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Wenzhou, China

Background: We conducted this systematic review and meta-analysis to investigate

the clinical effect of dexmedetomidine in preventing pediatric emergence agitation (EA)

or delirium (ED) following anesthesia compared with placebo or other sedatives.

Methods: The databases of Pubmed, Embase, and Cochrane Library were searched

until 8th January 2020. Inclusion criteria were participants with age<18 years and

studies of comparison between dexmedetomidine and placebo or other sedatives.

Exclusion criteria included adult studies; duplicate publications; management with

dexmedetomidine alone; review or meta-analysis; basic research; article published as

abstract, letter, case report, editorial, note, method, or protocol; and article presented in

non-English language.

Results: Fifty-eight randomized controlled trials (RCTs) and five case-control trials (CCTs)

including 7,714 patients were included. The results showed that dexmedetomidine

significantly decreased the incidence of post-anesthesia EA or ED compared with

placebo [OR = 0.22, 95% CI: (0.16, 0.32), I2 = 75, P < 0.00001], midazolam [OR =

0.36, 95% CI: (0.21, 0.63), I2 = 57, P = 0.0003], and opioids [OR= 0.55, 95% CI: (0.33,

0.91), I2 = 0, P = 0.02], whereas the significant difference was not exhibited compared

with propofol (or pentobarbital) [OR = 0.56, 95% CI: (0.15, 2.14), I2 = 58, P = 0.39],

ketamine [OR= 0.43, 95% CI: (0.19, 1.00), I2 = 0, P= 0.05], clonidine [OR= 0.54, 95%

CI: (0.20, 1.45), P = 0.22], chloral hydrate [OR = 0.98, 95% CI: (0.26, 3.78), P = 0.98],

melatonin [OR = 1.0, 95% CI: (0.13, 7.72), P = 1.00], and ketofol [OR = 0.55, 95% CI:

(0.16, 1.93), P = 0.35].

Conclusion: Compared with placebo, midazolam, and opioids, dexmedetomidine

significantly decreased the incidence of post-anesthesia EA or ED in pediatric patients.

However, dexmedetomidine did not exhibit this superiority compared with propofol and

ketamine. With regard to clonidine, chloral hydrate, melatonin, and ketofol, the results

needed to be further tested due to the fact that only one trial was included for each

control drug.

Keywords: dexmedetomidine, pediatric, agitation, delirium, meta-analysis

https://www.frontiersin.org/journals/pediatrics
https://www.frontiersin.org/journals/pediatrics#editorial-board
https://www.frontiersin.org/journals/pediatrics#editorial-board
https://www.frontiersin.org/journals/pediatrics#editorial-board
https://www.frontiersin.org/journals/pediatrics#editorial-board
https://doi.org/10.3389/fped.2020.00329
http://crossmark.crossref.org/dialog/?doi=10.3389/fped.2020.00329&domain=pdf&date_stamp=2020-07-14
https://www.frontiersin.org/journals/pediatrics
https://www.frontiersin.org
https://www.frontiersin.org/journals/pediatrics#articles
https://creativecommons.org/licenses/by/4.0/
mailto:wangxiaocou@126.com
https://doi.org/10.3389/fped.2020.00329
https://www.frontiersin.org/articles/10.3389/fped.2020.00329/full
http://loop.frontiersin.org/people/937779/overview


Rao et al. Dexmedetomidine and Pediatric Emergence Agitation

INTRODUCTION

Emergence agitation (EA) or delirium (ED) manifests as a series
of sudden complex psychomotor disorders, characterized by
perceptual disturbances, delusions, and disorientation following
sedation or general anesthesia (1). So far, the specific mechanism
of EA or ED has not been clear. The preschool children
undergoing ophthalmology or otorhinolaryngology procedures
under inhalation agents are susceptible population (2). According
to some studies, the incidence of EA or ED after general
anesthesia in children ranges from 10 to 80% (3) and significantly
increases the occurrence of other complications after anesthesia,
like self-injury, prolonged post-anesthesia care unit (PACU) stay,
poor satisfaction of parents and care providers, and so on (4).
Therefore, it is necessary to find effective measures to prevent or
treat EA or ED.

Some studies have reported the pharmacological strategies to
prevent EA or ED, including midazolam, propofol, ketamine,
opioids, and α2 adrenergic receptor agonists (5–8). Activation
of an α2 adrenergic receptor can contribute to pharmacological
effects of sedation, analgesia, and anti-inflammation; thus, an α2

adrenergic receptor may be a target for prevention and treatment
of EA or ED (9, 10). A study from Ydemann et al. (11) found that
clonidine significantly decreased the incidence of postoperative
agitation in children after sevoflurane anesthesia compared
with placebo. Another commonly used α2 adrenergic receptor
agonist dexmedetomidine shows a higher ratio of specificity
for α2 receptor (α2:α1 1600:1) compared with clonidine (α2:α1
200:1) (12, 13). Although dexmedetomidine is used as an off-
label drug in children, increasing studies about the effect of
dexmedetomidine on EA and ED in pediatric patients have been
completed. We conducted this meta-analysis for clinical trials to
evaluate the effect of dexmedetomidine on EA or ED following
sedation or general anesthesia in pediatric patients compared
with placebo and other drugs.

MATERIALS AND METHODS

This systematic review and meta-analysis was performed
according to the guidelines of the 2009 PRISMA (Preferred
Reporting Items for Systematic reviews and Meta-analyses)
(Supplementary Table 1) (14).

Search Strategy and Study Selection
We searched the databases including “Pubmed,” “Embase,”
and “Cochrane Library” through the PICOS (Population,
Intervention, Comparison, Outcome, Study design) method
until 8th January 2020. The entry words included “child”
OR “children” OR “pediatric” AND “dexmedetomidine”
OR “precedex” OR “MPV-1440” OR “MPV 1440” OR
“Dexmedetomidine Hydrochloride” OR “Hydrochloride,
Dexmedetomidine” AND “agitation” OR “delirium,” and the
search scope was “all fields.” Because all studies about the
effect of dexmedetomidine vs. other drugs (placebo or other
sedatives) on agitation or delirium in pediatric patients were
eligible in this meta-analysis, we did not confine the search
words of control drugs and study design. The inclusion criteria

included the following: (1) participants with age<18 years;
and (2) management with prophylactic dexmedetomidine and
placebo or other sedatives. The exclusion criteria included the
following: (1) participants with age≥18 years; (2) management
with dexmedetomidine alone; (3) review or meta-analysis; (4)
basic research; (5) article published as an abstract, letter, case
report, editorial, note, method, or protocol; and (6) article
presented in non-English language.

Data Analysis
The aim of this meta-analysis was to investigate whether
dexmedetomidine had advantage in reducing the incidence of
EA or ED following sedation or general anesthesia in pediatric
patients compared with placebo or other sedatives.

