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Current monitoring techniques in neonates lack sensitivity for hypoxia at cellular level.

The recent introduction of the non-invasive Cellular Oxygen METabolism (COMET)

monitor enables measuring in vivo mitochondrial oxygen tension (mitoPO2), based

on oxygen-dependent quenching of delayed fluorescence of 5-aminolevulinic acid

(ALA)-enhanced protoporphyrin IX. The aim is to determine the feasibility and safety of

non-invasive mitoPO2 monitoring in surgical newborns. MitoPO2 measurements were

conducted in a tertiary pediatric center during surgical repair of congenital diaphragmatic

hernia or esophageal atresia. Intraoperative mitoPO2 monitoring was performed with

a COMET monitor in 11 congenital diaphragmatic hernia and four esophageal atresia

neonates with the median age at surgery being 2 days (IQR 1.25–5.75). Measurements

were done at the skin and oxygen-dependent delayed fluorescence was measurable

after at least 4 h application of an ALA plaster. Pathophysiological disturbances led to

perturbations in mitoPO2 and were not observed with standard monitoring modalities.

The technique did not cause damage to the skin, and seemed safe in this respect in all

patients, and in 12 cases intraoperative monitoring was successfully completed. Some

external and potentially preventable factors—the measurement site being exposed to the

disinfectant chlorohexidine, purple skin marker, or infrared light—seemed responsible

for the inability to detect an adequate delayed fluorescence signal. In conclusion, this

is the first study showing it is possible to measure mitoPO2 in neonates and that the

cutaneous administration of ALA to neonates in the described situation can be safely

applied. Preliminary data suggests that mitoPO2 in neonates responds to perturbations

in physiological status.
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INTRODUCTION

Major (non-cardiac) neonatal surgery is challenging for clinicians. The neonatal homeostasis is
a frail equilibrium and is highly affected by general anesthesia and surgical manipulation (1, 2).
The anesthesiologist aims to monitor the physiology with the help of the heart rate, invasive blood
pressure, saturation, end-tidal carbon dioxide, skin perfusion, urine output, and serum lactate.
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These broad range of monitoring modalities are used as
surrogate of end-organ perfusion with adequate oxygen transport
as a prime goal. To date, the optimal blood pressure in
neonates for adequate perfusion of peripheral and cerebral
tissue is unknown. Invasive techniques available for effective
monitoring of the circulation/cardiovascular system are seldom
used due to technical restraints in neonates or are simply
not feasible during neonatal surgery (3). Yet, the incidence of
brain injury after (non-cardiac) neonatal surgery is increasingly
reported (4, 5) as well as altered long–term neurodevelopmental
outcomes (6–9). Several factors are thought to contribute to
the postoperative brain injury, including alterations in the
perioperative neonatal hemodynamics.

Adequate oxygen supply to tissues is of pivotal importance.
A non-invasive, bedside monitoring modality for cellular
oxygenation could provide direct information about oxygen
transport. This allows clinician to adjust their management on
actual measurements of tissue perfusion and oxygenation instead
of systemic circulatory measures. In this light, monitoring
of cellular oxygenation has been suggested to be beneficial
during neonatal-cardiac surgery due to the highly affected
hemodynamics (10). Yet, major non-cardiac congenital
anomalies which requires surgery within the 1st days causes
alterations in the neonatal physiology as well (4, 7). The recent
introduction of the non-invasive Cellular Oxygen METabolism
(COMET) monitor (Photonics Healthcare B.V., Utrecht, The
Netherlands) makes it possible to measure in vivomitochondrial
oxygen tension (mitoPO2). Although mitochondrial oxygen
sensing has been recognized as a promising technique for
pediatric ICU and anesthesia (11, 12), until now reported use has
been limited to adults (13–16). The present study tests feasibility
and safety of intraoperative use of COMETmonitoring in infants
for the first time.

