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Background and Objective: As bronchopulmonary dysplasia (BPD) can lead to

considerable mortality and morbidity, this disease is the focus of attention in neonatology.

Vitamin D (VD), which has anti-inflammatory properties and promotes lung growth, may

have a therapeutic effect on BPD. The overexpression of neutrophil extracellular traps

(NETs) has been demonstrated to be involved in the pathogenesis of BPD in our previous

study. This study aimed to elucidate the effect of VD on BPD and the role of NETs in

this process.

Methods: Newborn rats were exposed to 90% oxygen continuously for 7 days to mimic

BPD, and rats under hyperoxia were injected with 1,25(OH)2D3 at different doses (0.5

ng/g, 3 ng/g). Alveolarization, pulmonary vascular development, inflammatory cytokines

and NETs were assessed.

Results: Hyperoxia increasedmortality, decreased body weight, impaired alveolarization

with a decrease in radial alveolar count (RAC) and an increase in mean linear

intercept (MLI), and impaired vascular development with low vascular endothelial

growth factor (VEGF) expression. Meanwhile, hyperoxia enhanced expression of the

proinflammatory factors TNF-α, IL-1β, and IL-6, and elevated NETs in lung tissues

and plasma. Low-dose VD (0.5 ng/g) administration increased the survival rate,

attenuated developmental retardation, improved alveolarization, and pulmonary vascular

development in hyperoxia-induced BPD, and reduced the expression of proinflammatory

factors and NETs. However, high-dose VD (3 ng/g) treatment did not attenuate lung injury

or NETs significantly, and even led to more severe developmental retardation and a higher

mortality rate.

Conclusions: Low-dose VD increased the survival rate, attenuated developmental

retardation, and improved alveolarization and pulmonary vascularization arrest in

hyperoxia-induced BPD partially by inhibiting NETs.
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INTRODUCTION

Bronchopulmonary dysplasia (BPD) is a severe complication
of extreme preterm birth that may affect pulmonary function,
leading to pulmonary hypertension, mental retardation and
growth retardation, or even cause considerable mortality, leading
to a large health care burden (1, 2). The incidence of BPD
increases annually due to improvement in the survival of
extreme premature infants, but strategies to protect the lung
are limited (1, 3). BPD is characterized by the arrest of alveolar
and pulmonary vascular development. Chorioamnionitis, sepsis,
hyperoxia, and invasive mechanical ventilation may contribute
to this disease (1). Activation, infiltration and delayed clearance
of polymorphonuclear neutrophils (PMNs), the most crucial
innate immune cells, play important roles in the pathogenesis
of BPD (4). Similarly, we found that neutrophil counts and the
neutrophil-to-lymphocyte ratio (NLR) of patients with BPDwere
higher than those in individuals without BPD at birth and at 72 h.
The neutrophil counts and NLR at 72 h of the group with severe
BPD were higher than those in the group with mild BPD, and our
previous study showed that an increase in the NLR at 72 h could
be an early predictor of BPD, especially severe BPD (5).

Neutrophil extracellular traps (NETs) are extracellular, web-
like structures composed of DNA, histones, myeloperoxidase
(MPO), neutrophil elastase (NE), calprotectin, cathelicidins,
defensins, and actin (6). NETs are stimulated by activated
PMNs and can trap and kill invading pathogens under normal
conditions. However, excess NETs formation and delayed NETs
clearance lead to tissue and organ injury. NETs contribute to the
pathogenesis of a variety of immune- and inflammation- related
diseases, such as rheumatoid arthritis (7), acute lung injury (8),
chronic obstructive pulmonary disease (9), and sepsis (10). In our
previous study, we provided evidence that NETs were increased
in hyperoxia-induced BPD rats, and anti-histone antibodies and
heparin could attenuate lung injury by inhibitingNETs formation
(11). Therefore, inhibition of NETs productionmay be a potential
therapeutic approach in BPD.