Three authors were independently responsible for reviewing
the titles, abstracts, or both and summarized the data of the
included literatures. Another two authors were in charge of the
data discrepancy adjustment.

Two authors were responsible for extracting the following
information: (1) authors; (2) publication year; (3) number of
the total participants in each study; (4) age range of all the
participants; (5) country of publication; (6) procedures that
the participants underwent; (7) time of dexmedetomidine or
other sedative administration; (8) infusion speed or dosage of
dexmedetomidine or other sedatives; and (9) number of patients
with EA or ED following sedation or general anesthesia.

Two authors independently assessed the quality of included
studies. The risk of bias of randomized controlled trials
(RCTs) were assessed by the Cochrane Collaboration Risk of
Bias Assessment tool including seven items: random sequence
generation, allocation concealment, blinding of participants and
personnel, blinding of outcome assessment, incomplete outcome
data, selective reporting, and others (bias due to vested financial
interest and academic bias). If a trial had one or more of the items
to be judged as high or unclear risk of bias, this trial was classified
as having high risk (15). The bias risk of case-control trials
(CCTs) was assessed by the Newcastle-Otawa Quality Assessment
Scale (NOS) comprising three domains: selection, comparability,
and outcome for cohort studies. There were four stars in the
selection domain, two stars in the comparability domain, and
three stars in the exposure domain. Trials with cumulative seven
stars or more were considered to be of high quality, those with
six stars were considered to be of moderate quality, and those
with less than six stars were considered to be of low quality
(Supplementary Table 2) (16). If the two authors had different
assessment results, they consulted the third or the fourth one.
Eventually, the authors reached consensus. All included trials
were grouped based on different control drugs.

RevMan Review Manager version 5.3 (Cochrane
collaboration, Oxford, UK) and Stata version 12.0 (Stata
Corp, College Station, TX, USA) were used to perform statistical
analyses. The values of I2 and the Mantel–Haenszel chi-
square test (P-value for heterogeneity) were used to evaluate
the heterogeneity of included studies. And the values of
I2 <40%, 40–60%, and >60% represented low, moderate,
and high heterogeneity, respectively (17). If I2 >50% or a
P-value for heterogeneity <0.1 was identified, the method of
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FIGURE 1 | The flow chart of study screening.

random-effect model analysis was applied to analyze the data.
Conversely, if I2 < 50% or a P-value for heterogeneity ≥0.1 was
presented, the method of a fixed-effect model was used (18). The
dichotomous outcome was reported as odds ratios (OR) with
95% confidence interval (CI). The statistical tests were two-sided,
and a P-value for overall effect < 0.05 was considered to have
significant difference.

Sensitivity analysis was conducted to solve the problem
of significant heterogeneity (I2 > 40%) through the method
of subgroup analysis or one-by-one literature removal. Meta-
regression was used to investigate the heterogeneity sources for
the group with I2 > 40% according to possible risk factors. A
subgroup analysis proceeded based on the risk factor with P <

0.05 by meta-regression analysis; conversely, the method of one-
by-one literature removal was used if P-values of all risk factors
were 0.05 or more.

RESULTS

Study Location and Selection
The screening process of the eligible literatures is shown in
Figure 1. We obtained 207 trials from Pubmed, 300 from
Embase, and 227 from Cochrane Library according to the

inclusion criteria. Two hundred sixty-three trials were removed
due to duplicates. Two hundred eighty-eight trials were excluded
because they did not meet the eligibility criteria by browsing the
titles and abstracts, and 120 trials were removed by browsing the
full text. Eventually, 63 trials (19–81) including 7,714 patients
were identified through our search strategy (Figure 1). All
included trials were divided into nine groups based on control
drugs: placebo (19–59), midazolam (19, 59–71), opioids (29, 45,
72–74), propofol (or pentobarbital) (22, 25, 42, 75, 76), ketamine
(26, 60, 77–79), clonidine (80), chloral hydrate (81), melatonin
(59), and ketofol (ketamine and propofol) (23). We assigned
propofol and pentobarbital into the same group because both
of them produced general anesthetic efficacy through directly
activating the γ-aminobutyric acid A receptor of the central
nervous system (82).

Characteristics of Included Trials
There were 41 trials (19–59) including 3,600 patients in the
placebo group, 14 trials (19, 59–71) including 1,033 patients
in the midazolam group, 5 trials (29, 45, 72–74) including 396
patients in the opioids group, 5 trials (22, 25, 42, 75, 76) including
1,969 patients in the propofol (or pentobarbital) group, 5 trials
(26, 60, 77–79) including 332 patients in the ketamine group, and
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TABLE 1 | The basic information of all included trials.

Study N Age Center/

country

Procedures Anesthesia Dexmedetomidine

dosage

Control

Ibacache et al. (34)
(Prospective)

90 1–10 years Single/Chile Inguinal hernia repair,
orchiopexy, or
circumcision

General anesthesia
(sevoflurane)+
caudal block

After induction, 0.15 µg/kg
intravenously in 10min
After induction, 0.3 µg/kg
intravenously in 10min

Placebo (normal
saline)

Guler et al. (30)
(Prospective)

60 3–7 years Single/Turkey Adenotonsillectomy General anesthesia
(sevoflurane)

About 5min before the end
of surgery, 0.5 µg/kg was
infused over a time period of
5min

Placebo (normal
saline)

Shukry et al. (51)
(Prospective)

46 1–10 years Single/USA Outpatient surgical
procedures

General anesthesia
(sevoflurane)

5min following securing the
airway, dexmedetomidine
was infused at a dose of 0.2
µg/kg/h

Placebo (normal
saline)

Isik et al. (35)
(Prospective)

42 18 months
to 10 years

Single/Turkey Cranial MRI scanning General anesthesia
(sevoflurane)

1 µg/kg was infused over
2min after the induction

Placebo (normal
saline)

Erdil et al. (29)
(Prospective)

90 2–7 years Single/Turkey Adenoidectomy General anesthesia
(sevoflurane)

Dexmedetomidine 0.5
µg/kg after tracheal
intubation

Fentanyl: 2.5
µg/kg after
tracheal intubation
Placebo
(normal saline)

Saadawy et al. (47)
(Prospective)

60 1–6 years Single/Egypt Unilateral inguinal
hernia/orchidopexy

General anesthesia
(sevoflurane)+caudal
block

Dexmedetomidine 1 µg/kg
with bupivacaine caudal
block after induction

Placebo with
bupivacaine
caudal block

Talon et al. (71)
(Prospective)

100 1–18 years Single/USA Elective reconstructive
surgery for cutaneous
burn injuries

General anesthesia
(sevoflurane)

Tranasal dexmedetomidine
2 µg/kg

Oral midazolam
0.5 mg/kg

Koruk et al. (79)
(Prospective)

18 2–13 years Single/Turkey Transcatheter atrial
septal closure
operation

General anesthesia
(propofol)

