities, which may indicate a congenital
predisposition to their development in individual ALL patients.

SLC19A1 80 G>A Polymorphism and Its
Influence on Hepatotoxicity
SLC19A1 80 G>A is a common single nucleotide polymorphism
among genes responsible for Mtx transport into a cell (6,
14, 17–20). Our results indicate a relationship between the
AA genotype of the SLC19A1 80 G>A polymorphism and

significantly elevated steady state Mtx concentrations after HD-
Mtx infusions (e.g., 42.9 vs. 36.9µM) (Table 3). Since this
particular mutation is responsible for the lower affinity of the
transporter protein to Mtx, it is expected that in these patients
the higher amount of drug stays in the central circulation.
Although patients, with this genotype, receiving the lower dose
of Mtx had higher initial elimination rate constant (e.g., 0.315
vs. 0.292 1/h for AA vs. GG; P = 0.0012) (Figure 2A), the total
clearance was lower (higher AUCinf; e.g., 798 vs. 690 µM·h
for AA vs. GG) (Figure 2B). On the contrary patients with
AA genotype of the SLC19A1 receiving 5 g/m2 of Mtx had
significantly lower initial elimination rate constant (e.g., 0.323
vs. 0.431 1/h for AA vs. GG; P = 0.0319) (Figure 2C). However,
these changes are rather consequences of the saturation of Mtx
elimination processes. Higher Mtx exposure in AA homozygotes
might result in the impaired liver function, defined by us as
increase in transaminases level at least 1 grade and/or bilirubin
grade ≥ 2 and/or decrease protein level, that was observed
significantly more frequently (not significant with Bonferroni
correction) in these patients. Until now, only one study showed
a correlation between the 80 AA variant and significant liver
function impairment caused by Mtx. Moreover, it was referred
only to the group of patients with an additional, specific variant
of GSTM1 gene (15). The mechanism explaining increased liver
toxicity, despite the presence of a variant of reduced folate carrier
(RFC) protein with lower ability to transport Mtx (also into
hepatocytes), may involve the participation of other transporters,
with higher expression in liver tissues. The explanation could
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be the activity of OATP1A/1B which determine transport of
drugs (including Mtx) into hepatocytes (21), alteration of the
polyglutamylation pattern (22) or the intracellular level of miR-
595 acting as a phenotypic regulator of Mtx sensitivity in cells by
targeting SLC19A1 (23) (Figure 1).

The association between SLC19A1 polymorphism and Mtx
levels, similar to the one observed in our study, was also shown
by Laverdiére et al. (9). Since then, several researchers have
observed the impact of this polymorphism on incidence of
specific adverse reactions. Kotnik et al. showed an association
of AA genotype with leukopenia, while Gregers et al. with
significant percentage of serious myelotoxicities (6, 24). In the
study conducted by Salazar et al. the wild GG genotype was
associated with thrombocytopenia and mucositis of grade at
least 2 according to WHO (14). However, the opposite results
were presented by some other researchers who did not find the
impact of SLC19A1 polymorphism on acute toxicities of HD-Mtx
therapy, although liver toxicity was not investigated (3, 25–28).

It should be emphasized that the number of patients in our
study almost 3-fold exceeds the total number of HD-Mtx treated
patients reported in previous studies of Mtx hepatotoxicity.
Thus, our results showing possible increased risk of HD-Mtx
induced hepatotoxicity in patients with the SLC19A1 80 AA
variant seem to be better substantiated. It should also be
emphasized that previous studies were based on assessment
of various ethnic groups and of patient cohorts of variable
size. The polymorphisms of numerous genes involved in Mtx
disposition might differ among various populations thus possibly
determining the toxic effects of treatment (29).

The Role of TS Repeats and Their Impact
on Hepatotoxicity and Vomiting
The results of our study suggest that determination of the TS
gene polymorphism in pediatric population may have significant
clinical implications in predicting liver impairment associated
with HD-Mtx (significant even with Bonferroni correction).

Mtx is an uncompetitive, irreversible inhibitor of TS and,
from a pharmacokinetic point of view, this enzyme should
have a relatively low contribution to Mtx elimination (30).
However, slightly higher (without statistical significance) steady
state Mtx concentrations were seen in homozygotes 3R/3R for
tandem repeats of the TS gene (e.g., 42.9 vs. 35.9µM for
3R/3R vs. 2R/2R) (Table 3). Since simultaneous increase in the
initial elimination rate has been also observed (e.g., 0.313 vs.
0.287 1/h for 3R/3R vs. 2R/2R; P = 0.0022) (Figure 2D) the
decrease in total clearance in the patients with 3R/3R variant
for tandem repeats of the TS gene, although visible (7.35 vs.
10.29 L/h/m2), did not reach statistical significance (Table 3).
The vast majority of Mtx is eliminated by renal route and the
higher amount of proteins able to irreversibly bind Mtx might
impair the elimination process, but this hypothesis needs further
investigation. However, it should also be stressed that TS plays
additional (not directly related to folate metabolism) role in cell
homeostasis control through associations with numerous cell
cycle proteins, in particular with p53. The mutual regulation
of TS and p53 is based on negative feedback loop. In 3R/3R