The COMET monitor measures mitoPO2 by means of
oxygen-dependent quenching of delayed fluorescence (17).
Green pulsed laser excitation of protoporphyrin IX (PpIX) leads
to a relatively long-lived red-light emission, called “delayed
fluorescence.” The intensity of the delayed fluorescence decays
with an oxygen-dependent lifetime,meaningmore oxygen results
in a shorter lifetime and vice versa. PpIX is the final precursor of
heme in the heme-biosynthetic pathway, synthesized inside the
mitochondria. Under normal (non-sensitized) conditions PpIX
concentrations in human skin are very low and non-detectable
with COMET. Administration of 5-aminolevulinic acid (ALA)
increases mitochondrial PpIX concentrations and ensures the
mitochondrial origin of the delayed fluorescence signal (15).
Therefore, to enable measurements with the COMET monitor,
ALA needs to be applied on skin to induce PpIX, the latter acting
as mitochondrially located oxygen-sensitive dye (17, 18).

ALA is registered for use in adults, for example for
photodynamic therapy in dermatologic pathology (19, 20) and
to visualize brain tumors during fluorescence-guided surgery
(21, 22) and was not used in pediatric patients until recently.
Research with cutaneous ALA administration up to 354mg in
infants of 5 years and older reported no side effects (23). Oral
administration of 20 mg/kg ALA in infants of 1 year and older
showed a transient increase of alanine aminotransferase (24–26).

Rarely, the administration of 5-aminolevulinic acid led to an
allergic reaction, in here contact dermatitis are the only reported
allergies (27). Therefore, we assumed the safety on a systemic
level of a very low dosage of ALA—8 mg—on the skin of
neonates, providing an opportunity to use COMET monitoring
in neonates for the first time. Primary outcomes of this study
were feasibility and safety, especially local (photo)toxicity, of
cutaneous ALA administration in combination with using the
COMET monitor in neonates perioperatively. A secondary
outcome was preliminary evaluation of anesthesiologic and
surgical procedures influencing mitoPO2.

MATERIALS AND METHODS

The institutional research board approved a feasibility study of 15
neonates (MEC 2017-145).

After obtained informed consent from both parents,
measurements were performed during surgical treatment of
neonates with congenital diaphragmatic hernia (CDH) or
esophageal atresia (EA). Surgery took place in the operating
theater, unless the neonate was on extracorporeal membrane
oxygenation (ECMO), in which case the surgery was performed
in the pediatric intensive care unit due to logistics.

In this study the feasibility was defined as the possibility
of priming the skin with ALA and to measure mitoPO2 in
neonates. The safety was defined as (the lack of) any adverse
event of the skin after cutaneous administration of ALA and
measurement with COMET until 48 h after the COMET-skin
sensor was removed.

An Alacare R© plaster has a square format of 2 by 2 cm and
contains 2mg per cm2 ALA (Alacare, photonamic, Pinneberg,
Germany). The plaster is covered by an aluminum layer to protect
the primed skin to light exposure (Figure 1) (28). The plaster was
applied in the pediatric intensive care unit (ambient temperature
of ∼22◦C) on the skin on the frontal side of the upper leg
for at least 4 h before starting the measurement. Research in
adults showed that a priming time of 4 h or more was needed
to synthesize the suitable concentration of PpIX to enables
measurements of mitoPO2 in the skin (15). The same minimal
priming time was maintained in this study.

The COMET-skin sensor has a biocompatible housing of 7 ×
2× 2 cm. The skin sensor was placed on the primed skin and was
attached to the skin by a double-sided plaster provided by the
COMET manufacturer (Figure 1). The influence of light on the
primed skin during the application of the COMET-skin sensor
was minimized by turning off the surgical luminaires/lamps.
After the application of the skin sensor, the biocompatible
housing was covered with aluminum foil.

Continuous registration of routine vital parameters,
regional cerebral oxygenation (rSO2) (INVOSTM 5100C) and
mitochondrial saturation (COMET) were obtained and stored
for off-line analyses. Sampling rate of the vital parameters was
every second, rSO2 every 6 s and mitochondrial oxygen tension
(mitoPO2) every 60 s. Intraoperative management was registered
in our Patient Data Management System. Patients received
general anesthesia with sevoflurane/midazolam, rocuronium
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FIGURE 1 | The ALA plaster with the aluminum cover (A) and the ALA side (B), double-sided tape (C) which is used for the application of the COMET-skin sensor (red

arrow) on the frontal side of the upper leg (D) and the Cellular Oxygen METabolism (COMET) monitor (E).