Loading: 1 µg/kg was given
over
10min, followed by a dose
of 0.5 µg/kg/h
before anesthesia

Loading: Ketamine
1 mg/kg 10min,
followed by a rate
of 0.5 mg/kg/h

Patel et al. (74)
(Prospective)

122 2–10 years Single/USA Adenotonsillectomy General anesthesia
(sevoflurane)

Loading: 2 µg/kg over
10min, followed by 0.7
µg/kg/h
until 5min before the end of
the surgery

Intravenous
fentanyl (1 µg/kg)
as a bolus as soon
as intravenous
access was
obtained

Sato et al. (48)
(Prospective)

81 1–9 years Single/Japan Outpatient surgical
procedures

General anesthesia
(sevoflurane)

0.3 µg /kg
dexmedetomidine was
infused over 10min after
induction of anesthesia

Placebo (normal
saline)

Bedirli et al. (72)
(Prospective)

77 2–12 years Single/Turkey Adenotonsillectomy General anesthesia
(sevoflurane)

1 µg/kg dexmedetomidine
after intubation

2 mg/kg tramadol
after intubation

Mason et al. (76)
(Retrospective)

1662 0.5–5.7
years

Single/USA CT scanning Sedation Loading 2 µg/kg
administered over 10min,
followed by
infusion of 1 µg/kg/h is
initiated and maintained until
completion of the
imaging study

Pentobarbital 2–3
mg/kg

Mountain et al. (67)
(Prospective)

41 1–6 years Single/USA Dental restoration and
possible tooth
extraction

Sedation 4 µg/kg of oral
dexmedetomidine

0.5 mg/kg of oral
midazolam

Özcengiz et al. (59)
(Prospective)

100 3–9 years Single/Turkey Esophageal dilatation
procedures

General anesthesia
(sevoflurane)

Dexmedetomidine 2.5
µg/kg before induction of
anesthesia

Midazolam 0.5
mg/kg
Melatonin 0.1
mg/kg
Placebo
(normal saline)

(Continued)
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TABLE 1 | Continued

Study N Age Center/

country

Procedures Anesthesia Dexmedetomidine

dosage

Control

Pestieau et al. (45)
(Prospective)

101 6 months
to 6 years

Single/USA Insertion of pressure-
equalizing tubes

General anesthesia
(sevoflurane)

Intranasal dexmedetomidine
1 µg/kg
Intranasal dexmedetomidine
2 µg/kg

Intranasal fentanyl
2 µg/kg
Acetaminophen

Akin et al. (61)
(Prospective)

90 2–9 years Single/Turkey Adenotonsillectomy General anesthesia
(sevoflurane)

1 µg /kg was used
intranasally 45–60min
before the induction of
anesthesia

0.2 mg/kg
midazolam was
used intranasally
45–60min before
the induction of
anesthesia

Meng et al. (43)
(Prospective)

120 5–14 years Single/China Tonsillectomy General anesthesia
(sevoflurane)

After induction of anesthesia
and before the surgical
incision, loading dose of 0.5
µg/kg over 10min, followed
by a maintenance infusion
of 0.2 µg/kg/h over the
surgery
After induction of anesthesia
and before the surgical
incision, loading dose of 1.0
µg/kg over 10min, followed
by a maintenance infusion
of 0.4 µg/kg/h over
the surgery

Placebo (normal
saline)

Xu et al. (55)
(Prospective)

60 3–7 years Single/China Vitreoretinal surgery General anesthesia
(sevoflurane)

0.5 µg/kg was administered
intravenously over a period
of 10min before induction

Placebo (normal
saline)

Ali and Abdellatif (22)
(Prospective)

120 2–6 years Single/Egypt Adenotonsillectomy General anesthesia
(sevoflurane)

0.3 µg/kg was administered
intravenously over 5min
about 5min before the end
of surgery

Propofol 1 mg/kg
was administered
intravenously over
5min about 5min
before the end of
surgery
Placebo
(normal saline)

Aydogan et al. (62)
(Prospective)

32 12–18
years

Single/Turkey Scoliosis surgery General anesthesia
(propofol)

0.4 µg/kg/h was
administered intravenously
to sustain RASS score of
−2-+1 after surgery

Midazolam 0.1
mg/kg/h was
administered
intravenously to
sustain RASS
score of −2-+1
after surgery

Bhadla et al. (63)
(Prospective)

60 5–12 years Single/India Ophthalmic day-care
surgery

General anesthesia
(sevoflurane)

Intravenous 0.4 µg/kg
premedication

Midazolam 0.05
mg/kg
premedication

Chen et al. (26)
(Prospective)

78 2–7 years Single/China Strabismus surgery General anesthesia
(sevoflurane)

Loading 1 µg /kg, followed
by 1 µg /kg/h infusion after
induction of anesthesia

Placebo (normal
saline)
Ketamine 1 mg/kg
intravenously plus
1 mg/kg/h infusion
after induction
of anesthesia

Gupta et al. (31)
(Prospective)

36 8–12 years Single/India Corrective surgery
spinal dysraphism at
lumbosacral area

General anesthesia
(sevoflurane)

1 µg/kg bolus over 10min,
followed by 0.5 µg/kg/h as
maintenance and
discontinued at the
beginning of skin closure

Placebo (normal
saline)

(Continued)
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TABLE 1 | Continued

Study N Age Center/

country

Procedures Anesthesia Dexmedetomidine

dosage

Control

He et al. (33)
(Prospective)

87 3–7 years Single/China Elective minor surface
surgery

General anesthesia
(sevoflurane)

Dexmedetomidine 0.5
µg/kg was administrated
after LMA insertion for
10min
Dexmedetomidine 1.0
µg/kg was administrated
after LMA insertion
for 10min

Placebo (normal
saline)

Kim et al. (37)
(Prospective)

40 1–5 years Single/Korea Ambulatory
hernioplasty or
orchiopexy

General anesthesia
(sevoflurane)+caudal
block

Dexmedetomidine 1 µg/kg
was infused, followed by 0.1
µg/kg/h until the end of
surgery

Placebo (normal
saline)

Hasanin and Sira (75)
(Prospective)

80 1–14 years Single/Egypt Gastrointestinal
endoscopy

Sedation Loading 2.5 µg/kg was
infused over 10min,
followed by 2 µg/kg/h for
maintenance

Propofol: loading
bolus 2 mg/kg,
followed by 100
µg/kg/min for
maintenance

Kim et al. (38)
(Prospective)

94 1–5 years Single/Korea Strabismus surgery General anesthesia
(desflurane)

Continuous infusion with 0.2
µg/kg/h after induction to
the end of surgery

Placebo (normal
saline)

Sheta et al. (70)
(Prospective)

72 3–6 years Single/ Saudi
Arabia

Dental rehabilitation General anesthesia
(sevoflurane)

Intranasal dexmedetomidine
1 µg/kg

Intranasal
midazolam 1
µg/kg

Bong et al. (25)
(Prospective)

