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Human gastrointestinal and respiratory tracts are colonized by diverse polymicrobial

communities shortly after birth, which are continuously molded by environmental

exposure. The development of the resident microbiota in early life is a critical factor in

the maturation of a healthy immune system. Disturbances to the intricate relationship

between environmental exposure and maturation of the infant microbiome have been

increasingly identified as a potential contributor to a range of childhood diseases.

This review details recent evidence that implicates the contribution of gut and airway

microbiome to pediatric respiratory health.
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INTRODUCTION

The human superorganism has coevolved with a wide variety of microbial species that inhabit
the human body in an assortment of body-site-specific consortia (1–4). These resident microbes
support many functions in the human body, including the metabolism of complex carbohydrates.
Fermentation of carbohydrates leads to, amongst other products, anti-inflammatory, anti-
proliferative short-chain fatty acids (SCFAs) that represent an essential energy source for
gastrointestinal (GI) epithelial cells (5–7). Other microbial-derived bioactive metabolites include
essential vitamins (8, 9), hormones (10, 11), and neurotransmitters (12, 13). Resident microbes also
modulate drug absorption (14) and the efficacy of vaccines (15).

Of equal importance is the role of the microbiome in protection against pathogenic organisms
via competitive colonization (16–18), in addition to microbial regulation of the development and
subsequent modulation of local and systemic, innate and adaptive immune function (19–21). This
is particularly applicable to the evolving early-life microbiome, which has been recognized as having
a strong influence on long-term health from childhood through to adulthood (22).

The early-life human microbiota is evident shortly after birth at multiple body sites,
and it continues to assemble, evolve and mature throughout childhood, continuously shaped
by environmental exposures. Early exposures to environmental toxicants, livestock, and pet
ownership, along with birth delivery by cesarean section (vs. vaginal birth), exclusive formula
(rather than breast) feeding, and antimicrobial administration, have all been implicated in shaping
the developing microbiome in children (23–29). Disturbances to the intricate relationship between
environmental exposure and the maturation of the microbiome have been increasingly identified
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as an enhancer in the development of a range of childhood
diseases including those affecting the airways (30–34). This
review aims to summarize the most recent and compelling
evidence that implicates the contribution of gut and airway
microbiome in modulating pediatric respiratory health. The
focus of this review is on acute respiratory illness, recurrent
wheeze, and asthma, with the omission of cystic fibrosis, which
has recently been reviewed (35–37).

THE ORIGIN OF GUT AND AIRWAY
MICROBIOTA AT BIRTH

Although there is emerging evidence of perinatal microbial
exposure, based on the identification of microbial communities
in the peri- (38) and post-natal meconium (39–41), the vast
proportion of microbial colonization of the human body
takes place postpartum. According to studies examining infant
microbiome development at multiple body sites, colonization
with niche-specific microbial assemblages is evident in the
first few weeks following delivery (26, 40). Pioneer microbial
colonizers of the infant gut have been tracked to multiple
maternal body sites in vaginally delivered infants, with strains
originating from the maternal gut accounting for a substantial
proportion of the overall microbial abundance in the newborn
gut, followed by maternal vaginal, oral and skin microbial
reservoirs (40). The gut microbiome of infants delivered by
Cesarean section was mostly devoid of the maternal gut
commensals, particularly of the genus Bacteroides (27, 42), and
was more likely to include maternal skin and oral microbes, as
well as bacteria found in the delivery room (42–45).

Significantly less is known about the origin of the initial airway
microbial colonizers, as no studies to-date have mapped a direct
species transfer from the mother to the infant. However, the
presence of microbial species common tomultiple maternal body
sites has been observed in the oral microbiota of newborns (40),
with these pioneer communities also influenced by the delivery
mode (46). Since the microbiota of the lungs is thought to
originate primarily from the dispersion of microbes from the
oral, and to a much lesser extent the nasal cavity (2, 3, 47), the
former likely serves as the route of initial microbial transmission
for the lower airways at birth. What is certain, however, is
that the nascent microbiome, both in the intestinal and airway
tracts continues to acquire microbes from maternal sources and
their surrounding environment including other family members
and caretakers in the first few years of life (40, 48). Maternal
health, reflected in the composition of her microbiome, in
addition to other environmental factors, may be necessary for
the appropriate assembly of nascent microbial communities in
infancy. Improving our understanding of which key microbial
species are required during this early developmental window
for the geneses of health would aid the ongoing efforts of
developing efficacious microbiota-targeted therapeutics as a
potential preventative strategy in mitigating the onset of disease.
This is an enormous task and, without a doubt, the Holy Grail of
pediatric microbiome research to date.