TABLE 1 | Patient demographics.

n = 15 Median (IQR)

Male gender, n (%) 8 (53%)

Gestational age, wk 38.1 (37.7–40.2)

Birth weight, grams 3,000 (2,400–3,340)

Age at surgery, days 2 (2–5.5)

Duration of surgery, min 106 (95–116)

Priming time skin, min 465 (413–720)

Duration MitoPO2 measurement 116 (98–133)

Surgical approach

Thoracoscopy, n (%) 5 (33%)

Thoracotomy, n (%) 2 (13%)

Laparotomy, n (%) 8 (53%)

Surgery during ECMO, n (%) 2 (13%)

and fentanyl. MitoPO2 measurements started before surgery
and continued until after surgery. After completion of the
measurement the primed skin was shielded against light with an
aluminum plaster for 48 h. This is based on the pharmacological
characteristics of ALA. The mean half-life fluorescence clearance
of PpIX is 30± 10 h.

RESULTS

Informed consent was obtained in 11 CDH and 4 EA patients.
Intraoperative measurements were performed in all 15 included
neonates. Neonates had a median gestational age of 38 weeks
(IQR 37.7–40.2), a median birth weight of 3,000 grams (IQR

TABLE 2 | Median and IQR values of the 12 successfully obtained measurements.

HR MABP Saturation rSO2 MitoPO2

Start 133 (113–142) 41 (37–44) 96 (94–97) 87 (66–93) 58 (51–60)

measurement

+10min 130 (112–146) 48 (40–53) 94 (91–97) 83 (69–92) 57 (55–64)

+20min 133 (118–140) 49 (40–62) 96 (93–97) 88 (69–93) 54 (53–63)

+30min 133 (122–151) 47 (44–49) 95 (94–97) 81 (74–93) 53 (49–60)

+40min 146 (135–160) 42 (35–46) 92 (90–97) 79 (70–88) 53 (52–56)

+50min 144 (137–156) 41 (35–48) 95 (91–99) 82 (72–89) 50 (48–54)

+60min 149 (137–164) 43 (39–45) 97 (91–99) 88 (77–95) 51 (49–54)

+70min 154 (136–166) 45 (40–48) 96 (92–97) 87 (65–94) 52 (49–58)

+80min 150 (137–168) 45 (35–46) 96 (95–99) 86 (71–95) 52 (47–59)

+90min 151 (133–168) 42 (37–48) 97 (91–99) 83 (67–94) 53 (52–59)

+100min 157 (124–163) 42 (39–45) 96 (92–99) 78 (65–91) 51 (50–63)

+110min 133 (121–168) 46 (42–52) 97 (93–99) 84 (68–91) 53 (50–64)

+120min 137 (127–171) 42 (37–52) 96 (92–99) 77 (74–91) 48 (45–53)

2,400–3,340) and a median age at surgery of 2 days (IQR 2–5.5).
Median duration of the surgical procedure was 106min (IQR
95–116) and two patients received surgical repair of CDH on
ECMO in the pediatric intensive care unit (Table 1). Median skin
priming time with ALA was 7 h 45m (IQR 6 h 50 m−12 h 0m).
Twelve out of 15 measurements were successful with a median
duration of the MitoPO2 measurement of 116min (IQR 98–133)
(Table 1). The first measurement failed due to the radiant warmer
(infra-red light), the second due to pink chlorohexidine-alcohol
disinfectants and the third due to purple skin marker on the
primed skin.
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In the 12 successful measurements (Table 2) the mitoPO2

interquartile range at start of themeasurement was 51–60mmHg.
In all neonates the skin was examined on regular timepoints; after
removing the ALA plaster after priming of the skin, directly after
removing the COMET-sensor, at 24 and 48 h after removing the
COMET-sensor. No adverse events such as erythema or other
signs of an irritated skin were observed.

