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Pediatric obesity is increasing in prevalence and is frequently an antecedent to

adult obesity and adult obesity-associated morbidities such as atherosclerosis, type

II diabetes, and chronic metabolic syndrome. Endothelial cell activation, one aspect

of inflammation, is present in the early stages of atherosclerosis, often prior to

the onset of symptoms. Endothelial activation is a pathological condition in which

vasoconstricting, pro-thrombotic, and proliferative mediators predominate protective

vasodilating, anti-thrombogenic, and anti-mitogenic mediators. Many studies report poor

outcomes among obese children with systemic endothelial activation. Likewise, the link

between childhood obesity and poor outcomes in critical illness is well-established.

However, the link between obesity and severity of endothelial activation specifically in

the setting of critical illness is largely unstudied. Although endothelial cell activation is

believed to worsen disease in critically ill children, the nature and extent of this response

is poorly understood due to the difficulty in measuring endothelial cell dysfunction and

destruction. Based on the data available for the obese, asymptomatic population and

the obese, critically ill population, the authors posit that obesity, and obesity-associated

chronic inflammation, including oxidative stress and insulin resistance, may contribute

to endothelial activation and associated worse outcomes among critically ill children. A

research agenda to examine this hypothesis is suggested.
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INTRODUCTION

Childhood obesity is a worldwide epidemic, resulting in a significant predisposition to adult obesity
and increased cardiovascular morbidity and mortality (1–3). Endothelial activation (EA) consists
of endothelial cell (EC) dysfunction, destruction and impaired repair and represents, in part, a
pathological imbalance between endothelium-derived contracting and relaxing factors (4, 5). More
importantly, it is an early and often asymptomatic sign of atherosclerotic disease in obese patients
(6). Early EA detection may identify children at risk of developing cardiovascular disease so that
interventions can be implemented to prevent and/or reduce disease progression and to mitigate
exaggerated acute EA in acute or critical illness.

NORMAL ENDOTHELIAL FUNCTION

Healthy endothelium responds to mechanical, neurogenic, and chemical signals with factors
that regulate vascular tone, platelet aggregation, leukocyte adhesion and migration, mediator
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production, and smoothmuscle cell proliferation (7). Endothelial
vasoactive molecules dilate or constrict the microvasculature to
balance tissue oxygen supply and metabolic demand, particularly
in times of illness or injury.

Nitric oxide (NO), produced from the amino acid L-
arginine through the action of constitutive endothelial NO
synthase (eNOS) and cofactors such as tetrahydrobiopterin, is
of central importance in all vascular beds (8). NO diffuses
across the EC membrane to activate vessel wall smooth
muscle cell guanylate cyclase to increase cyclic guanosine
monophosphate concentrations with resultant smooth muscle
relaxation. In healthy endothelium, eNOS is activated by
adenosine, bradykinin, serotonin (produced during platelet
aggregation), and vascular endothelial growth factor (VEGF)
(stimulated by hypoxia) (9). Endothelium produced prostacyclin
also mediates vasodilation (10).

Normal endothelium also generates vasoconstrictors
including endothelin-1 (ET-1) and the conversion of EC-secreted
angiotensin I to angiotensin II (ATII) by angiotensin-converting
enzyme (ACE).

NO maintains endothelial quiescence by inhibiting
inflammation, cellular proliferation, and thrombosis (11).
Mechanically, laminar blood flow appears to enhance EC
survival by suppressing apoptosis. Conversely, turbulent flow
can trigger EC division (12–14). The endothelial glycocalyx is a
network of membrane-bound proteoglycans and glycoproteins
covering the endothelium lumen that integrates endothelium-
and plasma-derived soluble molecules. Over the past decade,
the role of the glycocalyx in vascular mechanotransduction,
hemostasis, signaling, and blood cell–vessel wall interactions
has been elucidated (15). Neurogenically, endothelial function
is modulated by the “gateway reflex,” or neural circuits
regulating entry of immune cells to the CNS by modulating
the vascular EC barrier. The gateway reflex phenomenon
also contributes to recruitment of immune cells to other
tissues (16).

