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Objectives: Biliary atresia (BA) is a devastating pediatric liver disease. Early diagnosis
is important for timely intervention and better prognosis. Using clinical parameters
for non-invasive and efficient BA diagnosis, we aimed to establish an artificial neural
network (ANN).

Methods: A total of 2,384 obstructive jaundice patients from 2012 to 2017 and their
137 clinical parameters were screened for eligibility. A standard binary classification
feed-forward ANN was employed. The network was trained and validated for accuracy.
Gamma-glutamyl transpeptidase (GGT) level was used as an independent predictor and
a comparison to assess the network effectiveness.

Results: We included 46 parameters and 1,452 patients for ANN modeling. Total
bilirubin, direct bilirubin, and GGT were the most significant indicators. The network
consisted of an input layer, 3 hidden layers with 12 neurons each, and an output layer.
The network showed good predictive property with a high area under curve (AUC) (0.967,
sensitivity 97.2% and specificity 91.0%). Five-fold cross validation showed the mean
accuracy for training data of 93.2% and for validation data of 88.6%.

Conclusions: The high accuracy and efficiency demonstrated by the ANN model is
promising in the noninvasive diagnosis of BA and could be considered as in a low-cost
and independent expert diagnosis system.

Keywords: biliary atresia, obstructive jaundice, diagnosis, gamma-glutamyl transpeptidase, non-invasive

INTRODUCTION

Biliary atresia (BA), a devastating pediatric liver disease, is the major cause of liver transplantation
in children (1). About 2 weeks after birth, patients start presenting clinical symptoms including
progressive jaundice, acholic stool, growth retardation, and rapid serum bilirubin elevation.
Cholangiography and liver biopsy pathology usually show intrahepatic and extrahepatic bile duct
obstruction, hilar fiber block, liver inflammation, and fibrosis (2). Surgical intervention, mainly
via Kasai portoenterostomy, is the only way to reestablish bile flow in BA (3). However, many BA
patients still suffer from progressive liver fibrosis after the Kasai procedure and will eventually need
liver transplantation (4).

Incidence rates of BA vary globally, with East Asia having the highest incidence of BA with a
rate of about 1.7-3.7 in 10,000 live births (5, 6). While the etiology of BA is still poorly understood,
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timely and proper surgical intervention is widely accepted as
important for management (7, 8). A Kasai procedure performed
within 60 days of birth contributes to a better prognosis in BA
patients (9-11). Currently, diagnosis of BA is done by surgical
cholangiography and liver biopsy, both of which are invasive
procedures with prolonged recovery times.

Therefore, it is important to establish an accurate and non-
invasive modality for the early diagnosis of BA.

The artificial neural network (ANN) is a non-linear regression
model and can be used in a computer-aided diagnosis system
(12). An ANN model based on a combination of non-invasive
clinical parameters from BA patients and their differential
diagnosis was developed. This study aimed to evaluate its
effectiveness in BA diagnosis.

METHODS

Patient Inclusion and Data Collection

Patients with obstructive jaundice patients who were suspected
of BA, admitted to the surgical department of the Children’s
Hospital of Fudan University, and underwent surgical
cholangiography from the 2nd of January 2012 to the 30th of
November 2017 were enrolled for screening. Patient information
and results from laboratory tests were retrospectively obtained
from the medical records. This study was approved by the Ethics
Committee of the Children’s Hospital of Fudan University.
Informed consent was obtained from the legal guardians of all
patients before enrollment in the study.

Basic information was obtained from all patients upon
admission including date of birth, sex, body weight, gestational
history, amalgamated malformation, and blood type. Laboratory
tests including routine blood tests, urine tests, fecal tests,
biochemical tests, coagulation function test, arterial blood gas
analysis, TORCH and EBV screening, and hepatitis screening
were performed 1-2 days before surgical cholangiography.
Abdominal B ultrasound for liver, gallbladder, and spleen was
also performed as imaging examination parameter.

Data Processing
Altogether, 137 parameters (6 basic information parameters,
130 laboratory test parameters, and 1 imaging examination
parameter, shown in Supplementary Table 1) were screened for
data integrity. Parameters with a missing data ratio of <10%
were included for further analyses. Afterward, clinical parameters
from all enrolled patients were screened for data integrity. Only
patients with full accessible data of the included parameters were
included for ANN modeling (Figure 1).

Included patients were divided into two groups, the BA
group and the non-BA group. Diagnosis was made by surgical
cholangiography and liver biopsy pathology during surgery.