MICROBIOME MATURATION—THE
INFLUENCE OF ENVIRONMENT OVER
GENETICS AND WHAT IT MEANS FOR
RESPIRATORY HEALTH

The microbial composition is unique for each individual
irrespective of body site, even in the first few days of life.
These nascent communities continue to diversify shaped by
environmental exposure as the gut and airway microbiota
assemble andmature (39, 49, 50). The infant microbial ecosystem
assembly follows body-site specific yet coordinated trajectories
(51), resulting in distinct microbial biogeography at each body
site, with a personalized unique microbial fingerprint for each
individual (52).

The uniqueness of individual microbial assemblies could be
partly attributable to host genetics, with several studies linking
genetics to microbiota composition in a healthy population (53,
54). Other more recent studies of >1,000 participants found the
impact of genetics on the microbiota to be less influential (55,
56), pointing to environmental factors as the main contributors
to inter-person microbiome variability in healthy individuals.
Although genetically related individuals tend to harbor more
similar microbiota (27, 57, 58), this relative similarity is likely
due to shared environmental exposures and cohabitation, which
facilitates microbial transfer between family members (59, 60).
This concept is supported by an observation of gut microbiome
divergence in monozygotic twins after living apart (60).

Environmental exposures appear to play a pivotal role in
the early microbial acquisition and community succession
in infancy. Exposures such as the aforementioned cesarean
section delivery (27, 29, 42, 44, 61–63), peri- and post-natal
antibiotic use (64, 65), gestational age (66), maternal health
(26, 39, 67, 68), and early diet (42, 62, 63, 67), have all been
associated with variability observed in the composition and
successional trajectories of the gut microbiota in the early years.
A recent study assessing the effect of delivery mode on the gut
microbiota maturation of 120 newborns in the first year of life,
independent of intrapartum antibiotics, showed enrichment of
Bifidobacterium and a reduction of Enterococcus and Klebsiella
spp. in vaginally delivered infants, who exhibited a more stable
microbiota development (29). Mode of delivery, infant feeding,
and antibiotic use have also been shown to alter the upper
respiratory microbiota maturation in infancy (49, 69). Infants
born by vaginal birth were quicker to acquire Corynebacterium
and Dolosigranulum spp. in their nasopharyngeal microbiota
than their caesarian-born counterparts. The acquisition of these
species coincided with enhanced microbial community stability
and fewer number of respiratory tract infections in the first year
of life (69, 70).

The environment surrounding the infant serves as a natural
microbial source that can colonize different body sites and
potentially modulate immune maturation and tolerance. Oral
(23) or intranasal (71) installation of house-dust from low-
risk for asthma households protected mice against airway
allergen challenge in experimental models of asthma. Gut
microbiota of mice gavaged with house dust from homes
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with dogs was enriched for Lactobacillus johnsonii (23). Oral
supplementation with this species reduced allergic airway
sensitization to cockroach allergen, reducing airway levels of pro-
inflammatory cytokines IL-4, IL-5, and IL-13 (23). This response
was mediated by enhanced levels of immunomodulatory fatty
acids, including docosahexaenoic acid (72). Similarly, nasal
administration of farm-derived bacteria, either Lactococcus lactis,
Acinetobacter lwoffii (73), or Staphylococcus sciuri (74), resulted
in decreased hallmarks of T helper type 2 (Th2) driven allergic
airway inflammation. Results from these mouse-model-based
experiments are consistent with the observation that children
who grow up with dogs or are exposed to farms and livestock are
less likely to develop atopy and childhood asthma (75) and have
distinct microbiota in infancy (24, 76–78). However, it should
be noted that only a limited number of microorganisms from
the environment are ecologically adapted for the successful and
persistent colonization of a mammalian host. Colonizing germ-
free mice with microorganisms present in diverse environmental
samples resulted in a small fraction of these surviving in the
mouse gut. Most of the surviving organisms were replaced by
more adapted mouse or human-derived microbial strains (79).