120 2–7 years Single/Singapore Magnetic resonance
imaging scanning

General anesthesia
(sevoflurane)

Intravenous
dexmedetomidine 0.3
µg/kg before
discontinuation of
sevoflurane

Intravenous
propofol 1 mg/kg
Placebo
(normal saline)

Cho et al. (27)
(Prospective)

80 1–6 years Single/Korea Ambulatory unilateral
orchiopexy

General anesthesia
(sevoflurane)+caudal
block

Dexmedetomidine 1 µg/kg
with ropivacaine caudal
block

Placebo (normal
saline)

Hauber et al. (32)
(Prospective)

382 4–10 years Single/USA Tonsillectomy with or
without adenoidectomy

General anesthesia
(sevoflurane)

Dexmedetomidine was
administered intravenously
at a dose of 0.5 µg/kg /kg
over 2 to 3 s at about 5min
before the completion of
surgery

Placebo (normal
saline)

Jiang et al. (65)
(Retrospective)

0–36
months

Single/China Cardiac surgery General anesthesia
(fentanyl)

0.25–0.75 µg/kg/h from the
end of surgery to 1 h of
extubation

Midazolam 0.5–3
µg/kg/min from
the end of surgery
to 1 h of
extubation

Lundblad et al. (41)
(Prospective)

43 1.5–8
years

Single/Sweden Outpatient inguinal
hernia repair

General anesthesia
(sevoflurane)+
ilioinguinal/
iliohypogastric nerve
blocks

Ilioinguinal/
iliohypogastric
nerve blocks with 0.2%
ropivacaine and
dexmedetomidine
0.3 µg/kg

Ilioinguinal/
iliohypogastric
nerve blocks with
0.2% ropivacaine
and placebo
(normal saline)

Mukherjee et al. (80)
(Prospective)

80 3–7 years Single/India Elective day care
surgery

General anesthesia
(sevoflurane)

1 µg/kg intranasal
dexmedetomidine as
premedication

4 µg/kg intranasal
clonidine as
premedication

Peng and Zhang (44)
(Prospective)

40 3–24
months

Single/China Cleft palate repair General anesthesia
(sevoflurane)

Dexmedetomidine 0.8
µg/kg/min was continuously
infused after the induction

Placebo (normal
saline)

Soliman and Alshehri
(52) (Prospective)

150 4–14 years Single/ Saudi
Arabia

Outpatient
adenotonsillectomy

General anesthesia
(sevoflurane)

An initial loading dose of 0.5
µg/kg (started after
induction of anesthesia)
over 10min followed by
intravenous infusion 0.1–0.3
µg/kg/h during surgery

Placebo (normal
saline)

(Continued)
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TABLE 1 | Continued

Study N Age Center/

country

Procedures Anesthesia Dexmedetomidine

dosage

Control

Yao et al. (56)
(Prospective)

89 3–7 years Single/China Strabismus surgery General anesthesia
(sevoflurane)

Premedication of intranasal
saline or dexmedetomidine
1 µg/kg
Premedication of intranasal
saline or dexmedetomidine
2 µg/kg

Placebo (normal
saline)

Abdelaziz et al. (19)
(Prospective)

98 1–7 years Single/ Saudi
Arabia

Strabismus surgery General anesthesia
(sevoflurane)

Intranasal dexmedetomidine
(1 µg/kg)

Intranasal
midazolam (0.1
mg/kg)
Placebo
(normal saline)

Ali et al. (23)
(Prospective)

90 3–6 years Single/Egypt Orthopedic surgeries General anesthesia
(sevoflurane)

Dexmedetomidine 0.3
µg/kg 10min before the
end of surgery.

Ketofol: ketamine
0.25 mg/kg and
propofol 1.0
mg/kg in
combination
10min before the
end of surgery
Placebo
(normal saline)

Al-Zaben et al. (21)
(Prospective)

75 1–6 years Single/Jordan Elective lower
abdominal and perineal
surgeries

General anesthesia
(sevoflurane)+
caudal block

B-Dcau: 1 ml/kg caudal
0.25% bupivacaine mixed
with 1 µg/kg
dexmedetomidine
B-DIV: 1 ml/kg of caudal
0.25% bupivacaine and 1
µg/kg dexmedetomidine
and 10ml intravenously in
0.9% saline over 10min

B: 1 ml/kg caudal
0.25%
bupivacaine and
10ml 0.9%
intravenous saline
over 10 min

Eldeek et al. (77)
(Prospective)

110 3–7 years Single/Egypt Magnetic resonance
imaging

Sedation A loading dose of l µg/kg
was given over 10min,
followed by 0.5–0.75
µg/kg/h intravenously

A loading dose of
ketamine l mg/kg
was given over
10min, followed
by 10–15
µg/kg/min
intravenously

Lin et al. (40)
(Prospective)

90 1–8 years Single/China Cataract surgeries General anesthesia
(sevoflurane)

Intranasally received 1
µg/kg
Intranasally received
2 µg/kg

Placebo (normal
saline)

Makkar et al. (42)
(Prospective)

100 2–8 years Single/India Elective infra-umbilical
surgery

General anesthesia
(desflurane)

0.3 µg/kg intravenous
dexmedetomidine over
5min at 5min before the
end of surgery

A single
intravenous bolus
of 1 mg/kg
propofol at 5min
before the end of
surgery
Placebo
(normal saline)

Song et al. (53)
(Prospective)

103 2–6 years Single/Korea Strabismus surgery General anesthesia
(sevoflurane +

desflurane)

Intravenous 0.25, 0.5, or 1.0
µg/kg for 10min

Placebo (normal
saline)

El-Hamid and Yassin
(28) (Prospective)

86 3–7 years Single/Egypt Tonsillectomy and/or
adenoidectomy

General anesthesia
(sevoflurane)

Intranasal dexmedetomidine
at 1 µg/kg after induction of
general anesthesia

Placebo (normal
saline)

Ezz (78) (Prospective) 90 3–6 years Single/Egypt Unilateral or bilateral
myringotomy

General anesthesia
(sevoflurane)

Intranasal dexmedetomidine
in a dose 1 µg/kg

Intranasal
ketamine in a dose
5 mg/kg

(Continued)
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TABLE 1 | Continued

Study N Age Center/

country

Procedures Anesthesia Dexmedetomidine

dosage

Control

Prabhu and
Mehandale (68)
(Prospective)

90 1–10 years Single/India Elective surgeries of
<2 h of expected
duration under
sevoflurane general
anesthesia

General anesthesia
(sevoflurane)

Oral dexmedetomidine 4
µg/kg at approximately
45min before surgery

Oral midazolam
0.5 mg/kg at
approximately
45min before
surgery

Keles and Kocaturk
(36) (Retrospective)

100 2–6 years Single/Turkey Full mouth dental
rehabilitation

General anesthesia
(sevoflurane)