Two cases illustrate fluctuations in mitoPO2 in relation to
surgical and anesthetic actions. Case 1 (Figure 2A) is a female
neonate, gestational age 37 weeks, birth weight 2,500 grams, with
CDH requiring veno-arterial ECMO treatment due to therapy-
resistant pulmonary hypertension. Surgical treatment was on day
8 of life, during ECMO. Priming of the skin with ALA was 6 h.
During surgery bleeding intercostal arteries caused significant
blood loss. Vital parameters and rSO2 remained unchanged,
but mitoPO2 decreased from 62 mmHg at start surgery to 36
mmHg (a reduction of 42%) during blood loss and partially
recovered after supplementation with erythrocyte transfusion
with a mitoPO2 up to 53 mmHg at the end of the surgery.

Case 2 (Figure 2B) is a male neonate, gestational age 34
weeks, birth weight 1,950 grams, with EA type C with a

trachea-esophageal fistula. Surgical repair took place on day 1
of life. Skin priming time with ALA was 8 h. The patient was
positioned on the left side during surgery. Surgical compression
of the lung caused hypoxia which required increasing FiO2

from 35 to 75% to maintain peripheral saturation between 90
and 95%. Blood pressure and heart rate remained stable, rSO2

responded on the increased FiO2 firstly, but mitoPO2 decreased
soon after the compression started and continues to decrease
from 69 mmHg at start surgery to 37 mmHg (a reduction of 47%)
and restored within minutes after manipulation of the lung was
finished with amitoPO2 up to 62mmHg at the end of the surgery.

DISCUSSION

This is the first study showing feasibility of mitoPO2

measurements in neonates, and importantly, in a clinically
relevant high-risk perioperative setting. Measurements with
the COMET monitor proved feasible and safe in terms of
local damage to the skin. Furthermore, pathophysiological
disturbances led to perturbations in mitoPO2. In 12 out of 15
patients mitoPO2 measurements were successful. Failures were

FIGURE 2 | Surgical repair of congenital diaphragmatic hernia during EMCO (A) Surgical repair of esophageal atresia (B).
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caused by external and potentially preventable factors, disabling
detection of an adequate delayed fluorescence signal. In one case
infrared warming lamp heat or radiation interfered with the
priming of the skin with ALA. Aluminum foil is a strong infrared
reflector and was successfully used to shield the ALA plaster
against infrared radiation during priming of the skin in the
following cases. In the two other failed cases colored substances
on the skin interfered with measurements, chlorohexidine with
pink pigment and skin marker are both significant sources
of delayed fluorescence and thereby potent disturbers of the
mitochondrial PpIX light emission.

Safety of ALA administration with Alacare plasters was a
major concern for the ethics committee due to the off-label use
of ALA for measuring mitoPO2 with the COMET. The reaction
of the neonatal skin on ALA administration was unknown
and consequently we only obtained approval to perform this
feasibility and safety study. ALAmakes the skin sensitive for light,
consequently it is frequently used for photodynamic therapy in
different sorts of dermatologic pathology. In children of 5 years
and older, the administration of ALA up to 354mg, which is over
40 times higher than de 8mg ALA that was applied on the skin in
this study, did not have any side effects (23). Oral administration
of 20mg/kg ALA in infants of 1 year and older showed a transient
increase of alanine aminotransferase (24–26). Systemic effects of
topical/local administration of ALA on the skin have not been
reported and in this study, we focused on potential local side
effects in neonatal skin.

There is a risk for erythema and burns when the skin is
exposed to (day)light after the administration of ALA. Therefore,
precautionary measures were taken to shield the skin for light
for 48 h after the measurement with the COMET was ended and
the skin sensor was removed. In none of the cases local damage
or irritation of the skin was observed, so the combination of
ALA-plaster and COMET measurements seems safe.