The acquisition and appropriate development of the infant
microbiome appear to be important in establishing a healthy
host-microbiome symbiosis, and disruption of this harmonious
relationship has been associated with childhood respiratory
diseases. For instance, delayed gut microbiota maturation (39,
68) and decreased microbial diversity (80, 81) in the first year
of life has been observed in infants at higher risk for asthma
development. Whereas, disruption of microbial niche specificity
along the respiratory tract (2, 3), together with an influx of
oral commensals in the nasopharynx, appears to precede the
development of respiratory tract infections (82). An improved
understanding of the intricate interplay between early life
microbiota acquisition, environmental microbial engraftment,
and immune conditioning is needed to elucidate the microbial
impact on the etiology of childhood respiratory disease.

MICROBIOTA DEVELOPMENT AND THE
IMMUNE SYSTEM

Microbial assembly in infancy appears to be vital in establishing
appropriate local and systemic innate and adaptive immune
functions (83). A recent study elegantly demonstrated that
exposure to a specific subset of intestinal microbiota enriched
in riboflavin-synthesizing bacteria in the first few weeks of
life is necessary for appropriate mucosal-associated invariant T
(MAIT) cells development in the skin, lungs and small intestine
of mice (84). Conversely, colonization later in life failed to
promote MAIT cell development within tissues, indicating that
exposure to specific microbes must occur during an early-life
window for correct immune priming.

The long-term effect of the appropriate microbial priming of
the host on immune system development is particularly evident
from studies of germ-free (GF) mice. These animals have a
significantly underdeveloped immune system with a lack of
regulatory gut CD4+CD8αα+double-positive intraepithelial T

lymphocytes (85), possess fewer T regulatory cells (86), display
a thinner gut (87), and lung (88) mucus lining and have
reduced expression of immunoglobulin A (89) necessary for
clearance of pathogenic microbes from the gut lumen (90).
Similar immune dysregulation is also observed in neonatal
mice following exposure to broad-spectrum antibiotics (91, 92).
Neonatal mice exposed to a single dose of macrolide antibiotic
soon after birth exhibited persistent alterations in their gut
microbiota composition, ileal gene expression, intestinal T-cell
populations and significant reduction of fecal IgA levels. These
features were not observed in neonatal GF or conventional adult
mice receiving the same treatment (91). Absence of microbial
colonization of the lungs appears to have a less profound effect on
the subset of localized immune cells (88), except iNKT cells which
are present at higher levels in both lungs and gut of GF mice (93)
and dissipate following microbiota-transfer from conventional
(non-GF) animals.

Exposure of neonatal mice to broad-spectrum antibiotics
is known to diminish microbial diversity and leads to an
exacerbation of allergen-induced airway inflammation (94,
95). Specifically, antibiotic treatment reduced the number
of SCFA producing gut bacteria, leading to a subsequent
reduction in systemic levels of immunomodulatory SCFAs (5,
95, 96). Conversely, supplementation of mice with SCFA or
increasing dietary fiber ameliorated allergic airway inflammation
in sensitized animals (5, 95). This resulted in reprogramming of
hematopoiesis and subsequent seeding of the lungs by dendritic
cells with high phagocytic capacity but an impaired ability
to promote Th2 cell effector function or to transport inhaled
aeroallergens to lung draining nodes. Airway microbiota has
also been shown to influence the development of allergic airway
inflammation. Immediately after birth, neonatal mice exhibit
enhanced Th2 cell inflammation and airway hyperresponsiveness
following exposure to house dust mite aeroallergens. However,
as the airway microbiome matured, the exacerbated response
to aeroallergen diminished (97). The absence of airway
colonization during this early postpartum window resulted
in sustained susceptibility to allergic inflammation through
adulthood. Supporting these murine observations are pediatric
epidemiological studies focused on the etiology of childhood
disease, which implicate early-life antibiotic administration as a
risk factor for childhood respiratory disease development (98,
99). Collectively, these observations provide strong evidence for
the establishment of commensal microbial communities early
in life as a critical factor for healthy immune development,
ensuring appropriate control, and a potential reduction in cases
of airway inflammation.