Vitamin D (VD) is a secosteroid hormone, and its active form
is 1,25(OH)2D3. Recently, VDwas discovered to be an important
modulatory molecule in immunity and inflammation in many
organs (12–14). VD has also been shown to have a critical role
in lung development, as it can increase surfactant synthesis and
promote alveolar epithelial-mesenchymal interactions (15, 16).
VD deficiency at an early stage of life is involved in BPD in
very preterm infants. A low VD level at 24 h of life was shown
to be a risk factor for the development of BPD (17), and a
lower VD level was associated with the increased severity of BPD

Abbreviations: BPD, bronchopulmonary dysplasia; VD, Vitamin

D/1,25(OH)2D3; NETs, neutrophil extracellular traps; RAC, radial alveolar count;

MLI, mean linear intercept; VEGF, vascular endothelial growth factor; PMNs,

polymorphonuclear neutrophils; NLR, neutrophil-to-lymphocyte ratio; VLBWI,

very low birth weight infants; MPO, myeloperoxidase; NE, neutrophil elastase;
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antigen; SLE, systemic lupus erythematosus.

(18). Studies have demonstrated that VD could attenuate lung
injury in an animal model of BPD through the suppression of
interferon-gamma (IFN-γ) production (19) or downregulation of
Toll-like receptor 4 (TLR4) (20); however, the mechanism of VD
in BPD remains poorly understood and uncertain. Because VD
can decrease NETs activity (21), we hypothesized that VD plays a
protective role against BPD by regulating NETs.

In this study, we report alveolar and pulmonary vascular
development and the inflammatory response after VD
supplementation in hyperoxia-induced BPD and the effect
of NETs on this process.

MATERIALS AND METHODS

Animal Model and Study Design
Sprague Dawley rats (12 weeks old, 200–250 g, male:female=1:2
mating) were provided by the Shanghai Laboratory Animal
Center. After natural pregnancy, each female rat was put into
a separate cage. We used an established animal model of BPD
that has been described previously (11). Briefly, after spontaneous
delivery, the neonatal rats were exposed to hyperoxia (90%
oxygen) with a 12-h light/dark cycle for 7 days to mimic BPD.
The oxygen concentration was continuously monitored using
an electronic recorder (EnviteC, Wismar, Germany). The CO2

in the environment was absorbed using soda lime. Dams were
rotated between the hyperoxia and normoxia groups every 24 h.
Cages were regularly opened for 30min every day to replace the
padding and provide clean drinking water and food, to which the
rats had ad libitum access. The hyperoxia group was randomly
divided into three subgroups, and the rats in these subgroups
were treated with 1,25(OH)2D3 (Roche Pharma Ltd., Schweiz)
at 0.5 ng/g or 3 ng/g i.p. once a day for 7 days or administered an
equivalent volume of normal saline. The study was terminated on
postnatal day 14 [P14]. The experimental protocol was approved
by the Experimental Animal Ethics Committee of Wenzhou
Medical University (wydw2019-0957).

Lung and Blood Processing
On P7 and P14, 6 newborn rats from each group were
anesthetized by i.p. injection of 5% chloral hydrate (10 g in
0.05ml), and blood samples then were aseptically collected by
arteria carotis communis puncture and placed into tubes with
sodium citrate (1:10) on ice. The samples were centrifuged at
3,000 rpm for 30min at 4◦C, and the plasma was then stored at
−80◦C. The whole lungs were aseptically collected by an open-
chest procedure. Samples of the right lung were kept at −80◦C.
The left lung was perfused with 4% polyformaldehyde at a
pressure of 20 cm H2O and then fixed in a 4% paraformaldehyde
solution at 4◦C.

Lung Morphometry
Lungs were sectioned at a thickness of 4µm and stained with
hematoxylin and eosin (H&E) to reveal the lung morphometry.
Three random non-overlapping fields in one distal lung section
per rat were utilized for morphometric examinations. The radial
alveolar counts (RAC) were measured according to Cooney and
Thurlbeck, who proposed drawing a perpendicular line from the
center of the most peripheral bronchiole to the pleura or the
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nearest interlobular septum and counting the number of alveoli
transected by this line (22). The mean linear intercept (MLI) was
also determined to evaluate alveolar size (14, 23).