The pharmacokinetic properties of topical ALA
administration with Alacare in neonates are unknown, but
in adults the reported skin priming time with ALA takes
4 till 8 h (13). In this study, the same priming times were
maintained for neonates. In a following efficacy study, the power
calculation/sample size will be focused on validating mitoPO2

measurements in neonates and analyzing the ideal priming time
of the neonatal skin. This will create insight in the reaction of the
skin to the application of ALA in term and preterm neonates.

For this study two major non-cardiac congenital anomalies
were included: congenital diaphragmatic hernia (CDH) and
esophageal atresia (EA). These congenital anomalies were chosen
to be eligible because major surgery is required within the
1st days of life and postoperative brain injury are reported in
children with these congenital anomaly (4, 7). CDH neonates
suffer from lung hypoplasia and abnormal morphology of the
pulmonary vasculature which results in respiratory insufficiency
and severe (therapy-resistant) pulmonary hypertension (29,
30). CDH neonates are a challenge for clinicians to manage
due this altered physiology. In EA neonates, the physiology
is less affected by the congenital anomaly itself, but requires
complex surgery with major intrathoracic manipulation which
highly affects the neonatal physiology (31). In these children,

our preliminary results suggest that monitoring mitochondrial
oxygenationmight register changes in neonatal physiology which
could not have been observed using standardmonitoring devices.
Clearly, further research into the clinical usability of COMET
is warranted but seems justified based on this pilot. Although
this was only a feasibility and safety study, these results confirm
that mitochondrial hypoxia may occur without clear signs of
central hypoxia and are in line with previous research in
animals and humans (32–35). A piglets study demonstrated
cutaneous mitoPO2 changed earlier than MABP and lactate
during ongoing hemodilution (32). In a sepsis rat model as
well as in rats with induced right ventricular failure due to
pulmonary arterial hypertension, mitoPO2 proved an additional
parameter monitoring physiological changes (33, 34). The
clinical prototype of the COMETwas tested in healthy volunteers
and showed measuring mitochondrial oxygenation and oxygen
consumption in humans (13). Previous reports demonstrated
the intraoperative use of COMET in adults (15) and also
demonstrated that mitoPO2 measurements are not limited to
the skin (35). The first study using COMET during upper
gastro-intestinal endoscopy showed it is technically feasible and
safe (35).

Adequate oxygen supply to tissues is of pivotal importance
to sustain mammalian life. Aerobic metabolism is maintained
through inhalation of air in the lungs and subsequent
transport of the absorbed oxygen to tissues via the circulation.
The flow of hemoglobin-bound oxygen through the macro-
and microcirculation and diffusion of molecular oxygen into
the tissue cells brings oxygen to the mitochondria. In the
mitochondria, oxygen is used in oxidative phosphorylation
in order to efficiently produce adenosine triphosphate (ATP)
that acts as the energy source for many cellular processes.
Furthermore, mitochondria are essential for homeostasis of
the cell, they play a major role in (programmed) cell
death (apoptosis). Opening of the mitochondrial permeability
transition pore, as a result of a stressful stimulus such as
calcium or reactive oxygen species overload, leads to loss
of the mitochondrial membrane potential (36). The collapse
of the membrane potential results in ATP depletion and
necrosis (37), and the release of mitochondrial content such
as cytochrome c leads to apoptosis (38). A correlation to
outcome after perturbations in cellular oxygenation have not
yet been shown, but it could be used as an early warning
sign. Importantly, in both a preclinical (32) and clinical
setting (15) mitoPO2 provided different information than
hemoglobin saturation-based techniques like near- infrared
spectroscopy (NIRS). Although visible light spectroscopy and
near-infrared spectroscopy failed to show any response on
a perturbation, mitoPO2 clearly dropped. This was observed
during hemodilution in piglets, where mitoPO2 was measured
simultaneously with tissue oxygen saturation on the thoracic
wall. The mitoPO2 decreased after the hemoglobin dropped
below a threshold, but tissue oxygen saturation, which was
measured with NIRS, did not (32).