1 µg/kg oral
dexmedetomidine at 45min
before induction of
anesthesia

Placebo

Park et al. (73)
(Prospective)

57 3–12 years Single/Korea Extensive orthopedic
surgery of the lower
extremities

General anesthesia
(sevoflurane)+epidural
anesthesia

0.2% ropivacaine (0.2 ml/kg)
with dexmedetomidine (1
µg/kg) through the epidural
catheter at 30min before
the end of the surgery

0.2% ropivacaine
(0.2 ml/kg) with
fentanyl (1 µg/kg)
through the
epidural catheter
at 30min before
the end of the
surgery

Riveros et al. (46)
(Retrospective)

653 0–18 years Single/USA Cardiac catheterization General anesthesia Received dexmedetomidine
infusion during the surgery

Did not receive
dexmedetomidine
infusion during the
surgery

Yuen et al. (81)
(Prospective)

196 2–79
months

Multiple/China Computerized
tomographic (CT)

General anesthesia
(oral chloral hydrate)

Intranasal dexmedetomidine
spray 3 µg/kg, 30min
before computerized
tomography studies

Chloral hydrate

Abdel-Ghaffar et al.
(60) (Prospective)

90 3–7 years Single/Egypt Bone marrow biopsy General anesthesia
(sevoflurane)

Nebulized
dexmedetomidine 2 µg/kg
as premedication by
inhalation

Nebulized
ketamine 2 mg/kg
as premedication
by inhalation
Nebulized
midazolam 0.2
mg/kg as
premedication
by inhalation

Li et al. (39)
(Prospective)

82 4–6 years Single/China Tonsillectomy General anesthesia
(desflurane)

Dexmedetomidine was
continuously infused with
0.2 µg/kg/h after anesthesia
induction until the end of the
surgery

Placebo (normal
saline)

Long et al. (66)
(Retrospective)

52 3–7 years Single/Turkey Full-mouth dental
rehabilitation

General anesthesia
(sevoflurane)

2 µg/kg of oral
dexmedetomidine in apple
juice 45min before the
induction of anesthesia

0.5 mg/kg of
midazolam in
apple juice 45min
before the
induction of
anesthesia

Tsiotou et al. (54)
(Prospective)

60 3–14 years Single/Greece Tonsillectomy with or
without adenoidectomy

General anesthesia
(propofol)

1 µg/kg dexmedetomidine
in 10min after induction

Placebo (normal
saline)

Abdel-Ghaffar et al.
(20) (Prospective)

90 3–6 years Single/Egypt Tonsillectomy General anesthesia
(sevoflurane)

Trans-mucosal
dexmedetomidine 0.5
µg/kg
Trans-mucosal
dexmedetomidine 1 µg/kg

Placebo (normal
saline)

Bi et al. (24)
(Prospective)

40 6–48
months

Single/China Tracheobronchial
foreign body removal

General anesthesia
(sevoflurane)

Intranasal 1 µg/kg at 25min
before anesthesia induction

Placebo (normal
saline)

(Continued)
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TABLE 1 | Continued

Study N Age Center/

country

Procedures Anesthesia Dexmedetomidine

dosage

Control

Cho et al. (64)
(Prospective)

66 2–12 years Single/Korea Tonsillectomy General anesthesia
(sevoflurane)

0.3 µg/kg was administered
intravenously for 5min at
5min before the end of
surgery

Midazolam 0.03
mg/kg was
administered
intravenously for
5min at 5min
before the end of
surgery

Sajid et al. (69)
(Prospective)

80 1–6 years Single/India Elective herniotomy General anesthesia
(isoflurane)

Oral dexmedetomidine 4
µg/kg at 40min before
induction

Oral midazolam
0.5 mg/kg at
40min before
induction

Sharma et al. (49)
(Prospective)

60 5–10 years Single/India Adenotonsillectomy General anesthesia
(isoflurane)

Dexmedetomidine 1 µg/kg
infusion over 10min before
induction of anesthesia

Placebo (normal
saline)

Shi et al. (50)
(Prospective)

90 2–7 years Single/China Tonsillectomy General anesthesia
(sevoflurane)

After induction, 0.5 µg/kg
over 10min

Placebo (normal
saline)

Ye et al. (57)
(Prospective)

60 2–7 years Single/China Strabismus and
vitreoretinal (VR)
surgery

General anesthesia
(propofol)

RD: Retrobulbar block with
0.5% ropivacaine 0.1 ml/kg
plus dexmedetomidine 1
µg/kg after general
anesthesia

RB: Retrobulbar
block with 0.5%
ropivacaine 0.1
ml/kg only
F: General
anesthesia alone

Zhang et al. (58)
(Prospective)

134 0–16 years Single/China Elective interventional
cardiac catheterization

General anesthesia
(sevoflurane)

An intranasal administration
dose of 1.5 mg/kg

Placebo (normal
saline)

4 trials (23, 59, 80, 81) including 384 patients in the clonidine,
chloral hydrate, melatonin, and ketofol group, respectively.

Table 1 demonstrated the basic information of all included
trials; meanwhile, it was discovered that clinical heterogeneity
might be associated with the study methods, the type of surgery,
the number and age of participants, and the route, dosage, and
timing of drug administration. Five trials in the included studies
were CCTs (36, 46, 65, 66, 76). The patients in 17 trials (20, 22,
28–30, 32, 39, 43, 49, 50, 52, 54, 61, 64, 72, 74, 78) underwent
otolaryngology surgeries, those in 5 trials (36, 44, 66, 67, 70)
underwent dental or cleft palate surgeries, those in 9 trials (19,
26, 38, 40, 53, 55–57, 63) underwent ophthalmic surgeries, those
in 11 trials (21, 27, 33, 34, 37, 41, 42, 47, 68, 69, 71) underwent
general or urological surgeries, those in 4 trials (23, 31, 62, 73)
underwent orthopedic surgeries, those in 1 trial (65) underwent
cardiac surgery, those in 8 trials (24, 45, 46, 58–60, 75, 79)
underwent invasive examination or treatment, those in 5 trials
(25, 35, 76, 77, 81) underwent non-invasive examination or
treatment, and those in 3 trials (48, 51, 80) underwent all kinds
of outpatient surgeries. Different routes of drug administration
were used: intranasal in 12 trials (19, 24, 28, 40, 45, 56, 58,
61, 71, 78, 80, 81), oral in 5 trials (36, 66–69), caudal or nerve
block in 5 trials (21, 41, 47, 57, 73), inhalation in 1 trial (60),
transmucosal in 1 trial (20), and intravenous in 39 trials. The
strategy of drug administration was also different: (1) intravenous
single dose in 20 trials (22, 23, 25, 29, 30, 32–35, 42, 48–50, 53–
55, 59, 63, 64, 72), loading dose plus maintenance infusion in
10 trials (26, 31, 37, 43, 52, 74–77, 79), and only maintenance
infusion in 6 trials (38, 39, 44, 51, 62, 65); and (2) administration

onset before anesthesia in 29 trials (19, 20, 24, 28, 36, 40, 45, 46,
49, 55, 56, 58–61, 63, 66–71, 75–81), during anesthesia in 32 trials
(21–23, 25–27, 29–35, 37–39, 41–44, 47, 48, 50–54, 57, 64, 72–74),
and after anesthesia in 2 trials (62, 65). The number of patients
with EA or ED in dexmedetomidine and control groups is shown
in Table 2.