AIRWAY MICROBIOME AND
RESPIRATORY HEALTH

Evidence implicating perturbations to the composition and
function of the airway microbiota in pediatric respiratory disease
has grown substantially in the last decade (30, 31, 34, 100). Unlike
studies of the enteric microbiota, which are primarily based
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on profiling the highly abundant fecal microbial communities,
studies of the airway microbiota present more of a challenge.

Challenges Associated With Studying the
Airway Microbiome
Challenges of studying the airway microbiome arise from a
relatively low microbial burden typically recovered from airway
samples and the distinct composition of microbes present in
samples collected using different methods and the respiratory
tract compartment being sampled, making it difficult to compare
key findings between independent studies. The airway extends
from the nasal opening to the alveoli of the lungs, with
each compartment providing a distinct microenvironment for
microbial colonization. Ideally, samples for microbiome studies
addressing associations with pulmonary disease should be
obtained at a site where the inflammatory processes contributing
to respiratory symptoms occur, and for most pulmonary
conditions, these manifest in the lower airways. Unfortunately,
sampling the lower airways, particularly in children who cannot
expectorate, requires invasive bronchoscopy. This procedure is
poorly suited for studies involving infants, healthy children, and
large-scale studies due to the need for anesthesia and specialized
procedural expertise. As a result, extensive studies of lower
airway microbiome in young children are lacking. Most clinical
studies focused on the airway microbiota in children are based
on the non-invasive samples of the upper respiratory tract (e.g.,
nasopharyngeal/nasal swabs and nasal wash/lavage); these will
form the main focus of discussion in this review.

The upper airway is a poor surrogate for the lower
airway microbiota (2, 3, 47, 101–104). Compared to the lower
airways, the upper airways (both nasal and nasopharyngeal
compartments) harbor less complex microbiota, comprising of
distinct microbial communities (3, 47, 103, 104). Microbial
composition of the lower airway is more reflective of the oral
microbiota (2, 3, 47, 105, 106). However, it should be noted
that a loss of microbial topography along the respiratory tract
have been observed in individuals with respiratory disease (3,
107), with nasal microbiota contributing a portion of respiratory
disease-associated bacterial taxa to the lower airways (3, 47,
103). The exact mechanisms of interaction between the upper
and lower airway microbiota in respiratory disease remain
unclear. However, there is growing evidence for microbe-
microbe interactions and microbe-host interactions (3, 104)
within and across various compartments of the respiratory tract.

Dissimilar microbiota was also observed between sampling
methods within the same compartment of the respiratory tract,
such as those described in bronchial brush vs. bronchial alveolar
lavage (108), and nasal brush vs. nasal wash samples (109).
This is also the case for the two most representative anatomical
sites of the upper airway microbiome studies, the nares and
nasopharynx, which comprise of distinct microbial assemblies
with considerable compositional overlap (110). Interpretation
of airway microbiota studies should, therefore, be carried out
with caution, delineating not only the different compartments
of the respiratory tract but also based on sample collection
procedure. Despite the aforementioned limitations, there has

been tremendous recent progress in uncovering the role of
the developing upper airway microbiome in modulating and
improving respiratory health.