ANN Modeling

In this scenario, a standard binary classification problem was
introduced, that is, whether the patient has BA or not. To
address this, a standard binary classification feed-forward ANN
model was applied. The ANN was developed using the Python
programming language, with a combination of Keras and

TensorFlow. The network consisted of an input layer, three
hidden layers, and an output layer with one neuron (Figure 2).
Each neuron contained a series of weights and biases which
were multiplied, added to the inputs, and then passed through
an activation function to determine what numerical value was
passed from a given neuron to the next layer or output from the
network. These weights and biases were optimized to obtain the
best performance from the network for BA prediction.

All binary inputs were fed to the network as either 0 or 1,
while continuous inputs were transformed, such that the mean
of the data set was shifted to 0 and the standard deviation was
normalized to 1. The initial weights on all the neurons were
drawn randomly. For the hidden layer, a rectified linear unit
activation function was used, while a sigmoid activation function
was employed for the output layer. The Adam optimizer was
used to optimize the weights and biases. Finally, a “loss function”
was defined to assess the performance of the network. For this,
binary cross-entropy was used, which is standard for binary
classification problems. After automatic parameter tuning, the
network was trained using batch sizes of 20 and optimized over
300 epochs. To limit overfitting of the network, the dropout
method was employed, with 0.4 as the dropout rate for each
hidden layer.

Accuracy, along with a five-fold cross validation, was used
to evaluate the network. The mean values for accuracy in both
training data and validation data were reported. Using ROC
curves, GGT levels were used as an independent predictor to
assess the predicted probability in all included subjects.

Statistical Analysis

Continuous data were presented as means =+ standard deviation
(SD), and qualitative variable data were presented as percentages.
The Wilcoxon rank-sum test and chi-square test were used for
comparisons between the two groups as appropriate. Area under
the curve (AUC), sensitivity, specificity, positive predictive value
(PPV), and negative predictive value (NPV) were used to describe
the predictive properties. A P < 0.05 was considered to be
statistically significant. Statistical analysis was performed using
the Python 3.6 and R software 3.5 programs.

RESULTS

Patient Information and Parameter

Inclusion

After data screening, 46 qualified parameters were included and
analyzed. A total of 2,384 patients were screened for eligibility.
Of this total, the 1,452 patients who had full data accessibility
for all 46 analyzed parameters were included for further analyses
and ANN modeling. Among the included patients, 1,274 (87.7%)
of them were diagnosed with BA, while 178 (12.3%) were not
(Figure 1). The diseases of non-BA patients included cholestasis,
infant hepatitis syndrome, bile duct dysplasia, progressive
familial intrahepatic cholestasis (PFIC), and Alagille syndrome.
All the non-BA patients were transferred to and treated in the
Internal Medicine Department.
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FIGURE 1 | Data screening and processing for ANN modeling and training.

Parameter Analyses
The 46 included parameters were each compared between the
BA and non-BA groups (shown in Supplementary Table 2).
Compared to the reference values of healthy population, 10
parameters were lower in BA patients, namely, Hgb, Hct,
NEUT%, TP, ALB, GLB, PA-Y, CHEW, CRES, and arterial
blood pH. This indicated a deficiency in nutrition status and
compromised immunity. On the other hand, eight parameters
were higher in BA patients, namely, TBIL, DBIL, AST, ALP, GGT,
TBA, A/G, and APTT, indicating impaired liver function and a
disorder in coagulation.

There was a significantly higher proportion of female patients
in the BA group than in the non-BA group. Of the other 16
clinical parameters with significant statistical difference between
the two groups, five were related to routine blood function, nine
were biochemical tests, one was related to coagulation function,
and one was related to hepatitis. Considering the difference in
mean values between both groups, its clinical significance, and
its comparison to reference values in the healthy populations, the
GGT level was the most significant parameter and was used as
an independent predictor (BA 772.22 + 604.41 U/L vs. non-BA
316.80 % 380.45 U/L, p < 0.0001; reference value 8-57 U/L).

ANN Modeling

All the 46 parameters were included as variables to the input
layer, the three hidden layers consisting of 12 neurons each, and
the output layer consisting of one neuron. The network showed
good predictive property, with a high AUC (0.967) and a cutoft
point at 0.8. The sensitivity of the network was 97.2% and the
specificity was 91.0%. Examining the diagnostic pattern of GGT
alone, the AUC was 0.793 with a cutoff point at 238.5 U/L. The
sensitivity of a single GGT predictor was 65.7% and its specificity
was 81.8%. The five-fold cross validation for the ANN model
revealed that the mean accuracy (95% CI) for the training data
was 93.2% (92.5%—93.9%), while the mean accuracy (95% CI) for
the validation data was 88.6% (88.2%—88.9%). The ROC curve
(Figure 3) showed the predictive properties of both the network
and GGT as a single predictor.