Measurement of Pulmonary Vascular
Development by Immunohistochemistry
Vascular endothelial growth factor (VEGF) expression in the
lung tissue was detected by immunohistochemistry. First, the
sections were deparaffinized in xylene, rehydrated, and rinsed
in deionized water. Then, antigen retrieval was performed by
microwave treatment in EDTA buffer (pH 9.0) for 8min. The
slides were cooled and held at room temperature for 15min.
Sections were washed with phosphate-buffered saline (PBS) (pH
7.4), and endogenous peroxidase activity was blocked in 3%
H2O2 for 25min. Next, the sections were incubated with anti-
VEGF antibody (Ab-1, goat polyclonal antibody, Abcam, USA)
diluted 1:100 in antibody diluent buffer overnight at 4◦C. After
washing with PBS, sections were incubated with biotinylated
HRP-labeled secondary antibodies (GB23301, Servicebio, China).
The sections were visualized using a 3,3′-diaminobenzidine
tetrahydrochloride chromogen kit (K5007, DAKO, Danish), and
the cell nuclei were stained again with hematoxylin. To remove
water, an increasing alcohol series and xylene were used. Finally,
the sections were covered with a slide with neutral gum. From
each of the sections, four different fields were selected under
the microscope (200×), and the average optical density (AOD)
of stained VEGF was determined by Image-Pro Plus 6.0 image
analysis software.

Evaluation of Cytokine Levels
Lung samples were kept at −80◦C until use. The samples
were homogenized on ice and centrifuged at 12,000 rpm for
30min, and the supernatants were collected for analyses. The
tissue levels of tumor necrosis factor-alpha (TNF-α), interleukin-
1Beta (IL-1β) and interleukin-6 (IL-6) were measured with
an ELISA kit (Ray Biotech, Inc., Guangzhou) following the
manufacturer’s instructions.

NETs Detection by Immunofluorescence
Staining
The sections were fixed, stained and imaged to detect NETs. The
sections were incubated with the specific primary antibodies anti-
citrullinated histone 3 (Cit-H3) (1:100; SC51716, Santa Cruz)
and anti-MPO (1:500; GB11224, Google biological) overnight at
4◦C. Then, the sections were incubated with Alexa Fluor 488-
conjugated goat anti-rabbit (1:400; GB21303, Google biological)
and Alexa Fluor Cy3-conjugated goat anti-mouse (1:300;
GB21301, Google biological) secondary antibodies for 1 h. 4′,6-
Diamidino-2-phenylindole (DAPI, G1012, Google biological)
was used to detect DNA. All the slides were visualized using an
Olympus FluoView 500 confocal scanning laser microscope.

Quantification of Plasma NETs
Plasma NETs were detected by the NET-specific markers cell-free
DNA and Cit-H3. The plasma cell-free DNA was quantified with
a Quant-iT PicoGreen dsDNA Assay Kit (Invitrogen, Canada)
following the manufacturer’s protocol. A 50-µl dilution of a

standard solution was added to 96-well plates, and then 100
µl of PicoGreen fluorescent dye was added before incubation
at room temperature away from light for 5min. Fluorescence
intensity was detected by a fluorescence plate reader, and the cell-
free DNA/NETs were quantified. Cit-H3 was measured with a
Cell Death Detection ELISA PLUS kit (Roche, Switzerland). An
appropriately diluted sample (1:500) was added to the plates and
incubated at room temperature for 2 h. Then, the substrate was
added and incubated for 30min, and a chromogenic agent was
added and incubated for 15min. The absorbance at 490 nm and
405 nm was captured, and the difference in OD at 405 nm and
490 nmwas calculated as the relative quantitative value of Cit-H3.

Statistics Analysis
The results are presented as the mean ± standard deviation. The
data were analyzed by SPSS 25.0 (SPSS, Inc., Chicago, IL, USA).
Two-group comparisons were carried out using Student’s t-test.
Comparisons of more than two groups were carried out using
one-way ANOVA. A P < 0.05 indicated statistical significance.

RESULTS

Low-Dose Vitamin D Promoted the Survival
Rate and Attenuated Developmental
Retardation in Hyperoxia-Induced BPD
In vivo treatment of rats with low-dose VD (LVD) (0.5 ng/g)
significantly reduced the mortality caused by hyperoxia, which
was not different from that in the normoxia group. Only 83.3%
of the rats survived hyperoxia, while LVD increased the rate to
96.7%, but the survival rate of rats treated with high-dose VD
(HVD) (3 ng/g) was 73.3% (Figure 1A). The rats in the hyperoxia
group presented with developmental retardation, and a decreased
body weight compared to that of the control groups was observed
from P3. Treatment of the rats with LVD significantly attenuated
this retardation, but treatment of the rats with HVD led to more
severe developmental retardation (Figure 1B).