Bias Risk Assessment
Bias risk of 58 RCTs was assessed by the Cochrane Collaboration
Risk of Bias Assessment tool. Random sequence generation was
assessed as a low risk of bias in 57 studies (98%), allocation
concealment was assessed in 36 studies (62%), blinding of
participants was assessed in 38 studies (66%), blinding of
outcome assessment was assessed in 34 studies (59%), incomplete
outcome data were assessed in 58 studies (100%), and selective
outcome reporting was assessed in 56 studies (97%). Nineteen
RCTs (24, 26, 27, 32, 33, 37, 41, 45, 53, 54, 56, 58–61, 64, 67, 73, 81)
were assessed to be of high quality (Supplementary Figures 1, 2).
Bias risk of 5 CCTs (36, 46, 65, 66, 76) was assessed by NOS, and
the number of stars was 7 from the study of Keles et al. (36), 8
from the study of Riveros et al. (46), 5 from the study of Jiang et al.
(65), 5 from the study of Long et al. (66), and 8 from the study
of Mason et al. (76), respectively. Therefore, 3 trials (36, 46, 76)
were assessed to be of high quality because they obtained 7 stars
or more (Supplementary Table 3).

Post-anesthesia Incidence of EA or ED
Different dosages of dexmedetomidine administration in each
study were presented in nine trials (20, 21, 33, 34, 40, 43,
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TABLE 2 | The number of patients with EA or ED in dexmedetomidine and control groups.

Study Dexmedetomidine Control

N (total) N (EA or ED) N (total) N (EA or ED)

Ibacache et al. (34) (Prospective) 0.15 µg/kg: 30
0.3 µg/kg: 30

0.15 µg/kg: 3
0.3 µg/kg: 6

Placebo: 30 4

Guler et al. (30) (Prospective) 30 5 Placebo: 30 17

Shukry et al. (51) (Prospective) 23 6 Placebo: 23 16

Isik et al. (35) (Prospective) 21 1 Placebo: 21 10

Erdil et al. (29) (Prospective) 30 5 Fentanyl: 30
Placebo: 30

Fentanyl: 4
Placebo: 14

Saadawy et al. (47) (Prospective) 30 3 Placebo: 30 9

Talon et al. (71) (Prospective) 50 5 Midazolam: 50 5

Koruk et al. (79) (Prospective) 9 0 Ketamine: 9 1

Patel et al. (74) (Prospective) 61 11 Fentanyl: 61 25

Sato et al. (48) (Prospective) 39 11 Placebo: 42 27

Bedirli et al. (72) (Prospective) 38 4 Tramadol: 39 5

Mason et al. (76) (Retrospective) 1274 4 Pentobarbital: 388 8

Mountain et al. (67) (Prospective) 22 3 Midazolam: 19 5

Özcengiz et al. (59) (Prospective) 25 2 Midazolam: 25
Melatonin: 25
Placebo: 25

Midazolam: 1
Melatonin: 2
Placebo: 8

Pestieau et al. (45) (Prospective) 1 µg/kg: 23
2 µg/kg: 28

1 µg/kg: 5
2 µg/kg: 9

Fentanyl: 23
Placebo: 27

Fentanyl: 3
Placebo: 11

Akin et al. (61) (Prospective) 45 8 Midazolam: 45 5

Meng et al. (43) (Prospective) 0.5 µg/kg: 40
1.0 µg/kg: 40

0.5 µg/kg: 6
1.0 µg/kg: 2

Placebo: 40 8

Xu et al. (55) (Prospective) 30 3 Placebo: 30 13

Ali and Abdellatif (22)
(Prospective)

40 2 Propofol: 40
Placebo: 40

Propofol: 3
Placebo: 7

Aydogan et al. (62) (Prospective) 16 1 Midazolam: 16 4

Bhadla et al. (63) (Prospective) 30 7 Midazolam: 30 14

Chen et al. (26) (Prospective) 27 3 Placebo: 24
Ketamine: 27

Placebo: 11
Kertamine: 6

Gupta et al. (31) (Prospective) 18 0 Placebo: 18 4

He et al. (33) (Prospective) 0.5 µg/kg: 29
1 µg/kg: 32

0.5 µg/kg: 5
1 µg/kg: 2

Placebo: 26 11

Kim and Koo (37) (Prospective) 20 1 Placebo: 20 11

Hasanin and Sira (75)
(Prospective)

40 0 Propofol: 40 0

Kim et al. (38) (Prospective) 47 7 Placebo: 47 33

Sheta et al. (70) (Prospective) 36 4 Midazolam: 36 11

Bong et al. (25) (Prospective) 40 3 Propofol: 39
Placebo: 41

Propofol: 0
Placebo: 2

Cho et al. (27) (Prospective) 40 3 Placebo: 40 18

Hauber et al. (32) (Prospective) 193 69 Placebo: 189 125

Jiang et al. (65) (Retrospective) 77 14 Midazolam: 97 31

Lundblad et al. (41) (Prospective) 22 0 Placebo: 21 4

Mukherjee et al. (80)
(Prospective)

40 9 Clonidine: 40 14

Peng and Zhang (44)
(Prospective)

20 3 Placebo: 20 18

Soliman et al. (52) (Prospective) 75 8 Placebo: 75 23

Yao et al. (56) (Prospective) 1 µg/kg: 30
2 µg/kg: 30

1 µg/kg: 5
2 µg/kg: 1

Placebo: 29 14

(Continued)
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TABLE 2 | Continued

Study Dexmedetomidine Control

N (total) N (EA or ED) N (total) N (EA or ED)

Abdelaziz et al. (19) (Prospective) 33 4 Placebo: 32
Midazolam: 33

Placebo: 15
Midazolam: 7

Ali et al. (23) (Prospective) 30 EA: 5 Ketofol: 30
Placebo: 30

Ketofol: 8
Placebo: 27

Al-Zaben et al. (21) (Prospective) B-Dcau: 25 B-DIV:
25

B-Dcau: 0
B-DIV: 2

B: 25 8

Eldeek et al. (77) (Prospective) 55 0 Ketamine: 55 2

Lin et al. (40) (Prospective) 1 µg/kg: 30
2 µg/kg: 30

1 µg/kg: 7
2 µg/kg: 3

Placebo: 30 24

Makkar et al. (41) (Prospective) 32 3 Propofol: 36
Placebo: 32

Propofol: 5
Placebo: 13

Song et al. (53) (Prospective) 0.25 µg/kg: 25
0.5 µg/kg: 25

µg/kg: 28

0.25 µg/kg: 12
0.5 µg/kg: 11
1.0 µg/kg: 6

Placebo: 28 15

El-Hamid and Yassin (28)
(Prospective)