ENDOTHELIAL ACTIVATION

While EA is often a normal immune response to insult or
injury, it may become pathologic. This switch is characterized
by three major components: EC dysfunction, destruction,
and impaired repair. Based on the data summarized below
from studies in obese, asymptomatic and obese, critically ill
populations, it is plausible that obesity and obesity-associated
chronic inflammation, oxidative stress, and insulin resistance
(IR) may intensify EA and, in turn, contribute to worse outcomes
among obese, critically ill children (17). Extreme nutrient excess
may cause obese adipocyte cell death resulting in cytokine
and fatty acid release. These may be sensed by inflammatory
kinases, or Toll-like receptors (18). Kinases downstream of
these receptors [c-jun N-terminal kinase (JNK), protein kinase
R (PKR)] can, in turn, become activated and inhibit insulin
signaling via phosphorylation of insulin receptor substrate 1
(IRS-1), thereby blocking insulin action and further inhibiting
energy metabolism (19–21).

Insulin modulates vascular tone by regulating expression
of eNOS gene in ECs, mediated by the activation of
phosphatidylinositol-3 kinase (PI-3K). Activation of protein
kinases such as PKR, as in IR, may inhibit PI-3K activity
and eNOS expression (22). Superimposition of critical illness
such as sepsis, acute respiratory distress syndrome (ARDS),
multiple-organ dysfunction syndrome (MODS), trauma,
and cardiopulmonary bypass (CPB) for cardiac surgery may
compound the effects of obesity by further overwhelming these
pathways (17).

Endothelial Cell Dysfunction
EC dysfunction constitutes a shift to a predominant generation
of vasoconstrictors, including ET-1 and ATII and enhanced
reduction-oxygenation (redox) signaling, resulting in reactive
oxygen species (ROS), or free radicals that cause oxidative stress
(5, 18). Superoxide anion (O−

2 ) is generated and converted to
hydrogen peroxide (H2O2) by superoxide dismutase (23, 24).
H2O2 stimulates gene transcription and protease activation (25).
Normally a key enzyme in NO-associated processes, eNOS
may generate ROS like H2O2 and O−

2 in the absence of
L-arginine and tetrahydrobiopterin, respectively. This shift is
referred to as “eNOS uncoupling,” a hallmark of pathologic EA
(8). Obese patients live in a persistent state of relatively high
ROS production and, consequently, a perpetual state of EA (26).
In critical illness, decreased substrate delivery, and hypoxemia
interrupt oxidative phosphorylation and more ROS may be
produced, leading to further EA and inflammation (27–30).

Endothelial Cell Destruction
In the setting of cardiovascular risk factors, EC dysfunction may
progress to destruction and loss of vessel endothelial integrity.
For example, after ischemia/reperfusion, ECs swell and detach
from the basement membrane (31). These cells suffer oxidative
stress, leukocytes adhere/transmigrate, and vascular permeability
increases (32–34). In animal models, ischemia/reperfusion leads
to shedding of glycosaminoglycan chains and reduced glycocalyx
thickness (35).

EC apoptosis results in circulation of both whole ECs and EC
microparticles in the periphery as well as the coronary arteries.
They are indicative of atherosclerosis or other inflammation-
associated endothelial damage and have been independently
quantified in both obese and critically ill individuals (36–40). The
nature and extent of EC damage in obese, critically ill patients
needs focused study.

Impaired Endothelial Cell Repair
Endothelial repair in response to injury or inflammation is crucial
to vascular health (41). The key player in endothelial repair is
the circulating endothelial progenitor cell (EPC). After release
from the bone marrow, EPCs can differentiate into mature
ECs. Paradoxically, EPCs are released from the bone marrow in
response to NO. Among patients with impaired NO production
(e.g., obesity), EA is further exacerbated (42). Interventions
aimed at ameliorating cardiovascular risk factors such as exercise
and statins increase EPC release and differentiation (39, 43,
44). Obesity interferes with both EPC mobilization and EPC
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function, and the number of risk factors for coronary artery
disease is inversely related to the number and migratory activity
of EPCs (39). Circulating EPCs, in an inflammatory milieu, can
also differentiate into myeloid cells, such as macrophages, a
key component of EA and atherosclerosis (45). It follows that
a combination of obesity (chronic nutrient excess, metabolic
pathway overload, and inflammation) and critical illness (acute
inflammation) may exaggerate macrophage differentiation and
pathologic EA.

Measuring Endothelial Function
The most commonly used non-invasive research method
for assessing endothelial function is brachial artery diameter
measurement using ultrasound before and after several minutes
of blood flow occlusion. This change in arterial diameter
is referred to as flow-mediated vasodilation (FMD), and the
increase in blood flow as “reactive hyperemia.” When performed
properly, this method correlates strongly with coronary artery
endothelial function (46, 47).

Direct products of EA can be measured but currently have
limited clinical application due to lack of specificity, assay
availability, and performance variability. These include measures
of NO bioavailability, adhesion molecules, inflammatory
cytokines, mediators of thrombosis, and markers of endothelial
damage and repair (EPCs). Despite the lack of mechanistic
specificity, these serummarkers remain the most frequently used
research measures of endothelial function in inflammatory states
including critical illness and obesity (48–50).