Low-Dose Vitamin D Improved Alveolar
Development in Hyperoxia-Induced BPD
The lung structures of rats in the hyperoxia group had
characteristics typical of alveolar simplification, as indicated by
enlarged alveoli with decreased terminal alveoli and secondary
septa, as well as irregular alveolar shape and thickening of the
alveolar wall (Figure 2A). In the rescue experiment, the rats
treated with LVD (0.5 ng/g) exhibited improved alveolarization
after hyperoxia exposure, but the rats treated with high-dose
HVD (3 ng/g) did not exhibit attenuated lung injury (Figure 2A).
These effects were achieved by an increase in RAC and a decrease
in MLI (Figure 2B).

Low-Dose Vitamin D Improved Pulmonary
Vascular Development in
Hyperoxia-Induced BPD
Compared to rats in the normoxia group, rats in the hyperoxia
group exhibited decreased lung VEGF expression, as shown
by immunohistochemistry (Figure 3A). The rats treated with
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FIGURE 1 | LVD (0.5 ng/g) treatment increased survival and attenuated developmental retardation in hyperoxia. (A) Kaplan-Meier survival analysis (P < 0.05). (B) The

body weight in different groups. *P < 0.05, compared to normoxia group (N); #P < 0.05, compared to hyperoxia group (H).

LVD exhibited significantly improved pulmonary vascular
development due to significantly increased protein expression of
VEGF (Figure 3B). In contrast, the rats treated withHVDdid not
exhibit increased expression of VEGF under hyperoxia.

Low-Dose Vitamin D Reduced
Inflammation in Hyperoxia-Induced BPD
Exposure of newborn rats from birth to P7 to hyperoxia (90%)
resulted in increased expression of the inflammatory cytokines
TNF-α, IL-1β, and IL-6 in the lung tissues, and LVD treatment
significantly decreased the levels of these inflammatory cytokines,

but the rats administered HVD i.p. did not exhibit an inhibited
inflammation response (Figure 4).

Low-Dose Vitamin D Inhibited NETs
Formation in Hyperoxia-Induced BPD
To investigate the NETs formation and changes, Cit-H3, MPO,
and DNA, which are known markers of NETs formation, in
lung tissues were identified by immunofluorescence staining.
Marked staining for Cit-H3,MPO, andDNAwas observed in rats
under hyperoxia but not rats under normoxia (Figures 5A,B).
The treatment of rats with LVD inhibited NETs formation, as
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FIGURE 2 | LVD (0.5 ng/g) treatment improved alveolarization in hyperoxia-induced BPD. (A) The H&E assessment of lung tissues. Magnification, ×200. (B) The RAC

and MLI value. *P < 0.05, **P < 0.01, compared to normoxia group (N); #P < 0.05,##P < 0.01, compared to hyperoxia group (H). n = 6.

manifested by decreased staining. Plasma cell-free DNA and Cit-
H3 were markedly elevated in the hyperoxia group compared
with the normoxia group (Figures 5C,D). LVD treatment
significantly decreased the level of cell-free DNA and Cit-H3
expression in rats exposed to hyperoxia, but HVD treatment did
not obviously reduce NETs formation.

DISCUSSION

Lung development in extremely preterm infants occurs in the
transition from the canalicular to saccular stages, which results
in a gas-exchange barrier and leaves extremely preterm infants

at high risk of neonatal respiratory distress syndrome (NRDS).
To improve the survival rates of extremely preterm infants, it is
necessary to use supplemental oxygen or mechanical ventilation
for respiratory failure. However, these measures induce further
lung injury and interrupt pulmonary alveolar and vascular
development, eventually contributing to BPD. The incidence of
BPD, as demonstrated by major cohort studies, is 11–50% and
increases with decreased gestational age and birth weight (1).
Due to the increase of in vitro fertilization (IVF), multiple births
and preterm infants in recent years, BPD is associated with high
morbidity and mortality due to its limited effective therapeutics
and thus represents a major public health concern, drawing
attention worldwide.