43 3 Placebo: 43 25

Ezz (78) (Prospective) 45 3 Ketamine: 45 3

Prabhu and Mehandale (68)
(Prospective)

45 2 Midazolam: 45 18

Keles and Kocaturk (36)
(Retrospective)

50 6 Placebo: 50 12

Park et al. (73) (Prospective) 28 5 Fentanyl: 29 8

Riveros et al. (46) (Retrospective) 331 48 Placebo: 322 44

Yuen et al. (81) (Prospective) 87 4 Chloral hydrate:
107

5

Abdel-Ghaffar et al. (60)
(Prospective)

30 2 Ketamine: 30
Midazolam: 30

Ketamine: 6
Midazolam: 12

Li et al. (38) (Prospective) 40 6 Placebo: 40 33

Long et al. (66) (Retrospective) 26 0 Midazolam: 26 5

Tsiotou et al. (54) (Prospective) 31 15 Placebo: 29 6

Abdel-Ghaffar et al. (20)
(Prospective)

0.5 µg/kg: 30
1 µg/kg: 30

0.5 µg/kg: 18
1 µg/kg: 16

Placebo: 30 15

Bi et al. (24) (Prospective) 20 5 Placebo: 20 14

Cho et al. (24) (Prospective) 34 9 Midazolam: 32 10

Sajid et al. (69) (Prospective) 40 9 Midazolam: 40 32

Sharma et al. (49) (Prospective) 30 2 Placebo: 30 30

Shi et al. (50) (Prospective) 45 14 Placebo: 45 24

Ye et al. (57) (Prospective) RD: 20 4 RB: 20
F: 20

RB: 7
F: 17

Zhang et al. (83) (Prospective) 67 6 Placebo: 67 13

45, 53, 56). We chose the dexmedetomidine dosage with the
highest incidence of EA or ED. We evaluated the effect of
dexmedetomidine administration on EA or ED compared with
placebo (19–59), midazolam (19, 59–71), opioids (29, 45, 72–
74), propofol (or pentobarbital) (22, 25, 42, 75, 76), ketamine
(26, 60, 77–79), and other sedatives (clonidine, chloral hydrate,
melatonin) or ketofol (23, 59, 80, 81).

The random-effect model with OR was selected due to high I2

in the groups of placebo (I2 = 75%), midazolam (I2 = 57%), and
propofol (or pentobarbital) (I2 = 58%), whereas the fixed-effect

model with OR was selected because of low I2 in the group of
opioids (I2 = 0%) and ketamine (I2 = 0%).

The pooled results demonstrated significant difference in the
incidence of EA or ED after anesthesia in the groups of placebo
[OR= 0.22, 95%CI: (0.16, 0.32), I2 = 75%, P for effect< 0.00001]
(Figure 2), midazolam [OR = 0.36, 95% CI: (0.21, 0.63), I2 =

57%, P for effect =0.0003] (Figure 3), and opioids [OR = 0.55,
95% CI: (0.33, 0.91), I2 = 0, P for effect = 0.02] (Figure 4).
However, no significant difference was exhibited in the groups
of propofol (or pentobarbital) [OR = 0.56, 95% CI: (0.15, 2.14),
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FIGURE 2 | Comparison of pediatric EA or ED between dexmedetomidine and placebo groups.

I2 = 58%, P for effect = 0.39] (Figure 5) and ketamine [OR =

0.43, 95% CI: (0.19, 1.00), I2 = 0, P for effect= 0.05] (Figure 6).
With regard to other control sedatives or drug combination,

no heterogenicity was presented because only one literature
was retrieved for each group. The results did not demonstrate
significant difference in the incidence of EA or ED after
anesthesia when comparing dexmedetomidine with clonidine
[OR = 0.54, 95% CI: (0.20, 1.45), P for effect = 0.22], chloral
hydrate [OR = 0.98, 95% CI: (0.26, 3.78), P for effect = 0.98],
melatonin [OR = 1.0, 95% CI: (0.13, 7.72), P for effect = 1.00],
and ketofol [OR= 0.55, 95% CI: (0.16, 1.93), P for effect= 0.35].

Sensitivity Analysis
Meta-regression was performed to investigate the heterogeneity
sources by assessing the potential factors including the year

of publication, study methods, the country of authors, the
time of drug administration, the type of surgery, routes of
drug administration, the bias risk of the study, and the range
of patients’ age for the groups of placebo and midazolam.
Unexpectedly, all P-values of these risk factors were over 0.05
(Supplementary Tables 4, 5). Afterward, the method of one-by-
one literature removal was used. Seven trials (20, 23, 39, 44, 46,
49, 54) were found to be the main sources of heterogeneity in
the placebo group (I2 dropped from 75 to 36%) and two trials
(61, 69) in the midazolam group (I2 dropped from 57 to 28%).
Due to a small number of included trials in the group of propofol
(or pentobarbital), the method of one-by-one literature removal
was directly used to lower the heterogeneity. When we removed
the retrospective trial fromMason et al. (76), the value of I2 in the
propofol (or pentobarbital) group dropped from 58 to 13%, and
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FIGURE 3 | Comparison of pediatric EA or ED between dexmedetomidine and midazolam groups.

FIGURE 4 | Comparison of pediatric EA or ED between dexmedetomidine and opioids groups.

FIGURE 5 | Comparison of pediatric EA or ED between dexmedetomidine and propofol (or pentobarbital) groups.

the changes suggested that this retrospective trial was the main
source of significant heterogeneity.

The post hoc analysis was performed by the fixed-effects model
with OR, and the pooled results were consistent with those prior
to the sensitivity analysis—placebo group: [OR = 0.24, 95%
CI: (0.18, 0.31), I2 = 36%, P for effect <0.00001] (Figure 7);
midazolam group: [OR = 0.37, 95% CI: (0.26, 0.52), I2 = 28%,
P for effect <0.00001] (Figure 8); propofol (or pentobarbital)
group: [OR = 1.06, 95% CI: (0.39, 2.85), I2 = 13%, P for effect
= 0.92] (Figure 9).

DISCUSSION

This meta-analysis included 58 RCTs and 5 CCTs that
compared the prophylactic effect of dexmedetomidine vs.
placebo or other sedatives on post-anesthesia EA or ED
in pediatric patients undergoing medical procedures. The
results showed that dexmedetomidine strikingly decreased
the incidence of post-anesthesia EA or ED compared with
placebo, midazolam, or opioids, whereas the significant
difference was not exhibited compared with propofol (or
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FIGURE 6 | Comparison of pediatric EA or ED between dexmedetomidine and ketamine groups.