CHILDHOOD OBESITY AND
INFLAMMATION

Childhood obesity is particularly problematic as it independently
contributes to adult morbidity (2, 51–53). Unlike obese adults,
EA in obese children often silently affects the microcirculation
rather than manifesting in the macrocirculation. Obese children
rarely have atherosclerotic lesions and many have not yet
developed type II diabetes or hypertension (46). Additionally,
puberty-related pro-oxidative and pro-inflammatory changes
and relative IR may impact the natural history of EA in obese
children (54–56).

Obesity results in “metaflammation,” a chronic, low-grade
inflammatory response to excess energy substrate by metabolic
cells including adipocytes, hepatocytes, myocytes, pancreatic
islets of Langerhans, and astrocytes, and neurons (57). Immune
cells activated by metabolic cell inflammatory signaling
exacerbate tissue inflammation.

OBESITY-ASSOCIATED ENDOTHELIAL
ACTIVATION

EA is an early and often asymptomatic sign of atherosclerotic
disease in obese children and adults (46). Many of the pro-
inflammatory and pro-atherogenic markers associated with
vascular disease in adults have also been demonstrated in obese,
otherwise healthy children.

Obese, Asymptomatic Children
Although atherosclerotic lesions are rare in children, obesity has
a major impact on the development of EA and atherosclerosis.
Schlager et al. measured microvascular function in obese,
normotensive children with FMD. Compared to non-obese
controls, obese children had higher peak perfusion during
hyperemia and longer recovery time, indicative of impaired
endothelium-dependent microcirculation vasodilation following
ischemia and can be interpreted as an early sign of EA in
obese children (58). In contrast, a previous study performed
in lean, overweight and obese, hypertensive adolescents
found no significant differences in endothelium-dependent
microvascular reactivity among the three groups, suggesting that
a blood pressure rise likely precedes endothelium-dependent
microvascular function deterioration in juvenile essential
hypertension pathogenesis (59). Thus, while obesity is strongly
associated with hypertension, it is unclear whether EA precedes
or is a consequence of other processes.

Chronic, low-grade inflammation, and resultant oxidative
stress trigger early vascular damage in obese children. Associating
markers of inflammation and oxidative stress with functional
assessments of the vasculature provides an opportunity to
understand mechanisms that may be targeted to mitigate
cardiovascular disease. Studies have shown an inverse correlation
between FMD and inflammatory markers [C-reactive protein
(CRP), Interleukin (IL)-6, and Intercellular adhesion molecule
(ICAM)-1 levels] in obese, otherwise healthy children (60–62).

Critical Illness
Several studies reported associations between poor outcomes
and EA in critically ill children (63–67). Likewise, the link
between childhood obesity and poor outcomes in critical illness
is well-established (68–71). However, the link between obesity
and EA severity specifically in the setting of critical illness is
largely unstudied. Although EA may worsen disease in critically
ill children, the nature and extent of this response is poorly
understood due to the difficulty in measuring EC dysfunction
and destruction. Based on the data available in the obese,
asymptomatic population and the obese, critically ill population,
it follows that worse EA-related outcomes in the PICU may, at
least in part, be associated with obesity and associated chronic
inflammation, oxidative stress and IR (Figure 1).

ECs act as targets and amplifiers of the cytokine signaling
that characterizes critical illness including sepsis, ARDS, MODS,
and CPB. The etiology of progression to MODS in the ICU is
often unknown. However, the presence of ECs within every organ
system suggests a pathophysiologic role (72). Adhesionmolecules
such as E-selectin are significantly higher in septic children with
>3 failed organ systems compared to those with ≤3 failed organ
systems, suggesting a role in EA (73). Pro-inflammatory markers,
specifically IL-1, IL-6, and tumor necrosis factor, activate ECs to
produce and express adhesion molecules (ICAM-1, E-selectin)
to promote leukocyte motility and adhesion in the systemic
inflammatory response (17). Derangements in endothelial and
inflammatory biomarkers (higher VEGF, thrombomodulin, CRP,
IL-6, IL-8) were shown in children upon presentation to
the ICU with extrapulmonary sepsis with and without ARDS
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FIGURE 1 | Obesity as a risk factor for chronic endothelial (microvascular) stress and adverse outcomes following critical illness. Obesity, secondary to excess nutrient

intake, leads to a state of chronic inflammation [increased expression of pro-inflammatory mediators like Interleukin (IL)-6 and IL-8 and adhesion molecules like