Frontiers in Pediatrics | www.frontiersin.org 5 July 2020 | Volume 8 | Article 335

https://www.frontiersin.org/journals/pediatrics
https://www.frontiersin.org
https://www.frontiersin.org/journals/pediatrics#articles


Chen et al. Vitamin D Protects Bronchopulmonary dysplasia

FIGURE 3 | LVD (0.5 ng/g) treatment improved lung angiogenesis. (A) The immunohistochemical assessment for VEGF protein. Magnification, ×200. (B) The AOD

value of VEGF. *P < 0.05, compared to normoxia group (N); #P < 0.05, compared to hyperoxia group (H) n = 6.

The pathogenesis of BPD is multifactorial; however,
inflammation is generally believed to be the primary mediator
of lung injury in preterm infants (24). Inflammatory signaling
pathways, such as the TLR4 and NF-κB pathways, were indicated
to be associated with BPD (21, 25). The levels of proinflammatory
cytokines, such as TNF-α, IL-1β, IL-6, and IL-8, are increased,
and the levels of anti-inflammatory cytokines, such as IL-4,
IL-10, IL-12, IL-13, and IL-18, are decreased in BPD (26, 27).
Pulmonary inflammation in BPD is characterized by the presence
of inflammatory cells, PMNs, monocytes, proinflammatory
cytokines, and soluble adhesion molecules (25). Neutrophil
influx into the airways and pulmonary edema formation occur
after exposure to hyperoxia or mechanical ventilation, increasing
the risk of developing BPD. PMNs are activated and adhere to
epithelial cells of alveoli and the endothelium of the pulmonary
vasculature during the inflammatory process, initiating a series of
pulmonary injuries. Activated PMN exosomes play an important
role in chronic inflammatory diseases in the lung and have
been demonstrated as the pathogenic entities causing BPD
(4). Furthermore, neutrophils undergo apoptosis at a slower

pace and cannot be cleared in a timely manner in preterm
neonates, prolonging neutrophil survival and aggravating lung
inflammation and BPD (26).

Activated PMNs expel decondensed chromatin with
embedded inflammatory proteins, known as NETs, which
have been shown to damage tissues and organs in infection
and sterile inflammatory disease upon dysregulation (28).
NETs and histones can directly induce the release of several
proinflammatory cytokines, including TNF-α, IL-1β, and
IL-6 (29). NETs release occurs primarily through a cell
death process termed NETosis (30). Furthermore, excessive
NETosis can compromise cell membrane integrity, disrupt
cell junctions, and kill epithelial and endothelial cells, effects
that have been described in pulmonary diseases such as
pulmonary infection, acute lung injury and COPD (28, 31, 32).
Studies demonstrated that the disruption of NETs by DNase
I administration resulted in decreased disease severity in
mouse models of transplantation-related lung injury (33),
and anti-histone antibodies could improve lung injury and
survival in a mouse model of a lipopolysaccharide-induced
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FIGURE 4 | LVD (0.5 ng/g) treatment reduced proinflammation factors in hyperoxia-induced BPD rats on P7 and P14. *P < 0.05, **P < 0.01, compared to normoxia

group (N); #P < 0.05, ##P < 0.01, compared to hyperoxia group (H) n = 6.

sepsis-like syndrome (34). We previously investigated NETs
in an animal model of BPD and showed that inhibition
of NETs with anti-histone antibodies or heparin reduced
lung injury (11), which also implicated antagonizing the
activation of NETs as a potential therapeutic approach
in BPD.

In recent decades, VD has been shown to be involved in
the modulation of immunity, inflammation, infection, fibrosis
and cancer, in addition to its traditional role in regulating
calcium and phosphorus homeostasis (12, 13, 35). VD can
suppress neutrophil activation, induce antimicrobial peptides,
and reduce the production of inflammatory mediators and
reactive oxygen intermediates in PMNs (36, 37). VD also
plays a crucial role in cellular growth and differentiation,
including the regulation of lung maturation (15). Moreover,
the impact of VD on early lung development and BPD has
become an emerging field of research in recent years (18,
20). Yao et al. (20) suggested that VD attenuated hyperoxia-
induced lung injury by protecting the integrity of the lung
structure, decreasing extracellular matrix deposition, inhibiting
inflammation, and antagonizing the activation of TLR4. Kose
et al. (14) demonstrated that treatment with VD protected
against hyperoxia-induced lung injury by decreasing MLI and
apoptosis and increasing the proliferating cell nuclear antigen
(PCNA) index. Liu et al. (19) suggested that supplementation
with VD could enhance alveolar development in an LPS-induced
BPD rat model through the suppression of IFN-γ production.
However, whether other regulatory mechanisms are involved in
VD as a treatment in hyperoxia-induced lung injury remains
unknown. Moreover, VD was proven to have the capacity to