Upper Airway Microbiome and Acute
Respiratory Illness
Several extensive studies have characterized the upper respiratory
tract microbiome in children as being most frequently
dominated by one of the following six bacterial genera—
Moraxella, Streptococcus, Corynebacterium, Staphylococcus,
Haemophilus, and Alloiococcus [annotated as Dolosigranulum
in some databases] (50, 107, 111–114). These distinct bacterial
microbiota profiles differentially relate to respiratory illness
(Figure 1). In a study of 234 children at high risk for atopy,
early colonization of the nasopharynx with Haemophilus,
Streptococcus or Moraxella was found to be strongly associated
with acute respiratory illness (ARI), including lower respiratory
illness (LRI) in the first 5 years of life (50). Conversely, the
relative abundance of Staphylococcus, Corynebacterium, and
Alloiococcus in the upper airways of infants under 2 years of age
were negatively associated with ARIs. The incidence rate of LRIs
was highest in children with an early nasal Moraxella-dominant
profile and lowest in those with a Corynebacterium-dominant
microbiota profile (113). In a different matched case-control
study of 307 children hospitalized with LRIs and 154 age-
matched controls, nasopharyngeal microbiota profiles
dominated by Haemophilus influenzae and Streptococcus
pneumoniae were significantly associated with LRIs whereas
those dominated by Moraxella catarrhalis/nonliquefaciens or
by Corynebacterium propinquum and Dolosigranulum pigrum
were related to relatively stable health (107). Although most
ARI events involved viral pathogens, shifts in the microbiota
toward dominance by one of the pathogenic bacterial genera
preceded the detection of viral pathogens and acute respiratory
symptoms (50). Risk of severe respiratory tract illness was
significantly increased when rhinovirus (RV) or respiratory
syncytial virus (RSV) were detected concurrently with nasal
Moraxella, Streptococcus, or Haemophilus (111, 112, 115, 116).
Similarly, in children with LRIs caused by respiratory syncytial
virus (RSV), the relative abundance of H. influenzae and
S. pneumoniae in the nasopharynx was strongly associated
with increased inflammation (117–119) characterized by
overexpression of genes linked to neutrophil/macrophage
activation and signaling (117). Young adults with nasal
Moraxella-dominated microbiome cluster exhibited the most
increase in the concentration of inflammatory markers and
the highest viral load during experimental RV infection (120).
Conversely, among children hospitalized for bronchiolitis, those
harboring Haemophilus dominant nasopharyngeal and nasal
microbiota had increased odds for intensive care treatment and
an extended hospital stay, compared to those with Moraxella-
dominated microbiome profiles (110, 121). Together these
observations suggest that bacterial colonization may increase
susceptibility to and amplify the host innate immune response
to viral respiratory pathogens, thus modulating the severity
of ARIs.
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FIGURE 1 | Specific members of the upper airway microbiota have been differentially linked to acute respiratory illness (ARI), including lower respiratory illness (LRI),

recurrent wheeze, asthma risk and exacerbation. Although limited, there is some evidence that interactions exist between at least some members of the upper airway

microbiota with those colonizing the lower airways and with the pulmonary immune system. However, further work is required to elucidate these links.

Upper Airway Microbiome in Children With
Recurrent Wheeze and Asthma
The same three opportunistic respiratory pathogens (i.e.,
Streptococcus; Haemophilus, and Moraxella) have also been
implicated in increasing the risk for recurrent wheeze (50, 111),
asthma development and exacerbation during childhood
(69, 115, 122). In a recent study of 842 infants hospitalized
for bronchiolitis, increased nasal Moraxella and Streptococcus
relative abundance was associated with a higher risk of recurrent
wheezing by age 3 years (123). In another study of 413 school
children with asthma, those that experienced at least one
exacerbation irrespective of RV infection were more likely to
possess Moraxella-dominated nasal microbiota composition
(112) and elevated eosinophil cationic protein concentration in
nasal secretions (a marker for activated eosinophils)—suggesting
that such microbial communities may promote asthma
exacerbation in the absence of RV. In support of this were in vitro
observations of enhanced epithelial damage and gene expression
of the pro-inflammatory cytokines IL-8 and IL-33 following
exposure of human alveolar epithelial cells to cell-free products
of nasal Moraxella isolates. Additionally, Moraxella-dominated
nasal communities were found to be more stable over time, and
children who persistently exhibited this microbial signature in
their longitudinal samples were more likely to have viral asthma
exacerbations and a higher number of ARIs (112). Relatedly, the
relative abundance of nasal Moraxella was positively correlated