Intercellular adhesion molecule (ICAM)-1, Vascular cell adhesion molecule (VCAM) and E-selectin, enhanced oxidative stress (superoxide anion and hydrogen peroxide

production), and insulin resistance]. These obesity-related effects lead to endothelial activation, including endothelial cell dysfunction (decreased production of

vasodilatory mediators such as nitric oxide and prostaglandins E and I, and increased release of endothelin-1), cell destruction (resulting in release of endothelial

microparticles), and impaired repair, in part, as a result of modulated endothelial progenitor cell mobilization. Obesity-related endothelial activation is associated with

worse clinical outcomes. Superimposition of critical illness on a chronic state of endothelial activation further facilitates risk for adverse outcomes.

(74). Lastly, obesity-related EA among critically ill children
with malignancies is largely unstudied. When not acutely ill,
children with malignancies demonstrate worse FMD compared
to controls. Lower FMD scores correlated with serum biomarkers
of EA and increased waist circumference, pointing to adiposity as
a potential exacerbating factor in critical illness (75).

Congenital Heart Disease and
Cardiopulmonary Bypass
The impact of obesity on endothelial function and long-term
cardiovascular health may be particularly important to children
with preexisting acquired or congenital heart disease (CHD).
Systemic and pulmonary vascular EA are well-documented in
CHD and contribute to a lifetime of increased risk of mortality
and morbidity as poor exercise capacity, ventricular dysfunction,
and development of thromboembolic disease (76–78). A recent
study estimated an overweight/obesity prevalence of 30% among
single ventricular patients 5 years after undergoing a Fontan (79).
Importantly, increased adiposity is independently associated with
worse endothelial function and worse functional outcomes after
the Fontan operation (80, 81). Understanding the relationship
between vascular function and functional outcomes and the
specific role of obesity is an important next step.

Low cardiac output syndrome (LCOS) following CPB in
repair of CHD is characterized by a transient decrease in
systemic perfusion secondary to myocardial dysfunction and

is a manifestation of EA. LCOS contributes to postoperative
morbidity including prolonged mechanical ventilation and
hospitalization, increased risk of infection, and long-term adverse
neurologic sequelae (82). Factors involved in LCOS include
activation of inflammatory and complement cascades, altered
blood flow, and ischemia-reperfusion injury (83).

CPB increases vasoconstrictors that contribute to vascular
reactivity and decreased microcirculatory flow and result in
myocardial injury. Additionally, CPB-induced EA shifts the
anticoagulant phenotype to procoagulant. EC surface tissue
factor expression increases, leading to deposition of fibrin in the
microcirculation. Procoagulant properties are further propagated
by the simultaneous downregulation of thrombomodulin (84).
Lastly, CPB-associated EA stimulates surface protein expression
that facilitates leukocyte-EC interactions. P-selectin release
facilitates the strong bond between neutrophil surface integrins
and adhesion molecules on the EA surface. This cascade precedes
neutrophil infiltration into the perivascular tissue and, ultimately,
the production and release of ROS and proteases that mediate
cellular and end-organ damage (85).

THERAPIES

Determining nutritional goals for obese, critically ill children
remains challenging, as commonly used equations to estimate
caloric needs frequently under- or overestimate energy
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requirements (86). Overfeeding consequences include prolonged
mechanical ventilation and hospitalization and hyperglycemia
(87). The American Society for Parenteral and Enteral Nutrition
recommends direct measurement of resting energy requirements
utilizing indirect calorimetry. However, patients must be at
“steady state” (no ongoing titration of oxygen and/or inotropes)
to achieve accurate measurements, making this recommendation
difficult to implement (88). Treatment options specifically for
the obese child with presumed chronic inflammation and EA
are outlined below. These treatments have the potential to
reverse chronic EA and/or dampen acute EA in the setting of
critical illness.

Exercise
Physical activity is promising as a therapeutic tool in obese
children. Multiple studies have shown an improvement in FMD
accompanied by a decrease in BMI with exercise interventions
(89–91). Moreover, FMD may improve even in the absence
of fat loss or decrease in BMI (92). These findings are likely
explained by increased NO bioavailability due to exercise-
induced shear stress (93). Importantly, exercise interventions that
improved FMD without weight loss failed to decrease markers
of inflammation and/or oxidative stress (94), underscoring the
central role of fat mass in the inflammatory cascade. Watts
et al. highlighted the importance of long-term, uninterrupted
exercise in obese children by demonstrating a reversal of exercise-
associated improvement in FMD after just 6 weeks of inactivity
(95). In summary, an exercise program, even without dietary
modifications, can improve baseline endothelial function, and
may decrease vulnerability in the event of critical illness among
overweight/obese children (89).