FIGURE 7 | Comparison of pediatric EA or ED between dexmedetomidine and placebo groups after sensitivity analysis.
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FIGURE 8 | Comparison of pediatric EA or ED between dexmedetomidine and midazolam groups after sensitivity analysis.

FIGURE 9 | Comparison of pediatric EA or ED between dexmedetomidine and propofol (or pentobarbital) groups after sensitivity analysis.

pentobarbital), ketamine, clonidine, chloral hydrate, melatonin,
and ketofol, respectively.

Currently, the specific predisposing causes of EA or ED
following medical procedures in children remain unclear.
Children undergoing general anesthesia are prone to suffer
post-anesthesia EA or ED due to their immature central
nervous system, preoperative fear and anxiety about unfamiliar
surroundings, and postoperative pain (84–86). In addition, the
children undergoing inhalation anesthesia through sevoflurane,
isoflurane, or desflurane may suffer from a high incidence
of post-anesthesia EA or ED (87, 88). Various medications
have been used to prevent EA or ED in pediatric patients,
like benzodiazepines, opioids, propofol, ketamine, clonidine,
dexmedetomidine, and so on (11, 89–93).

Dexmedetomidine, as a highly selective α2 adrenergic
receptor agonist, can produce pharmacological effects of anti-
anxiety, sedation, and analgesia without overt respiratory and
circulatory inhibition in a routine dose (94, 95). Meanwhile,
dexmedetomidine can improve the cognitive function in children
during recovery from general anesthesia (96) and contributes to
dose-dependent inhibition of EA or ED after medical procedures
(97). The optimal dose (ED95) of dexmedetomidine for
preventing EA was 0.30 µg/kg (95% CI: 0.21–1.00 µg/kg) (83).
An animal experiment demonstrated that dexmedetomidine
could enhance spatial learning and memory in neonatal rats

under physiological conditions through promoting hippocampal
neurogenesis (98). In this meta-analysis, nine trials had different
dexmedetomidine groups according to different dosages (20, 33,
34, 40, 43, 45, 53, 56) or administration routes of this drug (21).
Patients in the control groups of these nine trials were treated
with a placebo (20, 21, 33, 34, 40, 43, 45, 53, 56), and patients in
another control group in the study from Pestieau et al. received
fentanyl treatment (45). We chose the dexmedetomidine group
with higher incidence of EA or ED. Therefore, the pooled results
were more convincing in the powerful prophylactic effect of
dexmedetomidine on the occurrence of EA or ED in children
compared with placebo and opioids.

Dexmedetomidine can be administered in a variety of ways,
like intravenous, transnasal, oral, inhalation, caudal or nerve
block, and so on; thus, pediatric patients can easily accept it.
The pooled results of 53 trials comparing dexmedetomidine with
placebo and midazolam showed that dexmedetomidine could
work in various ways and was superior to placebo or midazolam
in inhibiting EA or ED in children. However, compared with
propofol (or pentobarbital) or ketamine, dexmedetomidine did
not demonstrate its superiority in reducing pediatric EA or
ED following anesthesia. The possible explanations included
the following: (1) the efficacy of propofol (or pentobarbital)
or ketamine in suppressing EA or ED occurrence was no less
than that of dexmedetomidine; and (2) the number of relevant
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prospective studies needed to be further increased. Because only
one article was included, we could not perform meta-analysis
for trials in the group of clonidine, chloral hydrate, melatonin,
or ketofol.

In this meta-analysis, high heterogenicity was detected in
trials comparing dexmedetomidine with placebo (I2 = 75%),
midazolam (I2 = 57%), and propofol (or pentobarbital) (I2 =

58%), respectively. Subgroup analysis is an effective method to
solve large heterogenicity among studies (99). We suggested
some possible risk factors associated with overt heterogenicity
including the year of publication, study methods, the country
of authors, the time of drug administration, the type of surgery,
routes of drug administration, the bias risk of the study, and
the range of patients’ age. Meta-regression was used to identify
heterogenicity sources. If the P-value of meta-regression was
<0.05 through analyzing one risk factor, the subgroup analysis
was performed based on this risk factor (99, 100). However, in
this meta-analysis, all P-values of meta-regression were more
than 0.05 through analyzing all possible risk factors in the placebo
and midazolam groups. Hence, we considered that significant
heterogeneity may be the result of a combination of multiple
factors. Themeta-analysis by a random-effect model can decrease
the effect of significant heterogeneity on the results, although
this method does not solve heterogeneity (101). In addition, the
method of trial exclusion is also an effective method to solve
large heterogenicity for meta-analysis (102). When we excluded
seven trials (20, 23, 39, 44, 46, 49, 54) in the placebo group, two
trials (61, 69) in the midazolam group, and one trial (76) in the
propofol (or pentobarbital) group, all values of I2 dropped to
below 40%. Interestingly, the pooled results were consistent with
those prior to sensitivity analysis.

It is necessary to elaborate the strengths and limitations
of our meta-analysis. Firstly, this meta-analysis presented a
comprehensive and up-to-date analysis of dexmedetomidine
vs. placebo or other sedatives in pediatric patients. Sixty-three
included trials with unlimited study methods (RCTs and CCTs)
and various administration routes and dosages were grouped
according to control drugs; thus, the pooled outcomes revealed
the effect of dexmedetomidine on pediatric EA or ED more
comprehensively. Secondly, sensitivity analysis was conducted
in groups with high heterogeneity to remove the influence of
heterogeneity on the overall results. Thirdly, this meta-analysis
provided several directions for future clinical studies about the
effect of dexmedetomidine on EA or ED in children. In addition,
some limitations should be taken into account in this meta-
analysis. Foremost, 39 RCTs and 2 CCTs in 63 included trials
were assessed to be high bias risk, and so many trials with
high-risk bias would affect the results. Additionally, the age gap
of participants in 9 trials (46, 52, 54, 58, 64, 71, 72, 75, 79)
was over 10 years, and a large age gap might be an important
risk factor associated with the unreliability of outcomes. Lastly,

non-uniform definitions of EA or ED were an additional
limitation of this meta-analysis. There were five strategies
diagnosing EA or ED in included trials, i.e., three-point scale,
four-point scale, five-point scale, pediatric Anesthesia Emergence
Delirium (PAED) scale, and the Confusion Assessment Method
for the ICU.

CONCLUSION

In conclusion, compared with placebo, midazolam, and opioids,
dexmedetomidine significantly decreased the incidence of
post-anesthesia EA or ED in pediatric patients. However,
dexmedetomidine did not exhibit this superiority when
compared with propofol and ketamine. With regard to clonidine,
chloral hydrate, melatonin, or ketofol, the results needed to be
further tested due to the fact that there was only one trial in
each study.
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