with systemic and lower airway eosinophilia and bronchial
pro-inflammatory cytokine levels in adult subjects with asthma
(3). Conversely, children with Alloiococcus, Corynebacterium,
and Staphylococcus-dominated nasal microbiota had decreased
risk of respiratory virus detection and asthma exacerbation
(112). These findings agree with a similar study of 214 children
with asthma, in whom nasal microbiota co-dominated by
Corynebacterium and Dolosigranulum was associated with
better asthma control with fewer exacerbations (114) than
those with nasal microbiota dominated by more pathogenic
bacteria (i.e., Moraxella, Staphylococcus- specifically S. aureus-
and Streptococcus). Additionally, loss of asthma control
was accompanied by a shift in nasal bacterial communities
from Corynebacterium/Dolosigranulum-dominated to those
dominated byMoraxella. This transition was associated with the
highest risk of exacerbation compared to the other combinations
(114). During periods of uncontrolled asthma, the relative
abundance of nasal Corynebacterium was associated with a
lower risk of progression to severe exacerbation, suggesting that
members of this genera may modulate airway inflammation in
asthma (114). This appears to be the case in adult asthmatics
whose nasal microbiota are less frequently dominated by
members of this genus compared to healthy controls and in
whom levels of bronchial inflammation inversely associated
with the relative abundance of nasal Corynebacterium (3).
Asthmatic subjects with Corynebacterium-dominated nasal
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microbiota exhibited a lower relative abundance of asthma-
associated bronchial microbial taxa (3), possibly explaining
reduced inflammation observed in these subjects. Similarly, the
relative abundance of nasal Corynebacterium associated with
lower transcription of inflammatory gene expression in the
nares of children (104) and showed the highest associations
with bronchial genera compared to other nasal taxa. Collectively
these observations highlight the need and importance to better
understand the fluctuation of microbial assemblies in the upper
airways overtime and mechanisms by which these contribute to
childhood respiratory disease.

A Synopsis on the Key Upper Airway
Bacterial Players in Respiratory Health
Overall there is consensus on a beneficial role of
Corynebacterium, Alloiococcus/Dolosigranulum, and coagulase-
negative Staphylococcus (CoNS; i.e., other than S. aureus)
species in moderating airway inflammation. Most studies
summarized above agree that the loss of these commensals is
associated with enhanced pro-inflammatory immune activation.
Competitive colonization is a plausible way by which upper
airway commensals protect against pathogen colonization and
overgrowth. For instance, Corynebacterium has been shown
to inhibit the growth of S. pneumoniae (124) and S. aureus
(125, 126) by releasing the antibacterial free fatty acids that
may prevent nasal colonization with the pathogenic organisms.
Similarly, nasal commensal CoNS S. epidermidis triggers
antimicrobial peptide production in the nasal epithelium,
providing it a competitive advantage over S. aureus and
M. catarrhalis leading to decreased inflammation in vivo
(127). Additionally, S. epidermidis has been shown to enhance
interferon-λ-dependent immunity against viral influenza
resulting in the suppression of viral replication in the nasal
mucosa (128). Collectively these observations indicate that from
an ecological perspective, a microbiome at equilibriummay resist
colonization with pathogenic bacteria and that this microbial
stability is important for the maintenance of a healthy airway.

However, when it comes to pathogenic bacteria and
associations with respiratory disease, there are currently a lot
of unknowns, particularly regarding Moraxella. Understanding
species and strain-specific differences between Moraxella spp.,
colonizing distinct compartments of the airway, by incorporating
more granular approaches such as metagenomics into future
studies will likely reveal whether more pathogenic strains
are prevalent in certain cohorts. A strain-specific granularity
in airway microbiome studies would also uncover whether
certain pathogenic types of Moraxella spp., are able to descend
deeper into the respiratory tract or remain localized in
the nasopharynx. The co-occurrence of microorganisms also
needs to be considered in future studies of the respiratory
microbiota since microbes do not exist in isolation but in
complex communities where members influence the virulence
potential of opportunistic pathogens. This is seen with co-
occurring Moraxella which attenuated the positive association
of Alloiococcus with ARI in older children (50); the observation
of Moraxella co-occurring with other members of this genus
in asthmatic children likely enhancing their virulence potential