DISCUSSION

In this study, we built up an ANN model for the non-invasive
diagnosis of BA, based on 46 clinical parameters from 1,274
BA patients and 178 non-BA infants. Compared to GGT as an
independent predictor, this network displayed a good predictive
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FIGURE 2 | ANN modeling procedure and structure.
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FIGURE 3 | The receiver operating characteristic (ROC) curve of ANN model
and comparison with single GGT predictor.

property with a high AUC value (0.967), a sensitivity of 97.2%,
and a specificity of 91.0%.

BA requires an accurate and efficient early diagnosis for timely
and proper surgical intervention (7). Currently, the diagnosis of
BA is based on surgical cholangiography and liver biopsy. These

are invasive procedures with lengthy recovery times. As a result,
the diagnostic process is prolonged and requires a significant
period of post-procedural care (13). Although several diagnostic
factors and prediction models have been considered for effective
diagnosis of BA, they either have lacked satisfactory sensitivity
and specificity or are not readily applicable or accessible in the
hospital setting (14-17).

The ANN, a subfield of artificial intelligence, has shown
promise in disease prediction, diagnosis, and classification.
Compared to traditional diagnostic models, the ANN has the
advantages of self-learning and massive data processing (18,
19). It simulates the animal nervous system with primary
elements called artificial neurons (ANs). The ANs are placed in
several layers; the input layer receives the variables, which are
processed to subsequent hidden layers consecutively, until the
output layer reaches a final prediction (20). The interactions
between each layer are dependent on synaptic weights, which
are determined by an iterative processing of the input variables
(21). Using different mathematical methods, the synaptic weights
are gradually adjusted to achieve a better predictive performance
during the training and validation process (22). Therefore, the
ANN can be self-generated even with small samples, and it is
capable of handling a large quantity of highly complex data (20).

In our study, all clinical information and routine tests
collected from the patients upon admission to our department
and before surgical intervention were screened. With a
quick feedback of results, all the parameters were obtained
easily, resulting in a non-invasive, and efficient diagnostic
model. Furthermore, sophisticated equipment is not required
to obtain these parameters, which can also be measured
in various hospital settings. As a result, the application of
this network is easy and practical. The majority of the 46
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included parameters are indicators of nutrition status and liver
function, in accordance with previous findings in BA patients
(6, 8). The most affected indicator in BA patients is liver
function, usually presenting as increased inflammation and
fibrosis. Therefore, the impaired nutrition status, compromised
immunity, and coagulative dysfunction displayed are likely
consequences of liver dysfunction. The differences between the
reference values of healthy population and non-BA obstructive
jaundice infants in our study were considered. Total bilirubin,
especially direct bilirubin, and GGT were the parameters
with the most significantly different values. These values are
indications of a more serious obstruction of the bile duct
system, as well as liver damage and dysfunction. While other
affected parameters are related to nutrition, indicators of
immunity and coagulation exist in both BA and non-BA
jaundice patients.

GGT is an indicator for liver dysfunction. It is elevated
in liver damage, especially in bile duct obstruction.
GGT has been demonstrated to be a highly indicative
independent predictor for BA diagnosis and prognosis
(23, 24). Compared to GGT alone, our ANN model
for BA diagnosis showed remarkable effectiveness, with
higher sensitivity and specificity. Moreover, our network
included a greater number of parameters statistically selected
from multiple clinical tests, regardless of their empirical
values in BA diagnosis. Since the ANN is self-promoting
with the growth of data volume, and not affected by the
interactions between different parameters (19), we believe our
network is more objective and advanced than other linear
prediction models.

However, our ANN model has some limitations. First, our
variables were selected from all parameters in the medical
records from the past few years and excluded large amounts
of parameters with low data integrity. As a result, several
potentially important factors may have been excluded prior to
the ANN modeling. Therefore, due to the complex learning
processes involved in the model development, it may be
impossible to figure out what parameters exist in the hidden
layers (the so-called black box) or to reproduce the same
ANN model (12, 18). Although the dropout method was
applied to avoid bias and overfitting, and our network
was validated for stability, there is risk when applying this
network to a larger data set from multiple institutions (25).
Therefore, future validation and adjustment with integral and
stable data from multiple institutions would further verify the
predictive ability of this ANN model and its application in
BA diagnosis.

For further applications of this ANN model, adjustment
would be needed when validating and applying it in larger
populations. Because of its property of self-learning and bias
control, we believe that the ANN model would become more
stable and accurate after synthesizing larger amount of data.
Furthermore, this study provided a proof of concept that artificial
intelligence could be used in BA management and individualized

treatment for early detection and differential diagnosis and
potentially for prognosis predictions, such as risk factor detection
and survival evaluation.

In conclusion, we established an ANN model based on
multiple non-invasive parameters for BA diagnosis. This
network provided accurate and efficient diagnosis for BA
patients. It also provides an opportunity for independent
expert diagnosis for resource-limited communities in
the future.
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