Statins
Two large, adult trials reported improvement in endothelial
function with the use of cholesterol-lowering therapy (96, 97).
HMG-CoA reductase inhibitors (statins) exhibit antioxidant,
anti-inflammatory, and NO restorative properties (98), and
beneficial effect on endothelial function has been shown in
a broad range of patients (99–101). Statin therapy is now a
first-line pharmacologic intervention for children with severe
dyslipidemias failing treatment with diet and exercise alone (102).
Statins also improve endothelial function in hypertension and
hypercholesterolemia and may be useful alone or in combination
with other agents.

L-Citrulline
L-citrulline is a naturally occurring amino acid and first
intermediate in the urea cycle. Once produced, citrulline is
transported from the mitochondria to the cytoplasm and
converted to arginine, the precursor for NO. In multiple
observational and clinical studies, plasma levels of citrulline, and
arginine drop precipitously in CPB and do not recover for up
to 48 h. In a recent study, CPB significantly decreased several
urea cycle intermediates and NO metabolites after repair of
unrestrictive ventricular septal defect and atrioventricular septal
defect (103). In a phase IIb trial, patients receiving intravenous
L-citrulline showed reduced duration of mechanical ventilation,

inotropic needs, and ICU stay (104). Further study of associations
between L-citrulline administration and endothelial function is
needed in this population.

Preservation of The Glycocalyx
The endothelial glycocalyx is responsible for maintaining
homeostasis of intravascular flow and dynamics. It is
affected in inflammation and hyperglycemia and has a
central role in capillary leak syndrome, or “endothelial
failure syndrome,” particularly in sepsis (105). Sulodexide,
a mix of glycosaminoglycan precursors, inhibits matrix
metalloproteinases, and IL-6 while stimulating lipoprotein
lipase activity and modulating the coagulation-fibrinolysis
balance. In a recent animal sepsis study, sulodexide accelerated
glycocalyx regeneration with decreased vascular permeability,
and improved survival (106). Additionally, maintaining adequate
levels of plasma proteins, particularly albumin, may promote
glycocalyx repair (107, 108). Lastly, evidence suggests that
resuscitation fluid volume and composition may impact
glycocalyx stability and the extent of end-organ injury (109, 110).
Further studies are needed to determine which therapies have
direct effects on glycocalyx integrity and its relationship to
ICU outcomes.

Other Treatments That May Regulate
Vascular Function
Endothelin receptor antagonists (ERAs) have a high potential
in the treatment of hypertension and renal diseases such
as diabetic nephropathy by blunting endothelium-dependent
vasoconstriction (111). The evidence for the potential benefits of
ERAs is limited in children, and more data is needed.

Phosphodiesterase inhibitors (PDEIs) have promise as a
treatment in specific pediatric populations. A recent phase III
clinical trial demonstrated improved exercise performance after
treatment with a PDEI among children who had undergone
a Fontan procedure (112). Further investigation is needed to
determine the effects of chronic treatment.

Other novel therapies with limited, but promising data that
are outside of the scope of this review include metabolic
therapies such as thiamine, vitamin C, tight glycemic control
with insulin, lipid/triglyceride modulation, and periodic whole
body acceleration.

CONCLUSIONS

The endothelium is crucial in maintaining vascular homeostasis
in health and allostasis in critical illness. Under stress, ECs
become activated, initiating inflammation, followed by new cell
surface protein gene expression. While this response represents
an attempt to neutralize infection and injury, it can be
pathologic. Patients with baseline chronic inflammation, such
as obese children, may be at risk for exaggerated EA and
associated end-organ injury, morbidity, and mortality. However,
this paradigm has not been adequately investigated among
obese, critically ill children, and represents a current gap in
pediatric research.
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The relationship between obesity, EA, and outcomes of
critically ill children is ripe with research potential. Further
understanding of the relationships between weight loss and
inflammationmay inform specific diet and lifestyle modifications
to prevent and/or reverse obesity-related EA. While EA is
associated with higher illness severity and adverse outcomes,
the severity and mechanisms involved are difficult to assess
directly in critically ill children. Microcirculation markers
such as capillary refill time frequently lack correlation with
macrocirculation measures such as blood pressure or peripheral
pulses (113). Additionally, studies on biomarkers of EA such as
proteins or damaged ECs or EC particles continue to be an area
of much needed future study.
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