(112); or the distinct dynamics of associations reported between
microbial members in the upper airways of asthmatic and
healthy children colonized with the same dominant microbial
genera (104). Such studies may help to explain the discrepancy
concerning members of genus Moraxella observed in pediatric
studies summarized above. Improving our understanding of
the microbe-microbe associations within and across the airway
compartments and relating them to microbe-host mucosal and
systemic immune interactions in multidisciplinary studies will
help uncover the mechanisms by which opportunistic respiratory
pathogens contribute to various respiratory illnesses in children.

GUT MICROBIOME AND RESPIRATORY
HEALTH

The gut is the most densely colonized organ of the human
body harboring a diverse range of microbial symbionts,
including bacteria, archaea, protozoa, and fungi (129–133).
In recent years the importance of the bidirectional crosstalk
along the gut-lung axis has been increasingly recognized as
a contributor to respiratory health, although the mechanisms
of these interactions remain poorly elucidated (134, 135).
Unsurprisingly, respiratory diseases are often accompanied by
gastrointestinal (GI) comorbidities and vice versa. Patients with
obstructive pulmonary disease, for example, have increased
intestinal permeability during severe acute exacerbations (136)
and are 2–3 times more likely to be diagnosed with irritable
bowel disease (137), whereas impaired pulmonary function is
prevalent in patients with chronic GI disease (138–140). In
infants, Bacteroides-dominated fecal microbiota was associated
with a higher likelihood of being hospitalized for bronchiolitis
(141). Although this does not directly support the role of the
microbiome in the gut-lung crosstalk, the associative evidence
is strong.

Further evidence for the gut-lung axis crosstalk comes from
studies implicating early-life gut microbiome perturbations,
characterized by loss of commensal Bifidobacteria, Lachnospira,
Faecalibacteria, and Akkermansia (39, 68, 80, 81) in risk
for childhood asthma development. Loss of these enteric
commensals was accompanied by depletion of fecal acetate,
anti-inflammatory polyunsaturated fatty acids and breast
milk oligosaccharides, all known to influence gut epithelial
colonization of infants at high risk for asthma (39, 80, 81).
Mice born to dames gavaged with feces from high-risk
infants exhibited exacerbated allergic lung inflammation in
an experimental model of asthma, which was alleviated upon
the supplementation of dames with bacterial taxa depleted
in the microbiota of high-risk infants (80). This suggests a
causal role of these early-life enteric bacteria in preventing
airway inflammation. Furthermore, soluble products of the
gut microbiota from high-risk infants induced Th2 cell
expansion, increased IL-4 expression, and decreased regulatory
T cell populations ex vivo, the latter attributed in part to
elevated fecal levels of the oxylipin 12,13-diHOME (81). This
oxylipin was initially observed in airways of adult asthmatics
following a bronchial challenge with birch pollen (142). The
link between pulmonary inflammation and elevated fecal levels
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of 12,13-diHOME was found to be related to reprogrammed
dendritic cell activity and a reduction in the number of
pulmonary Treg cells (143). In the infant gut, three epoxide
hydrolase genes (EH), responsible for the production of
the lipokine were encoded by Bifidobacterium bifidum and
Enterococcus faecalis. Either elevated concentration of 12,13-
diHOME or increased abundance of the EH genes was found
to significantly increase the probability of developing childhood
allergies, eczema, and asthma (143). Future research is needed to
determine the role of the gut environment in the expression of
these bacterial genes and how it relates to increased pulmonary
inflammation in asthma. This will be important as B. bifidum is
a widely used probiotic for infants, and certain strains encoding
EHs may not be suitable for all infants or conditions. It should
also be noted that 12,13-diHOME has a profound role in
brown adipose tissue activation and is negatively correlated
with body-mass index and insulin resistance in mice (144).
It remains unclear why this lipokine seems to have different
effects in distinct mammalian tissues/systems and what role the
time of exposure to elevated levels plays in the development of
various pathologies.