inhibit the formation of phagocytic oxidase (Phox), which is a
key enzyme in the formation of NETs (38). Handono et al. (21)
demonstrated that VD treatment could decrease NETs activity
in patients with systemic lupus erythematosus (SLE) to prevent
endothelial damage.

In our study, we found that newborn rats exposed to hyperoxia
had increased mortality, decreased body weight, and restricted
lung development, resulting in fewer enlarged alveolar air spaces,
the loss of lung capillaries, and increased inflammatory factors.
We began our investigation with an evaluation of lung tissue
and plasma samples for the NETs markers MPO, Cit-H3, and
cell-free DNA and found that their levels were significantly
elevated in hyperoxia-induced BPD rats. At the same time,
treatment with LVD increased the survival rate, attenuated
developmental retardation, improved alveolar and lung vascular
growth by increasing the RAC, decreasing MLI, upregulating
VEGF expression, reducing the production of inflammatory
cytokines, and inhibiting the formation of NETs. However,
treatment with HVD did not significantly attenuate lung injury
or NETs and even led to more severe developmental retardation
and a higher mortality rate. Interestingly, Kose et al. (14) found
that 1,25(OH)2D3 has more therapeutic potential at higher
dosages (3 ng/g/day and 5 ng/g/day) than at a dosage of 1
ng/g/day. In contrast, we observed that LVD, but not HVD,
had therapeutic effects. Furthermore, we demonstrated that LVD
protected against hyperoxia-induced lung injury by inhibiting
the formation of NETs, which has not been reported in previous
studies. We believe that LVD inhibit NETs and further inhibit the
release of proinflammatory factors, thus improving lung injury
caused by hyperoxia, which is part of the mechanism of the
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FIGURE 5 | LVD (0.5 ng/g) treatment reduced NETs formation in hyperoxia-induced BPD rats (A,B). The NETs formation identified by immunofluorescence staining.

Magnification, ×200. (C) The expressions of free DNA in plasma. (D) The expressions of circulating histones. *P < 0.05, compared to normoxia group (N); #P < 0.05,

compared to hyperoxia group (H) n = 6.

treatment of BPD with LVD. We also observed weight loss as
a side effect of HVD. Abbas (39) suggested that VD regulates
adipogenesis at various stages of the differentiation process and

certain molecular factors. Therefore, we speculate that VD affects
the key genes in adipose metabolism and lung development,
which will be confirmed in our future studies.
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This study has several limitations. BPD is a complex,
multifactorial disease that may only be partially explained by the
effects of hyperoxia exposure, and antenatal infection also needs
to be considered in a future study. In addition, further work is
needed to determine themost effective dosage of VD in an animal
model or in a clinical setting. Finally, future studies are needed to
address the effects of VD exposure on metabolic functions, which
may play an important role during lung development.

In conclusion, administration of LVD (0.5 ng/g) increased the
survival rate, attenuated developmental retardation, improved
alveolarization and pulmonary vascular development, and
alleviated inflammation in hyperoxia-induced BPD partially by
inhibiting NETs.

What Is Known

Bronchopulmonary dysplasia (BPD) is a severe complication in
extreme preterm infants. Vitamin D (VD) has anti-inflammatory
properties, promotes lung growth, and may have a therapeutic
effect on BPD. In our previous study, neutrophil extracellular
traps (NETs) overexpression was demonstrated to be involved in
the pathogenesis of BPD.

What Is New

In the present study, we found that low-dose VD increased
the survival rate, attenuated developmental retardation, and
improved alveolarization and pulmonary vascularization arrest
in hyperoxia-induced BPD partially by inhibiting NETs.
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