We previously published a clinical example in which mitoPO2

showed a different response than microvascular hemoglobin-
saturation. During peripheral vasoconstriction, which was
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induced by the administration of clonidine, microvascular
flow, and velocity parameters measured with laser-doppler
decreased both. The venous-capillary oxygen saturation did
not decrease, however, mitoPO2 in the skin measured by
COMET decreased along with the decrease in flow and velocity
(15). While mitoPO2 and microvascular flow provided similar
information here, we expect additional value of mitoPO2

measurements in clinical situations in which microvascular
shunting (39) and loss of hemodynamic coherence occur
(40), for example in sepsis and hemodilution. During sepsis
microcirculatory dysfunction occurs which causes shunting
and loss of the coherence between blood flow and tissue
oxygenation. Here microvascular, and ultimately mitochondrial,
oxygen measurements can be of additional value (39). The
same holds true during a hyperdynamic circulation due to
hemodilution, causing erythrocytes to pass too quickly through
the microcirculation. This phenomenon is referred to as
functional shunting and involves the inability of hemoglobin to
off-load oxygen fast enough to the tissues as it passes through
the microcirculation, causing cellular hypoxia while hemoglobin
saturation is normal or increased (40, 41).

In this study we found baseline mitoPO2 values in the range
of 51–60 mmHg. In a previous study in healthy volunteers
we reported mean mitoPO2 to be 44 mmHg, and in a very
recently published study in critical care patients mean mitoPO2

was reported to be around 60 mmHg (42). Such relatively high
values match well with other oxygen measurements in skin (43).
The differences between the studies could well be attributed
to factors like skin temperature, filling status of the patient,
and use of sedation/anesthesia, since such factors are known
to influence skin perfusion. Clinical data until now are scarce
and normal values for mitoPO2 remain to be determined, as
well as the influence of patient factors (such as age) and clinical
circumstances. Although we do think mitochondrial oxygen
tension is in general higher than anticipated (12), the reader
should realize that mitoPO2 in other organs and tissues is likely
to differ. Differences in tissue oxygen levels exist between organs,
tissues, and tissue compartments (43) and metabolic activity (for
example muscle contraction) is also of influence.

To date, clinicians are in the dark about the effect of the altered
neonatal (patho)physiology during major high-risk surgery on
cellular oxygenation. In the past the focus was to optimize
macrohemodynamics although the microcirculation has been
increasingly recognized as an import variable in the critically
ill neonate (44). To measure tissue oxygenation, a modality
based on the principle of near infrared spectroscopy (NIRS)
became popular. The optode of the NIRS emits near-infrared
light, which easily penetrates biological tissue at a depth of ∼2–
3 cm (45, 46). It measures the oxygenation of a combination of
75% venous, 20% arterial, and 5% capillary blood, but does not

provide information about the oxygen concentration at cellular
level. Unfortunately, the clinical use of additional monitoring
with NIRS have not been established yet (47). The COMET allows
us to look at oxygen availability at a cellular level. The neonatal
skin is an ideal target organ for COMET measurements. It is the
biggest organ in neonates and has a relative bigger surface and
is more vascularized compared to adults. Skin blood circulation
is very sensitive to changes in vascular resistance and blood
pressure (48), potentially making the skin a good indicator for
the (general) cardiopulmonary status of the neonate.

Compared to interstitial measurements with for example
oxygen electrodes COMET has some distinct advantages, such as
no need for calibration, non-destructiveness (no need for needle
placement), well-defined measurement compartment and very
fast response time (no need for signal integration over longer
periods of time). A disadvantage of the COMET technique is the
necessary priming with ALA. Although previous studies in adults
and this study in neonates, show that with some precaution’s
application of ALA to the skin can be done without harm, it
requires planning and currently prevents its use in emergency
situations. In elective situations in the operating room and for
use in the intensive care this proved not a major issue.

In conclusion, this is the first study showing it is possible
to measure mitoPO2 in neonates and that the cutaneous
administration of ALA to neonates in the described situation can
be safely applied. Preliminary data suggests that mitoPO2

in neonates responds to perturbations in physiological
status. The added value of mitochondrial measurements
for clinical decision making remains to be determined in
future studies.
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