Gut Metabolome and Infant Diet
Infant diet is the earliest, well-established microbial selection
pressure, where exclusive breastfeeding is known to select
for distinct microbiota compared to formula-feeding (145).
Breastfeeding has also shown to mitigate against LRI in a
study of 5,322 children in whom breastfeeding for 6 months
was associated with a lower incidence of LRI up to 4 years
compared to children who had never been breastfed (146).
The timing of solid food introduction and its nutritional
composition have also been shown to significantly alter the
gut microbiome in infants (147). The impact of different
dietary habits on shaping the developing gut microbiota has
been demonstrated in a comparative study of European and
African children aged 1–6 years (148). A significantly higher
intake of fiber with low animal protein and fat consumption
in the rural African diet promoted enrichment of Prevotella
and Xylanibacter compared to that of Bacteroides observed in
the western children, leading to significantly increased levels
of bacteria-derived fecal anti-inflammatory SCFA (148, 149).
The microbial capability of SCFA production by fermenting
complex carbohydrates is also evident in infants before
weaning (150, 151), highlighting the potential of the infant
gut microbiome to ferment complex carbohydrates beyond
inulin, fructo- and galacto-oligosaccharides currently used in
infant formula.

Harvesting enteric microbial capacity to produce SCFAs
via nutritional intervention represents an attractive avenue
for gut microbial modulation as a preventative strategy for
respiratory disease development (152). As demonstrated in
several studies, SCFAs promote intestinal-epithelial integrity
leading to reduced inflammation locally in the gut as well
as in the respiratory tract (5, 95, 153–155). The mechanisms
linking microbial-derived SCFAs and effects on the respiratory
tract are just beginning to be elucidated; however, there is no

doubt that this relationship is multifaceted (135). Mechanisms
of SCFAs mode of action on modulating immune responses
have been linked to G protein-coupled receptors and inhibition
of histone deacetylase activity (135, 154). It is essential to
keep in mind that SCFA effects are not only dependent on
their availability, concentration and affinity to receptors but
also on the expression of various transporter molecules and
downstream effectors in distinct cell types (135). Whether
dietary interventions aimed at modulating gut microbiota prove
effective in preventing respiratory disease in children remains to
be determined.

Gut Interventions to Improve Respiratory
Health
To date, although some promising results have been seen from
trials using symbiotics (probiotics/prebiotics or a combination)
in reducing the rate of pediatric respiratory tract infections
(156, 157), this had not been the case for attempts at
preventing atopic asthma (158–161). Encouragingly, infant
gut microbiota composition, metabolic function, and host-
immune interaction have been shown to be susceptible
to modulation by a single Lactobacillus rhamnosus strain
administered to high risk for asthma infants from birth once-
daily for 6 months (39). The positive effect of the probiotic
on the microbiome was not sustained following cessation of
supplementation, suggesting the need for earlier intervention
or use of a multispecies probiotic supplement consisting of
species more adapted to the neonatal gut environment to
achieve long term-term efficacy (32, 39). Overall, evidence
implicating gut microbial alterations in respiratory disease
development is rapidly building. More mechanistic studies are
needed to improve the understanding of underlying mechanisms
driving microbe-microbe and microbe-host interactions locally
in the gut in parallel with these along the gut-lung axis
before targeted interventions will likely be shown to have
clinical efficacy.

SUMMARY AND CONCLUDING REMARKS

Convincing evidence from both murine and human studies
implicates perturbations to the composition and function of
airway and gut microbiota in pediatric respiratory disease.
Disruptions to the developmental assembly of the microbiota
maturation have long-lasting consequences manifesting in
an enhanced response to viral or allergen exposure and
consequently, respiratory disease. Despite tremendous progress
in uncovering underlying microbial mechanisms responsible
for respiratory disease development or exacerbation, the
microbiome field is in a nascent state, and many knowledge
gaps and opportunities for improved understanding remain. An
integrative systems biology approach linking all the members
of the microbiota (bacteria, fungal and viral) in the respiratory
and gastrointestinal compartments to host immune function is
required to elucidate specific microbial mechanisms that govern
respiratory disease susceptibility.
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