cells with the higher TS expression the p53 level will be lower
(31), what decreases ability of intensively dividing cells (e.g.,
hepatocytes and gastrointestinal epithelium cells) to block the
cell cycle during exposure to the severely damaging factors
acting during the S phase (such as Mtx). It may explain the
increased incidence of mucosal and liver damage observed in
our study (32). The published results regarding the influence of
TS gene polymorphism on the incidence of different toxicities
are not consistent. Ongaro et al. showed a significant increase
in the risk of anemia in adult patients with 3R/3R genotype,
while other researchers reported increased toxicity in the central
nervous system (33–37). Opposite results were presented by
Kotnik et al. and Erculj et al. showing that 3R/3R genotype
was associated with a reduced risk of mucositis, leukopenia
and thrombocytopenia (6, 38). Demonstrated by us relationship
between 3R/3R genotype and increased hepatotoxicity, as we
mentioned earlier, has not been reported previously.

The Role of MTHFR 677 C>T
Polymorphism in Toxicity of HD-Mtx
In our study, patients homozygotes CC and heterozygous for the
common 677C>T polymorphism of the MTHFR gene achieved
significantly higher steady state Mtx plasma concentrations (41.3
or 37.3 vs. 28.4µM; P= 0.0007) (Table 3). Elevated levels of Mtx
in the carriers of CT variant of the MTHFR gene are consistent
with several previous observations (16, 39, 40). However, we
did not show significant differences in the frequency of acute
side-effects of HD-Mtx in carriers of this polymorphism. Such
results observed in our study could be partially explained by
the fact that despite the higher steady state concentrations and
higher AUCinf values (694 vs. 531 µM·h for CT vs. TT; P
= 0.0373) (Figure 2E) the carriers of this gene mutation had
also slightly higher, although not significantly, initial elimination
rate constant (0.3 vs. 0.28 1/h) (Figure 2F) indicating faster
decrease of Mtx concentration immediately after the end of
infusion. Lack of relationships between toxicity and MTHFR
gene polymorphism have already been noticed by Seidemann
et al. (41) and Shimasaki et al. (16), except for mucosal toxicity
directly caused by higher drug plasma concentrations. However,
other authors found higher frequency of mucosal toxicity or
increased hematological toxicity associated with MTHFR gene
polymorphism (29, 42, 43). El-Khodary et al. described increased
hepatic and myeloid toxicity in MTHFR 677TT homozygotes
(44). The presence of the 677T allele was also associated with
a higher risk of thrombocytopenia (45), and an overall increase
in toxicity, if in combination with the 1298AC variant (46).
Considering the conflicting reports presented in the literature
it is highly possible that, in the case of 677C>T MTHFR gene
polymorphism some other concomitant factors are likely to affect
toxicity of HD-Mtx treatment.

Limitations of the Study
Our study has some limitations. First, the tested polymorphisms
seem to be important for theMtx disposition, but the influence of
other genetic and biochemical factors should be also considered.
The influence of combinations of specific alleles of several genes,
including possible synergistic or antagonistic effects are possible.
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Second, more advanced genetic methods, such as whole exome
sequencing, could provide more information on other potential
polymorphisms associated with Mtx toxicity (47, 48). Third, our
study group was homogenous as far as ethnicity is concerned,
so this makes the discussion focused solely on the central
European population.

CONCLUSIONS

The genetic polymorphisms has an unquestionable effect
on pharmacokinetics and toxicity of Mtx. Determination
of polymorphisms of SLC19A1, MTHFR, and TS genes
allows for a better selection of patients with higher risk
of elevated Mtx levels. According to our knowledge, our
study is the first one to report the increased risk of
hepatotoxicity and vomiting in patients with particular TS
polymorphisms. In addition, we were able to confirm the
previous data showing that the increased risk of hepatotoxicity
has been associated with the SLC19A1 homozygous genotype.
Surprisingly, the administered Mtx dose did not affect the
incidence of individual toxicities. Further research, considering
also polymorphisms of other folate metabolism pathways and
some mutual gene associations, including meta-analyzes of the
previous studies, is necessary for the final determination of
the role of individual polymorphisms in the pharmacokinetics,
pharmacological activity, and toxicity of Mtx. Such studies could
lead to the pharmacogenetically improved, individualized dosing
of Mtx, that in turn could compensate for its interindividual
PK variations.
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